当前位置:文档之家› 实验 梁弯曲正应力测定

实验 梁弯曲正应力测定

实验 梁弯曲正应力测定
实验 梁弯曲正应力测定

梁弯曲正应力测定

一、实验目的

1.用电测法测定直梁纯弯曲时的正应力分布,并与理论计算结果进行比较,以验证弯曲正应力公式。

2.了解电阻应变测量的原理,初步掌握静态电阻应变仪的使用方法。

二、实验设备名称及型号

1.WSG-80型纯弯曲正应力试验台。

2.YE2538A 程控静态应变仪。

3.应变片、导线、接线端子等。

三、实验原理

1.试样的制备:用矩形截面钢梁,在其横截面高度上等距离地沿梁的轴线方向粘贴5枚电阻应变片。

2.弯曲正应力的测量原理:梁纯弯曲时,横截面上的正应力σ在理论上沿梁的高度成线性分布,其计算公式为

z

I y M ?=

σ

式中,σ的单位为MPa ;

M 为梁横截面上的弯矩,单位为N ·mm ;

y 为应力σ所在的点到中性轴的距离,单位为mm ; I z 为横截面对中性轴z 的面积二次矩,单位为mm 4。

面积二次矩对于矩形截面按下式计算

123

bh

I z =

式中,b 为梁横截面的宽度,单位为mm ;

h 为梁横截面的高度,单位为mm 。

令使载荷P 对称地加在矩形截面直梁上(如图4-1所示)。这时,梁的中段将产生纯弯曲。若载荷每增加一级p ?(用增量法),则可由电阻应变仪测出梁中段所贴应变片各点的纵向应变增量ε?,根据虎克定律求出各点实测正应力增量εσ?=E 实

图4-1

此值与理论公式计算出的各点正应力的增量即

Z

I My ?=

理σ

进行比较,就可验证弯曲正应力公式。这里,弯矩增量2

pa M ?=?。

梁上各点的应变测量,采用1/4桥接线,各工作应变片共用一个温度补偿块。

四、实验步骤

1.记录实验台参数,设计实验方法。

2.准备应变仪:把梁上各测量点的应变片(工作应变片)按编号逐点接到电阻应变仪A 、B 接线柱上,将温度补偿片接到电阻应变仪接线柱上作公共补偿。

3.进行实验:把砝码托挂在杠杆上、加初载荷、调节应变仪,使各测量点均为零。加载,加一次砝码,各测量点读一次数,记下各点的应变值,直到加完砝码读数完毕为止。然后计算出各点读数差的平均值。

4.结束实验:请教师检查实验记录和数据是否齐全、正确。将实验设备、仪器、工具复原,清理实验场地。最后整理数据,完成实验报告。

五、实验记录数据

表4-1 试件尺寸及装置尺寸

表4-2 试件测点位置

表4-3 测定应变ε实验记录第一次应变读数记录

第二次应变读数记录

第三次应变读数记录

1ε?=

3

13

1211εεε?+?+?×10-6=

2ε?=

3

23

2221εεε?+?+?×10-6

3ε?=

3

33

3231εεε?+?+?×10-6

4ε?=

3

43

4241εεε?+?+?×10-6=

5ε?=

3

53

5251εεε?+?+?×10-6=

六、计算结果

1.各点正应力增量实i σ?,理论值理i σ?及相对误差填入表4-4 表4-4

2.实验所得横截面上正应力分布图

七、思考题

1.两个几何尺寸及受载情况完全相同的梁,但材料不同,试问在同一位置处测得的应变是否相同?应力呢?

2.理论计算出来的应力值与实际测量而计算出的应力值之间的误差是何原因产生的?

实验五 梁的纯弯曲正应力测定

图2-2 梁的尺寸、测点布置及加载示意图 图2-3半桥接线图 实验五 梁的纯弯曲正应力测定 一、概述 梁是工程中常用的构件和零件。在结构设计和强度计算中经常要涉及到梁的弯曲正应力的计算。而梁的弯曲正应力的理论公式是根据纯弯曲梁横截面变形保持平面的假设推导出来的,它的正确性以及能否推广到剪切弯曲梁,可以由本次实验提供的简便方法验证。 二、实验目的 1.用电测法测量矩形截面梁在纯弯曲时横截面上正应力的大小及分布规律,并与理论计算值相比较,以验证弯曲正应力理论公式。 2.掌握电测法原理和电阻应变仪的使用方法。 三、实验设备、器材及试样 1. 静态应变测试仪。 2. 多功能组合实验台。 四、实验原理 弯曲梁为矩形截面钢梁,其弹性模量E =2.05×105MPa ,几何尺寸见图2-2,CD 段为纯弯曲段,梁上各点为单向应力状态,在正应力不超过 比例极限时,只要测出各点的轴向应变ε实,即可按σ实 =E ε实计算正应力。为此在梁的CD 段某一截面的前后 两侧面上,在不同高度沿平行于中性层各贴有五枚电阻 应变片。其中编号3和3′片位于中性层上,编号2和2′ 片与编号4和4′片分别位于梁的上半部分的中间和梁 的下半部分的中间,编号1和1′片位于梁的顶面的中线 上,编号5和5′片位于梁的底面的中线上(见图2-2), 并把各前后片进行串接。 温度补偿片贴在一块与试件相同的材料上,实验时放在 被测试件的附近。上面粘贴有各种应变片和应变花,实验时根据工作片的情况自行组合。为了便于检验测量结果的线性度,实验时采用等量逐级缓慢加载方法,即每次增加等量的荷载ΔP ,测出每级荷载下各点的应变增量Δε,然后取应变增量的平均值 实ε?,依次求出各点应力增量Δσ实=E 实实ε?。 实验可采用半桥接法、公共外补偿。即工作片与不受力的温度补 偿片分别接到应变仪的A 、B 和B 、C 接线柱上(如图2-3),其中R 1 为工作片,R 2为温度补偿片。对于多个不同的工作片,用同一个温度 补偿片进行温度补偿,这种方法叫做“多点公共外补偿”。 也可采用半桥自补偿测试。即把应变值绝对值相等而符号相反的两个 工作片接到A 、B 和B 、C 接线柱上进行测试、但要注意,此时ε实=ε仪/2,ε仪 为应变仪所

矩形截面梁纯弯曲正应力的电测实验

A B C D L a a 1L b 2 F 2 F 2 F 2 F h 实验四 矩形截面梁纯弯曲正应力的电测实验 一、实验名称 矩形截面梁纯弯曲正应力的电测实验 二、实验目的 1.学习使用电阻应变仪,初步掌握电测方法; 2.测定矩形截面梁纯弯曲时的正应力分布规律,并与理论公式计算结果进行比较,验证弯曲正应力计算公式的正确性。 三、实验设备 1.WSG -80型纯弯曲正应力试验台 2.静态电阻应变仪 四、主要技术指标 1.矩形截面梁试样 图1 试样受力情况 材料:20号钢,E=208×109Pa ; 跨度:L=600mm ,a=200mm ,L 1=200mm ; 横截面尺寸:高度h=28mm ,宽度b=10mm 。 2.载荷增量 载荷增量ΔF=200N (砝码四级加载,每个砝码重10N 采用1:20杠杆比放大),砝码托作为初载荷,F 0=26 N 。 3.精度 满足教学实验要求,误差一般在5%左右。 五、实验原理

如图1所示,CD 段为纯弯曲段,其弯矩为Fa 2 1 M = ,则m 6N .2M 0?=,m 20N M ?=?。根据弯曲理论,梁横截面上各点的正应力增量为: z I My ?= ?理 σ (1) 式中:y 为点到中性轴的距离;Iz 为横截面对中性轴z 的惯性矩,对于矩形截面 12 bh I 3 z = (2) 由于CD 段是纯弯曲的,纵向各纤维间不挤压,只产生伸长或缩短,所以各点均为单向应力状态。只要测出各点沿纵向的应变增量ε?,即可按胡克定律计算出实际的正应力增量实σ?。 ε σ?=?E 实 (3) 在CD 段任取一截面,沿不同高度贴五片应变片。1片、5片距中性轴z 的距离为h/2,2片、4片距中性轴z 的距离为h/4,3片就贴在中性轴的位置上。 测出各点的应变后,即可按(3)式计算出实际的正应力增量实σ?,并画出正应力实σ?沿截面高度的分布规律图,从而可与(1)式计算出的正应力理论值 理σ?进行比较。 六、实验步骤及注意事项 1.开电源,使应变仪预热。 2.在CD 段的大致中间截面处贴五片应变片与轴线平行,各片相距h/4,作为工作片;另在一块与试样相同的材料上贴一片补偿片,放到试样被测截面附近。应变片要采用窄而长的较好,贴片时可把试样取下,贴好片,焊好固定导线,再小心装上。 3.调动蝶形螺母,使杠杆尾端翘起一些。 4.把工作片和补偿片用导线接到预调平衡箱的相应接线柱上,将预调平衡箱与应变仪联接,接通电源,调平应变仪。 5.先挂砝码托,再分四次加砝码,记下每次应变仪测出的各点读数。注意加砝码时要缓慢放手。 6.取四次测量的平均增量值作为测量的平均应变,代入(3)式计算可得各点的

材料力学实验指导书(矩形截面梁纯弯曲正应力的电测实验)

矩形截面梁纯弯曲正应力的电测实验 一、实验名称 矩形截面梁纯弯曲正应力的电测实验。 二、实验目的 1.学习使用电阻应变仪,初步掌握电测方法; 2.测定矩形截面梁纯弯曲时的正应力分布规律,并与理论公式计算结果进行比较,验证弯曲正应力计算公式的正确性。 三、实验设备 1.WSG-80型纯弯曲正应力试验台 2.静态电阻应变仪 四、试样制备及主要技术指标 1、矩形截面梁试样 材料:20号钢,E=208×109Pa; 跨度:L=600mm,a=200mm,L1=200mm; 横截面尺寸:高度h=28mm,宽度b=10mm。

2.载荷增量 载荷增量ΔF=200N (砝码四级加载,每个砝码重10N 采用1:20杠杆比放大),砝码托作为初载荷,F0=26 N 。 3.精度 满足教学实验要求,误差一般在5%左右。 五、实验原理 如图1所示,CD 段为纯弯曲段,其弯矩为a 2 1 F M = , 则m N M ?=6.20,m N M ?=?20。根据弯曲理论,梁横截面上各点的正应力增量为: z I y M ?= ?理σ (1) 式中:y 为点到中性轴的距离;Iz 为横截面对中性轴z 的惯性矩,对于矩 形截面, 12 bh I 3 z = (2) 由于CD 段是纯弯曲的,纵向各纤维间不挤压,只产生伸长或缩短,所以各点均为单向应力状态。只要测出各点沿纵向的应变增量ε?,即可按胡克定律计算出实际的正应力增量实σ?。 εσ?=?E 实 (3) 在CD 段任取一截面,沿不同高度贴五片应变片。1片、5片距中性轴z 的 距离为h/2,2片、4片距中性轴z 的距离为h/4,3片就贴在中性轴的位臵上。 测出各点的应变后,即可按(3)式计算出实际的正应力增量实σ?,并画出正应力实σ?沿截面高度的分布规律图,从而可与(1)式计算出的正应力理论值理σ?进行比较。 六、实验步骤 1.开电源,使应变仪预热。

纯弯梁的弯曲应力测定

纯弯梁的弯曲应力测定实验报告 使用设备名称与型号 同组人员 实验时间 1、 实验目的 1.测定梁纯弯曲时横截面上的正应力大小及分布规律,并与理论值比较,以验证弯曲正应力公式。 2.观察正应力与弯矩的线性关系。 3.了解电测法的基本原理和电阻应变仪的使用方法。 2、 实验设备与仪器 1.弯曲梁实验装置和贴有电阻应变片的矩形截面钢梁。 2.静态数字电阻应变仪YJ28A-P10R(见附录四)和载荷显示仪。 3.直尺。 3、 实验原理 梁纯弯曲时横截面上的正应力公式为σ= ,式中M为作用在横截面上的弯矩,Y为欲求应力点到中性轴Z的距离,I z为梁横截面对中性轴的惯性矩。本实验采用矩形截面钢梁,实验时将梁的支承及载荷情况布置如图6-1所示,梁的CD段为纯弯曲,在梁的CD段某截面不同高度(四等分点)处贴五片电阻应变片,方向平行梁轴,温度补偿片粘贴梁上不受力处,当纯弯梁受载变形时,利用电阻应变仪测出各应变片的应变值(即梁上各纵向应变值)ε实。由于纵向纤维间不互相挤压,故根据单向应力状态的虎克定律求出应力σ实=Eε实。E为梁所用材料的弹性模量。为了减少测量误差,同时也可以验证正应

力与弯矩的线性关系,采用等量加载来测定沿高度分布的各相应点的应变,每增加等量的载荷 F,测定各点相应的应变一次,取应变增量的平均值 ε实。求出各应力增量 σ实=E ε实,并与理论值 σ理= 进行比较,其中 M= Fa.,从而验证理论公式的正确性。

图6-1纯弯梁示意图 4、 实验操作步骤 1.将梁放在实验装置的支座上。注意应尽量使梁受平面弯曲,用尺测量力作用点的位置及梁的截面尺寸。 2.在确保梁的最大应力小于材料的比例极限σp前提下,确定加载方案。 3.将梁上各测点的工作应变片逐点连接到应变仪的A、B接线柱上,而温度补偿片接在B、C接线柱上。按电阻应变仪的使用方法,将应变仪调整好。 4.先加载至初载荷,记录此时各点的应变值,然后每次等量增加载荷 ΔF,逐次测定各点相应的应变值,直到最终载荷终止。卸载后,注意记录各测点的零点漂移。 5.检查实验数据是否与离开中性轴的距离成正比,是否与载荷成线形关系,结束工作。 5、 实验结果及分析计算 1、 实验数据 12345

梁弯曲正应力测量实验报告

厦 门 海 洋 职 业 技 术 学 院 编号:XH03J W024-05/0 实训(验) 报告 班级: 姓名: 座号: 指导教师: 成绩: 课程名称: 实训(验): 梁弯曲正应力测量 年 月 日 一、 实训(验)目的: 1、掌握静态电阻应变仪的使用方法; 2、了解电测应力原理,掌握直流测量电桥的加减特性; 3、分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解。 二、 实训(验)内容、记录和结果(含数据、图表、计算、结果分析等) 1、实验数据: (1) 梁的尺寸: 宽度b =9mm ;梁高h=30mm ;跨度l =600mm;AC 、BD:弯矩a=200m m。测点距轴z 距离: 21h y ==15mm;42h y ==7.5mm ;3y =0cm ;-=-=44h y 7.5mm;-=-=2 5h y 15mm;E=210Gpa 。 抗弯曲截面模量W Z =b h2/6 惯性矩J Z =bh 3 /12 (2) 应变)101(6-?ε记录:

(3) 取各测点ε?值并计算各点应力: 1ε?=16×10-6 ;2ε?=7×10-6 ;3ε?= 0 ;4ε?=8×10-6 ;5ε?=15×10 - 6 ; 1σ?=E 1ε?=3.36MPa;2σ?=E 2ε?=1.47MP a;3σ?=0 ; 4σ?=E 4ε?=1.68MPa;5σ?=E 5ε?=3.15MPa ; 根据ΔM W=ΔF ·a/2=5 N ·m 而得的理论值: 1σ?=ΔM W/W Z =3.70MPa;2σ?=ΔMWh/4(J Z)=1.85M Pa ;3σ?=0 ; 4σ?=ΔM W h/4(J Z )=1.85MPa;5σ?=ΔMW /W Z=3.70MPa; (4) 用两次实验中线形较好的一组数据,将平均值ε?换算成应力εσ?=E ,绘在坐标 方格纸上,同时绘出理论值的分布直线。

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告 一、实验目的 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具 3.XL3416 纯弯曲试验装置 4.力&应变综合参数测试仪 5.游标卡尺、钢板尺 三、实验原理及方法 在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为 σ= My / I z 式中M为弯矩,I z 为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。 实验采用半桥单臂、公共补偿、多点测量方法。加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量 σ实i=E△ε实i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。 四、实验步骤 1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变 片到中性层的距离y i 。见附表1 3.拟订加载方案。先选取适当的初载荷P 0(一般取P =10%P max 左右),估 算P max (该实验载荷范围P max ≤4000N),分4~6级加载。 4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。 6. 加载。均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级 等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。实验至少重复两次。见附表2 7. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 附表1 (试件相关数据) 附表2 (实验数据) 载荷 N P 500 1000 1500 2000 2500 3000 △P 500 500 500 500 500 各 测点电阻应变仪读数 με 1 εP -33 -66 -99 -133 -166 △εP -33 -33 -34 -33 平均值 -33.25 2 εP -16 -3 3 -50 -67 -83 △εP -17 -17 -17 -16 平均值 16.75 3 εP 0 0 0 0 0 △εP 0 0 0 0 平均值 0 4 εP 1 5 32 47 63 79 △εP 17 15 1 6 16 平均值 16 5 εP 32 65 9 7 130 163 △εP 33 32 33 33 平均值 32.75 五、实验结果处理 1. 实验值计算 根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算 各点的实验应力值,因1με=10-6ε,所以 各点实验应力计算: 应变片至中性层距离(mm ) 梁的尺寸和有关参数 Y 1 -20 宽 度 b = 20 mm Y 2 -10 高 度 h = 40 mm Y 3 0 跨 度 L = 620mm (新700 mm ) Y 4 10 载荷距离 a = 150 mm Y 5 20 弹性模量 E = 210 GPa ( 新206 GPa ) 泊 松 比 μ= 0.26 惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4

纯弯曲正应力分布规律实验

实验三纯弯曲正应力分布规律实验 一、实验目的 1.用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律并与理论值进行比较; 2.验证纯弯曲梁的正应力计算公式; 3.掌握运用电阻应变仪测量应变的方法。 二、实验仪器和设备 1.多功能组合实验装置一台或弯曲梁试验装置; 2.TS3860型静态数字应变仪一台; 3.纯弯曲实验梁一根; 4.温度补偿块一块; 5.游标卡尺 3-1 多功能组合实验装置 3-2弯曲梁试验装置 1—弯曲梁 2—铸铁架 3—支架 4—加载杆 5—加载螺杆系统 6—载荷传感器 7和8—组成电子秤 三、实验原理和方法 弯曲梁的材料为钢,其弹性模量E=200GN/m2,泊松比μ=0.29。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:

x M y I σ= (3-2) 式中:M 为弯矩;I x 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力ΔP 时,梁的四个受力点处分别增加作用力ΔP /2,如图3-3所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了7片应变片(见图3-3)(对多功能组合装置:b =18.3mm ;h =38mm ;c =133.5mm ),各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的下表面沿横向粘贴了应变片8# 。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的胡克定律公式σ=E ε,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 若由实验测得应变片7#和8#的应变ε7,和ε8满足 87||εμε≈ 则证明梁弯曲时近似为单向应力状态,即梁的纵向纤维间无挤压的假设成立。 图3-3弯曲梁布片图 四、实验步骤 1.检查或测量(弯曲梁试验装置)矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离c ,及各应变片到中性层的距离y i 。 2.检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。然后把梁上的应变片按序号接在应变仪上的各不同通道的接线柱A 、B 上,公共温度补偿片接在接线柱B 、C 上。相应电桥的接线柱B 需用短接片连接起来,而各接线柱C 之间不必用短接片连接,因其内部本来就是相通的。因为采用半桥接线法,故应变仪应处于半桥测量状态,应变仪的操作步骤见应变仪的使用说明书。 3.根据梁的材料、尺寸和受力形式,估计实验时的初始载荷P 0(一般按P 0=0.1σS 确定)、最大载荷P max (一般按P max ≤0.7σS 确定)和分级载荷ΔP (一般按加载4~6级考虑)。

纯弯曲梁正应力电测试验

实验二、纯弯曲梁正应力电测实验 一、 实验目的 1、 电测法测定纯弯曲梁正应力分布规律。 2、验证纯弯曲梁正应力计算公式。 二、 实验装置与仪器 1、 纯弯曲梁实验装置。 2、 数字式电阻应变仪。 三、 实验装置与实验原理 1、实验装置 弯曲梁试验装置如图1所示。它有弯曲梁 1, 定位板2,支座3,试验机架4,加载系统5, 两 端带万向接头的加载杆6,加载压头(包括φ16 钢珠)7,加载横梁8,载荷传感器9和测力 仪10等组成。该装置有已粘贴好应变片的钢梁(其弹性模量2210m G N E =)用来完成纯 弯曲梁正应变分布规律试验。 纯弯曲梁正应变分布规律试验

纯弯曲梁受力状态及有关尺寸见图2。 图 2 在梁的纯弯曲段内已粘贴好两组应变片,每组8片,分别为1~8号片和1*~8*号片, 各片距中心层的距离在图3中已标出。当梁受力变形后,可由应变仪测出每片应变片产生的应变,这样就可得到实测的沿梁横截面高度的正应变分布规律。根据材料力学中纯弯曲梁的平面假设,沿梁横截面高度的正应变分布规律应当是直线。另外材料力学中还假设梁在纯弯曲段内是单向应力状态,为此,我们在梁的下 表面粘贴有与7号片和7*号片垂直的8号片和 8* 号片,当梁受力变形后,可测得8ε和*8ε,根 据泊松比纵横εεμ=,可由78εε或* *78εε计算得到 'μ,若'μ近似等于μ时,则证明梁纯弯曲段 内近似于单向应力状态。 2、实验原理 梁的纯弯曲段内,每片应变片所处状态是单向应力状态。根据单向应力状态的虎克定律: σ = E ε 可以计算出梁的纯弯曲段内每片应变片所处的应力。 注:该装置只允许加4KN 载荷,超载会损坏传感器。

弯曲正应力实验报告

一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、TS3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。 三、实验原理和方法 弯曲梁的材料为钢,其弹性模量E=210GPa ,泊松比μ=0.29。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为: x M y I σ= 式中:M 为弯矩;x I 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力P ?时,梁的四个受力点处分别增加作用力/2P ?,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式E σε=,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实 =E ε实 式中E 是梁所用材料的弹性模量。

图3-16 为确定梁在载荷ΔP 的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP 测定各点相应的应变增量一次,取应变增量的平均值Δε实来依次求出各点应力。 把Δσ实与理论公式算出的应力Z I MY =σ比较,从而验证公式的正确性,上述理论公式中的M 应按下式计算: Pa ?= M 2 1 (3.16) 四、实验步骤 1、检查矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a ,及各应变片到中性层的距离i y 。 2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。 3、根据梁的材料、尺寸和受力形式,估计实验时的初始载荷0P (一般按00.1s P σ=确定)、最大载荷max P (一般按max 0.7s P σ≤确定)和分级载荷P ? (一般按加载4~6级考虑)。 本实验中分四次加载。实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。 4、实验完毕后将载荷卸掉,关上电阻应变仪电源开关,并请教师检查实验数据后,方可离开实验室。 五、数据处理

实验五----纯弯曲梁正应力实验

实验五 纯弯曲梁正应力实验 一、试验目的 1、熟悉电测法的基本原理。 2、进一步学会静态电阻应变仪的使用。 3、用电测法测定钢梁纯弯曲时危险截面沿高度分布各点的应力值。 二、试验装置 1、材料力学多功能实验装置 2、CM-1C 型静态数字应变仪 三、试验原理 本试验装置采用低碳钢矩形截面梁,为防止生锈将钢梁进行电镀。矩形截面钢梁架在两支座上,加载荷时,钢梁中段产生纯弯曲变形最大,是此钢梁最危险的截面。为了解中段危险截面纯弯曲梁应力沿高度方向分布情况,采用电测法测出加载时钢梁表面沿高度方向的应变情况,再由σ实=E ε实得到应力的大小。试验前在钢梁上粘贴5片应变 片见图5—1,各应变片的间距为4 h ,即把钢梁4等分。在钢梁最外侧不受力处粘贴一片 R 6作为温度补偿片。 图5—1 试验装置示意图 对于纯弯曲梁,假设纵向纤维仅受单向拉伸或压缩,因此在起正应力不超过比例极限时,可根据虎克定律进行计算: σ实=E ε实 E 为刚梁的弹性模量,ε实是通过电测法用电阻应变仪测得的应变值。 四、电测法基本原理 1、电阻应变法工作原理 电测法即电阻应变测试方法是根据应变应力关系,确定构件表面应力状态的一种实验应力分析法。 将应变片紧紧粘贴在被测构件上,连接导线接到电桥接线端子上 当构件受力 构件产生应变 应变片电阻值随之变化 应变仪内部的惠斯登电桥

将电阻值的变化转变成正比的电压信号电阻应变仪内部的放大、相敏、检波电路转换显示器读出应变量。

2、电阻应变片 1)电阻应变片的组成 由敏感栅、引线、基底、盖层和粘结剂组成,其构造简图如图5—2所示。敏感栅能把构件表面的应变转换为电阻相对变化。由于它非常敏感,故称为敏感栅。它用厚度为0.002~0.005mm的铜合金或铬合金的金属箔,采用刻图、制版、光刻及腐蚀等工艺过程制成,简称箔式应变。它粘贴牢固、散热性能好、疲劳寿命长,并能较好的反映构件表面的变形,使测量精度较高。在各测量领域得到广泛的应用。 图5—2 电阻应变片构造简图 2)电阻应变片种类 电阻应变片按敏感栅的结构形状可分为: 单轴应变片:单轴应变片一般是指具有一个敏感栅的应变片。 应变花(多轴应变片):具有两个或两个以上轴线相交成一定角度的敏感栅制成的应变片称为多轴应变片,也称为应变花。其敏感栅可由金属丝或金属箔制成。采用应变花可方便地测定平面应变状态下构件某一点处的应变。 3)应变灵敏系数(K) 将应变片贴在单向应力状态的试件表面,且其轴向与应力方向重合。在单向应力作用下,应变片的电阻相对变化ΔR/P与试件表面沿应变片轴线方向的应变ε之比值,称为应变片的灵敏系数 K=(ΔR/P)/ε 应变片灵敏系数是使用应变片的重要数据。它主要取决于敏感栅的材料、型式和几何尺寸。应变片的灵敏系数受到多种因素的影响,无法由理论求得,是由制造厂经抽样在专门的设备上进行标定,并于包装上注明。常用的应变片灵敏度系数为2—2.4。 当我们使用应变片时,必须在测量前进行校准。校准方法:根据应变片的K值,查表5—1,再根据表内K值所对应的标定值,来调节静态应变仪。 K值 1.9 1.952 2.05 2.1 2.15 2.2 2.25 2.3 2.35 校准值 120Ω5263518250004878476246514545444443474255 3、CM-1C型静态数字应变仪

弯曲正应力实验报告

弯曲正应力实验 一、实验目的:1、初步掌握电测方法和多点测量技术。; 2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。 二、设备及试样: 1. 电子万能试验机或简易加载设备; 2. 电阻应变仪及预调平衡箱; 3. 进行截面钢梁。 三、实验原理和方法: 1、载荷P 作用下,在梁的中部为纯弯曲,弯矩为1 M=2 Pa 。在左右两端长为a 的部分内为横力弯曲,弯矩为11 =()2 M P a c -。在梁的前后两个侧面上,沿梁的横截面高度,每隔 4 h 贴上平行于轴线上的应变片。温度补偿块要放置在横梁附近。对第一个待测应变片联同温度补偿片按半桥接线。测出载荷作用下各待测点的应变ε,由胡克定律知 E σε= 另一方面,由弯曲公式My I σ=,又可算出各点应力的理论值。于是可将实测值和理论值进 行比较。 2、加载时分五级加载,0F =1000N ,F ?=1000N ,max F =5000N ,缷载时进行检查,若应变差值基本相等,则可用于计算应力,否则检查原因进行复测(实验仪器中应变ε的单位是 610-)。 3、实测应力计算时,采用1000F N ?=时平均应变增量im ε?计算应力,即 i i m E σε?=?,同一高度的两个取平均。实测应力,理论应力精确到小数点后两位。 4、理论值计算中,公式中的3 1I=12 bh ,计算相对误差时 -100%e σσσσ= ?理测 理 ,在梁的中性层内,因σ理=0,故只需计算绝对误差。 四、数据处理 1、实验参数记录与计算: b=20mm, h=40mm, l=600mm, a=200mm, c=30mm, E=206GPa, P=1000N ?, max P 5000N =, k=2.19 3 -641I= =0.1061012 bh m ? 2、填写弯曲正应力实验报告表格

纯弯曲梁的正应力实验

纯弯曲梁的正应力实验 一、实验目的: 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力公式 二、实验设备及工具: 1.材料力学多功能试验台中的纯弯曲梁实验装置 2.数字测力仪、电阻应变仪 三、实验原理及方法: 在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:z M y I σ?= 为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。 采用增量法加载,每增加等量荷载△P (500N )测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i ,从而求出应力增量: σ实i =E △ε实i 将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。 四、原始数据:

五、实验步骤: 1. 打开应变仪、测力仪电源开关 2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。 3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。按清零键,使测力计显示零。 4.应变仪调零。按下“自动平衡”键,使应变仪显示为零。 5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。用应变仪右下角的通道切换键来显示第5测点的读数。以后,加力每次500N,到3000N为止。 6.读完3000N应变读数后,卸下载荷,关闭电源。 六、实验结果及处理:

1.各点实验应力值计算 根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值: σ实i=E△εPi×10-6 2.各点理论应力值计算 载荷增量△P = 500N 弯矩增量△M = △P/2×L P 应力理论值计算(验证的就是它) 3.绘出实验应力值和理论应力值的分布图 以横坐标表示各测点的应力σ 实和σ 理 ,以纵坐标表示各测点距梁中性层的位置。 将各点用直线连接,实测用实线,理论用虚线。 σ y 4.实验值与理论值比较,验证纯弯曲梁的正应力公式

纯弯曲正应力分布实验报告

竭诚为您提供优质文档/双击可除纯弯曲正应力分布实验报告 篇一:弯曲正应力实验报告 一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、Ts3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。三、实验原理和方法 弯曲梁的材料为钢,其弹性模量e=210gpa,泊松比μ =0.29。用手转动实验装置上面的加力手轮,使四点弯上压 头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:?? m

yIx 式中:m为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力?p 时,梁的四个受力点处分别增加作用力?p/2,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴 向应变,则由单向应力状态的虎克定律公式??e?,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实=eε 式中e是梁所用材料的弹性模量。 实 图3-16 为确定梁在载荷Δp的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷Δp测定各点相应的应变增量一次,取应变增量的平均值Δε

实验四:弯曲正应力电测实验

实验四:弯曲正应力电测实验 一、实验目的和要求 1.学习使用应变片和电阻应变仪测定静态应力的基本原理和方法。 2.用电测法测定纯弯曲钢梁横截面不同位置的正应力。 3.绘制正应力沿其横截面高度的的分布图,观察正应变(正应力)分布规律,验证纯弯曲梁的正应力计算公式。 二、实验设备、仪器和试件 1.CLDS-2000型材料力学多功能实验台。 2.YJZ —8型智能数字静态电阻应变仪。 3.LY —5型拉力传感器。 4.直尺和游标卡尺。 三、实验原理和方法 (1)理论公式: 本实验的测试对象为低碳钢制矩形截面简支梁,实验台如图4-1所示,加载方式如图4-2所示。 图4-1 图4-2 由材料力学可知,钢梁中段将产生纯弯曲,其弯矩大小为 c P M 2 ?= (1) 横截面上弯曲正应力公式为

Z I My = σ (2) 式中y 为被测点到中性轴z 的距离,I z 为梁截面对z 轴的惯性矩。 12 3bh I Z = (3) 横截面上各点正应力沿截面高度按线性规律变化,沿截面宽度均匀分布,中性轴上各点的正应力为零。截面的上、下边缘上各点正应力为最大,最大值为W M =max σ。 (2)实测公式: 实验采用螺旋推进和机械加载方法,可以连续加载,荷载大小可由电子测力仪读出。当增加压力P ?时,梁的四个点受力分别增加作用力2/P ?,如图4-2所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁的纯弯曲段侧面布置了5片应变片,如4-2所示,各应变片的粘贴高度见梁上各点标注。此外,在梁的上表面沿横向粘贴了第6片应变片,用以测定材料的泊松比μ;在梁的端部上表面零应力处粘贴了第7片温度补偿应变片,可对以上各应变片进行温度补偿。 在弹性范围内,如果测得纯弯曲梁在纯弯曲时沿横截面高度上的轴向应变,则由单向应力状态的胡克定律,即: σε=E (4) 由上式可求出各点处的应力实验值。将应力实验值σε=E 与理论值Z I My =σ进行比较,以验证弯曲正应力公式。 如果测得应变片4和6的应变满足 μεε=46/ 则证明梁弯曲时近似为单向应力状态,即梁的纵向纤维间无挤压的假设成立。 实验采用增量法。每增加等量载荷ΔP ,测得各点相应得应变增量实ε?一次。因每次ΔP 相同,故实ε?应是基本上按比例增加。 四、实验步骤 1.用游标卡尺和直尺分别测量矩形截面梁的宽度b 、高度h 以及载荷作用点到支点的距离a ,并记入实验记录表中。注意两端a 值应相等,可通过移动两根拉杆的位置来保证。 2.将1到5点测量应变片以4/1桥分别接入电阻应变仪的任意5个通道的A 、B 点之间(若考虑温度补偿,则须将仪器后面板B 、1C 端子的标准120Ω电阻去掉,再将温度补偿片接入该处),将拉力传感器的四根输出线与电阻应变仪的任意通道的A 、B 、C 、D 端对应连接(全桥测量),将应变仪的通讯电缆与PC 机的COM 口连接,注意检查各接点连接是否可靠。 3.打开PC 机及应变仪的电源,预热后设置各通道参数(通道使用与否、桥型、灵敏度系数、被测物理量量纲),参数设置有两种方法:一是由应变仪键盘设定,二是由PC 机安装的测试软件用通信方式设定,建议采用第二种方法设定参数,这样比较简单快捷。具体设定

测试题-弯曲应力(答案)

班级: 学号: 姓名: 《工程力学》弯曲应力测试题 一、判断题(每小题2分,共20分) 1、弯曲变形梁,其外力、外力偶作用在梁的纵向对称面内,梁产生对称弯曲。 ( √ ) 2、铁路的钢轨制成工字形,只是为了节省材料。 ( × ) 3、为了提高梁的强度和刚度,只能通过增加梁的支撑的办法来实现。 ( × ) 4、中性轴是中性层与横截面的交线。 ( √ ) 5、最大弯矩M max 只可能发生在集中力F 作用处,因此只需校核此截面强度是否满足梁的 强度条件。 ( × ) 6、大多数梁只进行弯曲正应力强度校核,而不计算弯曲切应力,这是因为他们横截面上只有正应力存在。 ( × ) 7、抗弯截面系数仅与截面形状和尺寸有关,与材料种类无关。 ( √ ) 8、矩形截面梁,若其截面高度和宽度都增加一倍,则强度提高到原来的16倍。 ( × ) 9、在梁的弯曲正应力公式中,I z 为梁截面对于形心轴的惯性矩。 ( √ ) 10、梁弯曲最合理的截面形状,是在横截面积相同条件下W z 值最大的截面形状。 ( √ ) 二、单项选择题(每小题2分,共20分) 1、材料弯曲变形后( B )长度不变。 A .外层 B .中性层 C .内层 2、梁弯曲时横截面上的最大正应力在( C )。 A. 中性轴上 B. 对称轴上 C. 离中性轴最远处的边缘上 3、一圆截面悬臂梁,受力弯曲变形时,若其它条件不变,而直径增加一倍,则其最大正 应力是原来的( A )倍。 A. 8 1 B. 8 C. 2 D. 21 4、图示受横力弯曲的简支梁产生纯弯曲变形的梁段是( D ) A. AC 段 B. CD 段 C. DB 段 D. 不存在 5、由梁弯曲时的平面假设,经变形几何关系分析得到( C ) A. 中性轴通过截面形心 B. 梁只产生平面弯曲;

钢筋混凝土梁的正截面受弯性能试验-指导书和试验报告

建工学院土木工程专业 钢筋混凝土梁的正截面受弯性能试验 (指导书和报告) 班级 学号 学生姓名 温州大学建筑与土木工程学院实验中心

试 验 指 导 书 一、试验的目的 1.了解钢筋混凝土梁受力破坏的全过程,并验证正截面强度计算公式。 2.了解对钢筋混凝土结构进行试验研究的方法。 3.掌握进行钢筋混凝土结构试验的一些基本技能。 二、试验内容: 1.了解试验方案的确定(由教师讲解)。 2.了解试验梁的设计和制作过程(由教师讲解)。 3.了解试验梁的加载装置及其性能(由教师讲解)。 4.试验梁上安装测量仪表。 5.在加载试验过程中测读量测数据。观察试验梁外部的开裂,裂缝发展和变形情况。 6.整理试验数据,写出试验报告。 三、试验梁: 1.试验梁混凝土强度等级为C20。 2.①号筋要留三根长500mm 的钢筋,用作测试其应力应变关系的试件。 3.在浇筑混凝土时,同时要浇筑三个150×150×150mm 的立方体试块。作为梁试验时,测定混凝土的强度等级。 1-12-2

四、试验梁的加载及仪表布置: 五、试验量测数据内容: 1.各级荷载下支座沉陷与跨中的挠度。 2.各级荷载下主筋跨中的拉应变及混凝土受压边缘的压应变。 3.各级荷载下梁跨中上边纤维,中间纤维,受拉筋处纤维的混凝土应变。 4.记录、观察梁的开裂荷载和开裂后在各级荷载下裂缝的发展情况(包括裂缝的W max )。 六、试验仪器及设备 1.YE2583A 程控静态应变仪 3.百分表或电子百分表 5.手动液压泵全套设备 7.工字钢分配梁(自重0.07kN/根) 2.千分表(备用) 4.手持式引伸仪(标距10cm ) 6.千斤顶(P max =320kN ,自重0.01kN/只) 8.裂缝观察镜和裂缝宽度量测卡 七、试验要求 (一)参加部分试验准备工作: 1.试件的制作。 2.试件两侧表面刷白并用墨线弹画40×100mm 的方格线(以便观测裂缝)。 3.试件安装及仪表、设备的调试。 (二)按现行规范计算试验梁的极限承载力P u ,并选定加荷级数(一般选用10级)及每级加载的荷载量。第一级应考虑梁自重、分配梁和千斤顶自重等荷载,临近开裂和破坏时,可半级或1/4级加载。 (三)试验中要求正确记录各要求的数据 (四)试验后整理试验数据,并写出试验报告 100 600 600 100 100 350 250 250 350 100

弯曲正应力实验报告

弯曲正应力实验报告

矩;y为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力P?时,梁的四个受力点处分别增加作用力/2 ?,如下图所示。 P 为了测量梁纯弯曲时横截面上应变分布 规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎 克定律公式E σε =,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ =E 实 ε 实 式中E是梁所用材料的弹性模量。

图 3-16 为确定梁在载荷ΔP 的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP 测定各点相应的应变增量一次,取应变增量的平均值Δε实来依次求出各点应力。 把Δσ实与理论公式算出的应力Z I MY =σ比较,从而验证公式的正确性,上述理论公式中的M 应按下式计算: Pa ?= M 2 1 (3.16) 四、实验步骤 1、检查矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a ,及各应变片到中

性层的距离i y 。 2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。 3、根据梁的材料、尺寸和受力形式,估计实验时的初始载荷0 P (一般按00.1s P σ=确定)、最 大载荷max P (一般按max 0.7s P σ≤确定)和分级载荷P ? (一般按加载4~6级考虑)。 本实验中分四次加载。实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。 4、实验完毕后将载荷卸掉,关上电阻应变仪电源开关,并请教师检查实验数据后,方可离开实验室。 五、数据处理 1、原始数据。 其中a=80mm b=19.62mm h=39.38mm 1/4桥 荷载 测点 测点 测点 测点 测点

纯弯曲梁正应力的测定

实 验 报 告 (五) 纯弯曲梁正应力的测定 时间 天气 小组 成绩 一、目的 (1). 测定直梁纯弯曲时横截面上正应力分布规律,并与理论计算结果进行比较,以验证弯曲正应力公式; (2). 了解电阻应变仪测量应变得方法。 二、实验仪器和设备和工具 (1). 电阻应变仪和预调平衡箱; (2). 游标卡尺。 三、实验装置简图及应变片布置图 四、实验原理 梁受纯弯曲时,横截面上正应力σ在理论上沿梁的高度成线性分布,其计算公式为: y I M σz 式中,M 为横截面上的弯矩,I z 为梁横截面对中性轴的惯性矩。载荷F /2对称地加在一矩形截面直梁上,如图所示,梁中段产生纯弯曲变形。若将电阻应变片贴在梁中段任一横截面处的不同高度上,当每增加一级载荷ΔF (用增量法)时,即可用电阻应变仪测出所贴应变片各点的纵向应变增量Δε,根据胡克定律求出各点实测正应力增量σ实为:σ实=E Δε。此值与理论公式计算出的各点正应力的增量σ理进行比较,就可验证弯曲正应力计算公式。 五、实验报告要求 (1)、画出电阻应变片布置图。 (2)、列表整理测量数据(见表)。

(3)、计算各纤维层的应力σ实,画出应力分布图。 (4)、对σ理和σ实进行比较,计算相对误差,并分析误差原因。附表1 试件相关数据 附表2 实验数据

六、实验结果处理 测点 理论值σi 理(MPa ) 实际值σi 实(MPa ) 相对误差(%) 1 -14.06 -14.28 1.56 3 -10.55 -11.13 5.50 4 -7.03 -7.77 10.53 5 0.00 -0.4 2 ∞ 6 7.0 3 6.51 7.40 7 10.55 10.08 4.45 8 3.40 3.99 2.10 2 14.06 14.70 4.55 七、结论 1、影响实验结果准确性的主要因素是什么? 2、弯曲正应力的大小是否受弹性模量E 的影响? 3、实验时没有考虑梁的自重,会引起误差吗?为什么? 4、梁弯曲的正应力公式并未涉及材料的弹性模量E ,而实测应力值的计算却用上了弹性模量E ,为什么? 1、是否进行温度补偿,梁的摆放位置,应变片的位置和方向的精确程度。 2、正应力的决定式为y I M σz ,与弹性模量E 无关。 3、不会。相对于外部载荷,梁的自重可忽略不计。 4、梁弯曲的正应力公式与弹性模量E 无关,实测中测量的是梁的应变,要转化成应力需要用胡克定律,于是用上了弹性模量E 。 -20-15-10 -50 510 1520-25 -20 -15 -10 -5 5 10 15 20 25 正应力与应变片至中性层距离的关系 理论值 实际值 σ (MPa) y (mm)

相关主题
文本预览
相关文档 最新文档