当前位置:文档之家› 2014-2015学年八年级数学下册 6.4 三角形的中位线定理导学案青岛版

2014-2015学年八年级数学下册 6.4 三角形的中位线定理导学案青岛版

2014-2015学年八年级数学下册 6.4 三角形的中位线定理导学案青岛版
2014-2015学年八年级数学下册 6.4 三角形的中位线定理导学案青岛版

6.4三角形的中位线定理

一、学习目标

1.理解三角形中位线的概念,掌握它的性质;

2.能较熟练地应用三角形中位线性质进行有关的证明和计算.

二、合作探究

怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?

1.动手操作

(1)剪一个三角形记为△ABC ;

(2)分别取AB 、AC 的中点D 、E ,连接DE ;

(3)沿DE 将△ABC 剪成两部分,将△ADE 绕点E 旋转180°,得四边形BCFD ,如图1,

2.观察思考:图中四边形BCFD 是平行四边形吗?为什么?

3.归纳:(1)连结三角形___________的线段叫做三角形的中位线.

(2)三角形中位线定理: . 符号语言:

4.将任意一个三角形分成四个全等的三角形,你是如何切割的?图中有几个平行四边形?你是如何判断的?

三、当堂检测

1.如图所示,A ,B 两点分别位于一个池塘的两端,小

聪想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮

他想了一个主意:先在地上取一个可以直接到达A ,B 的点C ,

找到AC ,BC 的中点D ,E ,并且测出DE 的长为10m ,则A ,B

间的距离为( ).

A .15m

B .25m

C .30m

D .20m

2.如图,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,

AC=4,则四边形AEDF?的周长是( ).

A .10

B .20

C .30

D .40

图1 A B C

3已知三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长.4.如图,△ABC中,D、E、F分别是AB、AC、BC的中点,

(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;

(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.

5.如图所示,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是(). A.线段EF的长逐渐增大 B.线段EF的长逐渐减少

C.线段EF的长不变 D.线段EF的长不能确定

6.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.

求证:四边形EFGH是平行四边形.

变式1:顺次连结矩形四边中点所得的四边形是菱形。

变式2:顺次连结菱形四边中点所得的四边形是矩形。

变式3:顺次连结正方形四边中点所得的四边形是正方形。

变式4:顺次连结等腰梯形四边中点所得的四边形是菱形。

变式5:若AC=BD,AC⊥BD,则四边形EFGH是正方形。

变式6:在四边形ABCD中,若AB=CD,E、F、G、H分别为AD、BC、BD、AC的中点,求证:EFGH是菱形。

娈式6图

娈式7图

7.如上图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,

求证:EF=1

2BD .

8.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .

9.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.

求证:四边形DEFG 是平行四边形.

10.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE

分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF .

四、重点纠错

三角形中位线定理的证明

备课偶得—— 三角形中位线定理的再证明 王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。 关于它的证明方法,课本上给出了一种证法。笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。 已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:D E ∥BC 且 证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、 DC ∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF 为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD ∴BD CF ∴四边形DBCF 为平行四边形 ∴DF BC ∴DE=EF ∴DE ∥BC 且 证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF ∴△AD E ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD ∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE ∴DE=EF ∴D E ∥BC 且 证法三、(同一法)如图4,过D 作D E ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则 ∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点 ∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF 即 ∴DE ∥BC 且 图1 B C A D E 图2 B C A D E F 图3 B C A D E F C 图4 B A D E F E ′ 图5 B C A D E 1 2 DE BC =1 2 DE BC =1 2DE BC =12 DE BC =1 2DE BC =

三线合一性质的逆定理

三线合一性质的逆定理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

一、等腰三角形的“三线合一”性质的逆定理 “三线合一”性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 逆定理:①如果三角形中任一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。 ②如果三角形中任一角的角平分线和它所对边的高重合,那么 这个三角形是等腰三角形。 ③如果三角形中任一边的中线和这条边上的高重合,那么这个 三角形是等腰三角形。 简言之:三角形中任意两线合一,必能推导出它是一个等腰三角形。证明①:已知: ⊿ABC中,AD是∠BAC的角平分线, AD是BC边上的中线, 求证:⊿ABC是等腰三角形。 分析:要证等腰三角形就是要证AB=AC,直接 通过证明这两条线所在的三角形全等不行,那 就换种思路,在有中点的几何证明题中常用的 添辅助线的方法是“延长加倍”,即延长AD到E 点,使AD=ED,由此问题就解决了。 证明:延长AD到E点,使AD=ED,连接CE 在⊿ABD和⊿ECD中 AD=DE ∠ADB=∠EDC ∴⊿ABD≌⊿ECD

∴AB=CE, ∠BAD=∠CED ∵AD是∠BAC的角平分线 ∴∠BAD=∠CAD ∴∠CED=∠CAD ∴AC=CE ∴AB=AC ∴⊿ABC是等腰三角形。 三个逆定理中以逆定理②在几何证明的应用中尤为突 出。 证明②:已知: ⊿ABC中,AD是∠BAC的角平分线, AD是BC边上的高, 求证:⊿ABC是等腰三角形。 分析:通过(ASA)的方法来证明⊿ABD和⊿ACD的 全等,由此推出AB=AC得出⊿ABC是等腰三角形 证明③:已知: ⊿ABC中,AD是BC边上的中线,又是BC边上的高,求证:⊿ABC是等腰三角形。 分析:AD就是BC边上的垂直平分线,用(SAS)的方法来证明⊿ABD和⊿ACD的全等,由此推出AB=AC得出 ⊿ABC是等腰三角形。(即垂直平分线的定理) 二、“三线合一”的逆定理在辅助线教学中的应用 (1)逆定理②的简单应用 例题1

勾股定理全章复习学案

勾股定理全章复习 主备人: 审核人:初二数学组 课型:新授 学习目标:复习勾股定理及其逆定理,能利用它们求三角形的边长或证明三角形是直角 三角形. 学习重点:勾股定理及其逆定理的应用。 学习难点:利用定理解决实际问题。 学习过程 一、知识要点1:直角三角形中,已知两边求第三边 1.勾股定理:若直角三角形的三边分别为a ,b ,c ,ο 90=∠C ,则 。 公式变形①:若知道a ,b ,则=c ; 公式变形②:若知道a ,c ,则=b ; 公式变形③:若知道b ,c ,则=a ; 例1:求图中的直角三角形中未知边的长度: =b ,=c . (1)在Rt ABC ?中,若ο 90=∠C ,4=a ,=b 3,则=c . (2)在Rt ABC ?中,若o B 90=∠,9=a ,41=b ,则=c . (3)在Rt AB C ?中,若ο 90=∠A ,7=a ,5=b ,则=c . 二、知识要点2:利用勾股定理在数轴找无理数。 例2:在数轴上画出表示5的点. 在数轴上作出表示10的点. 三、知识要点3:判别一个三角形是否是直角三角形。 例3:分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,试找出哪些能够成直角三角形。 1、在下列长度的各组线段中,能组成直角三角形的是( ) A .12,15,17 B .9,16,25 C .5a ,12a ,13a (a>0) D .2,3,4 2、判断由下列各组线段a ,b ,c 的长,能组成的三角形是不是直角三角形,说明理由. (1)5.6=a ,5.7=b ,4=c ; (2)11=a ,60=b ,61=c ; 9 15 b 24 c

三角形中位线定理 知识讲解

三角形中位线定理 【学习目标】 1. 理解三角形的中位线的概念,掌握三角形的中位线定理. 2. 掌握中点四边形的形成规律. 【要点梳理】 要点一、三角形的中位线 1.连接三角形两边中点的线段叫做三角形的中位线. 2.定理:三角形的中位线平行于第三边,并且等于第三边的一半. 要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个 小三角形的周长为原三角形周长的1 2 ,每个小三角形的面积为原三角形 面积的1 4 . (3)三角形的中位线不同于三角形的中线. 要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形. 要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形. (3)若原四边形的对角线垂直且相等,则新四边形是正方形. 【典型例题】 类型一、三角形的中位线 1、(优质试题?北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.

中考复习_中位线

中位线 一、选择题 1.(2011?湘西州)如图,在△ABC中,E、F分别是AB、AC的中点,若中位线EF=2cm,则BC边的长是() A、1cm B、2cm C、3cm D、4cm 考点:三角形中位线定理。 专题:计算题。 分析:由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求BC. 解答:解:∵△ABC中,E、F分别是AB、AC的中点,EF=2cm, ∴EF是△ABC的中位线 ∴BC=2EF=2×2=4cm. 故选D. 点评:本题考查了三角形中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半. 2.(2011江苏苏州,9,3分)如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于() A.3 4B. 4 3C. 3 5D. 4 5 考点:锐角三角函数的定义;勾股定理的逆定理;三角形中位线定理. 专题:几何图形问题. 分析:根据三角形的中位线定理即可求得BD的长,然后根据勾股定理的逆定理即可证得△BCD是直角三角形,然后根据正切函数的定义即可求解. 解答:解:连接BD.

∵E、F分別是AB、AD的中点.∴BD=2EF=4 ∵BC=5,CD=3 ∴△BCD是直角三角形. ∴tanC= 4 3 故选B. 点评:本题主要考查了三角形的中位线定义,勾股定理的逆定理,和三角函数的定义,正确证明△BCD是直角三角形是解题关键. 3.(2011?贺州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的() A、错误!未找到引用源。 B、错误!未找到引用源。 C、错误!未找到引用源。 D、错误!未找到引用源。 考点:梯形中位线定理;三角形中位线定理。 分析:首先根据梯形的中位线定理,得到EF∥CD∥AB,再根据平行线等分线段定理,得到M,N分别是AD,BC的中点;然后根据三角形的中位线定理得到CD=2EM=2NF,最后根据梯形面积求法以及三角形面积公式求出,即可求得阴影部分的面积与梯形ABCD面积的面积比. 解答:解:过点D作DQ⊥AB,交EF于一点W, ∵EF是梯形的中位线, ∴EF∥CD∥AB,DW=WQ, ∴AM=CM,BN=DN. ∴EM=错误!未找到引用源。CD,NF=错误!未找到引用源。CD. ∴EM=NF, ∵AB=3CD,设CD=x,∴AB=3x,EF=2x, ∴MN=EF﹣(EM+FN)=x, ∴S△AME+S△BFN=错误!未找到引用源。×EM×WQ+错误!未找到引用源。×FN×WQ=错误!未找到引用源。(EM+FN)QW=错误!未找到引用源。x?QW, S梯形ABFE=错误!未找到引用源。(EF+AB)×WQ=错误!未找到引用源。QW, S△DOC+S△OMN=错误!未找到引用源。CD×DW=错误!未找到引用源。xQW,

勾股定理导学案学案

课题名称:勾股定理 (1 ) 学习目标: 1 ?了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2. 培养在实际生活中发现问题总结规律的意识和能力。了解我国古代在勾股定 理研究方面所取得的成就。 学习目标:经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识。学习重点:勾股定理的内容及证明。学习难点:勾股定理的证明。 自助探究 1. 1、2002年北京召开了被誉为数学界“奥运会”的国际数学家大会,这就是当 时采用的会徽.你知道这个图案的名字吗?你知道它的背景吗?你知道为什么会 用它作为会徽吗? 量关系.请同学们也观察一 下, 2、相传2500年前,古希腊的数学家毕达哥/ 么? 拉斯在朋友家做客时,发现朋友家用地砖铺' 成的地面中反映了直角三角形三边的某种数 (1) 引导学生观察三个正方形之间的面积的关系; (2) 引导学生把面积的关系转化为边的关系. 结论:等腰直角三角形三边的特殊关系:斜边的平方等于两直角边的平方和 3、等腰直角三角形有上述性质, 其它直角三角形也有这个性质吗? 4、____________________________________________________ 猜想:命题1 自助提升 1、定理证明 (1) 赵爽利用弦图证明。 显然4个_________ 的面积+中间小正方形的面积二该图案的面积. 1 22 即4 X X _______ +〔〕= c ,化简后得到___________ . ________ 2 (2) 其他证明方法:教材72页思考讨论完成 2、在Rt△ ABC中,/ C=90°,AB=17,BC=8,求AC 的长 3、Rt△ ABC和以AB为边的正方形ABEF,/ ACB=90° AC=12,BC=5,则正方形的面积是________ . 4、(1)已知Rt△ ABC 中,/ C=90 ° BC=6,AC=8,求AB. (2) 已知Rt△ ABC 中,/ A=90 ° AB=5,BC=6,求AC. (3) 已知Rt△ ABC 中,/ B=90 ° a,b,c 分别是/ A,/ B, / C的对 A F i片i C B

北师大版八年级数学下册6.4《三角形的中位线》知识点精讲

、定理 1.三角形的中位线平行于第三边(不与中位线接触),并且等于 第三边的一半。 2.连接三角形两边中点的线段,叫做三角形的中位线。 逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。 注意:在三角形内部,经过一边中点,且等于第三边一半的线段不一定是三角形的中位线。 (微课精讲) 三角形中的三条重要线段: 中线、角平分线、高线 概念 中线

在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线(median)。三角形的三条中线交于一点,这点称为三角形的重心。 如图,AD是边BC上的中线,BE是边AC上的中线,CF是边AB上的中线 三条中线交于点O,点O称为△A BC的重心 角平分线 在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

如图,AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,三角形三条角平分线交于点O 点O称为△ABC的内心 高线 从三角形的一个顶点向它的对边所在直线作垂线,定点和垂足之间的线段叫做三角形的高线,简称三角形的高。

如图,AD⊥BC,BE⊥AC,CF⊥AB 三角形三条高线交于点O 点O称为△ABC的垂心 以上是我们在初一时所学的三角形三条重要线段,今天,我们将学习三角形中第四条重要的线段——中位线

(知识点精讲) 中位线 概念:连接三角形两边中点的线段叫做三角形的中位线 性质:三角形的中位线平行于第三边,且等于第三边的一半。 如图,E、F分别是三角形AB、AC边上的中点,所以,EF是三角形BC 边所对的中位线,则EF∥BC且EF=1/2BC 三角形的中位线衍生出很多重要的图形,其中最重要的就是中点四边形(微课堂精讲)

八年级数学下二次根式导学案.doc

16. 1 《二次根式 (1) 》学案 班级 :姓名:小组: 学习内容:二次根式的概念及其运用 学习目标: 1、理解二次根式的概念,并利用 a (a≥0)的意义解答具体题目. 2、提出问题,根据问题给出概念,应用概念解决实际问题. 学习过程 一、自主学习 (1) 16 的平方根是; (2) 一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h(单 位:米 ) 满足关系式h 5t 2。如果用含h的式子表示t,则t= ; (3) 圆的面积为 S,则圆的半径是; (4) 正方形的面积为 b 3 ,则边长为。 思考: 16 ,h ,s , b 3 等式子的实际意义.说一说他们的共同特征. 5 定义 : 一般地我们把形如 a (a 0 )叫做二次根式, a 叫做_____________。读作。 二、应用举例 例 1.下列式子,哪些是二次根式,哪些不是二次根式: 2 、3 3 、1 、 x(x>0)、x 0、42、- 2 、 1 、 x y (x≥0,y?≥0). x y 解:二次根式有:;不是二次根式的有:。 例 2.当x是多少时,3x 1 在实数范围内有意义? 解:由得:。当时,3x 1 在实数范围内有意义.

注意: 1、形如 a (a≥0)的式子叫做二次根式的概念; 2、利用“ a (a≥0)”解决具体问题 3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。 三、学生小组交流解疑,教师点拨、拓展 例 3.当x是多少时,2x 3 在实数范围内有意义? 例 4若 a 1 +b 1 =0,求a2004+b2004的值.(答案:2 ) 5 四、巩固练习 教材练习. 五、课堂检测 ( 1)、简答题 1.下列式子中,哪些是二次根式,那些不是二次根式? -7 3 7x x4168 1 x ( 2)、填空题 1.形如 ________的式子叫做二次根式. 2.面积为 5 的正方形的边长为________. ( 3)、综合提高题 1.二次根式 a 1 中,字母a的取值范围是() A、 a<l B、a≤1 C、a≥1 D、a>1 2.已知x 3 0 则x的值为 A 、 x>-3 B、x<-3C、x=-3 D、x的值不能确定 六、课后记

人教版八年级下册数学第十七章勾股定理导学案(最新整理)

《17.1勾股定理》导学案(1) 【学习目标】:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。学习重点:勾股定理的内容及证明。学习难点:勾股定理的证明。学习过程 一、自学导航(课前预习)1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示) (1)两锐角之间的关系: ( 2)若 D 为斜边中点,则斜边中线 (3)若∠B=30°,则∠B 的对边和斜边: 2、勾股定理证明:方法一; 如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。 S 正方形=_______________=____________________ 方法二; 已知:在△ABC 中,∠C=90°,∠ A 、∠ B 、∠ C 的对边为a 、b 、c 。求证:a 2+b 2=c 2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。左边S=______________ 右边S=_______________左边和右边面积相等, 即: 化简可得 。 二、合作交流(小组互助)思考: A b

(图中每个小方格代表一个单位面积) (2)你能发现图1-1中三个正方形A ,B ,C 的面积之间有什么关系吗?图1-2中的呢? 由此我们可以得出什么结论?可猜想: 如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么__________________ _____________________________________________________________________。 (3)展示提升(质疑点拨) 1.在Rt △ABC 中, ,90C ∠=?(1)如果a=3,b=4,则c=________;(2)如果a=6,b=8,则c=________; (3)如果a=5,b=12,则c=________; (4) 如果a=15,b=20,则c=________.2、下列说法正确的是( ) A.若、、是△ABC 的三边,则a b c 222 a b c +=B.若、、是Rt △ABC 的三边,则a b c 222 a b c +=C.若、、是Rt △ABC 的三边,, 则a b c 90A ∠=?2 a +D.若、、是Rt △ABC 的三边, ,则a b c 90C ∠=?2a +3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( ) A .斜边长为25 B .三角形周长为25 C .斜边长为5 D .三角形面积为204、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________. 5、一个直角三角形的两边长分别为5cm 和12cm,则第三边的长为 。 三、本节课我们学习了哪些知识?用了哪些方法? 四、达标检测 1.在Rt △ABC 中,∠C=90°, ①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则

人教版八年级数学下册导学案全册

第十七章反比例函数 课题 17.1.1 反比例函数的意义课时:一课时【学习目标】 1.理解并掌握反比例函数的概念。 2.会判断一个给定函数是否为反比例函数。 3.会根据已知条件用待定系数法求反比例函数的解析式。 【重点难点】 重点:理解反比例函数的意义,确定反比例函数的表达式。 难点:反比例函数的意义。

【导学指导】 复习旧知: 1.什么是常量?什么是变量?函数是如何定义的? 2.我们学过哪几种函数?每一种函数形式怎样? 3.写出下列问题中的函数关系式并说明是什么函数.

(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长y与另一腰长x之间的函数关系式。(2)某种文具单价为3元,当购买m个这种文具时,共花了y元,则y与m的关系式。 学习新知:阅读教材P39-P40相关容,思考,讨论,合作交流完成下列问题。 1.什么是反比例函数?反比例函数的自变量可以取一切实数吗?为什么?

2.仔细观察反比例函数的解析式y=k/x,我们还可以把它写成什么形式? 3.回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的?以此类推,我们也可以采用同样的方法来求反比例函数的解析式。 【课堂练习】 1.下列等式中y是x的反比例函数的是() ①y=4x ②y/x=3 ③y=6x-1 ④xy=12 ⑤y=5/x+2 ⑥y=x/2 ⑦y=-√2/x ⑧y=-3/2x 2.已知y是x的反比例函数,当x=3时,y=7, (1)写出y与x的函数关系式;(2)当x=7时,y等于多少?

【要点归纳】 通过今天的学习,你有哪些收获?与同伴交流一下。

三角形中位线定理证明

三角形中位线定理证明 性质1中位线平行于第三边 性质2等于第三边的一半 1定理 2证明 3逆定理 1定理三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG 又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2

∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法4: 延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEG、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。 证明:∵DE∥BC ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。 如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2 三角形的中位线 证明:取AC中点E',连接DE',则有 AD=BD,AE'=CE' ∴DE'是三角形ABC的中位线 ∴DE'∥BC 又∵DE∥BC

八年级数学下_勾股定理导学案(全)

18.1 勾股定理(1) 学习目标: 1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2、培养在实际生活中发现问题总结规律的意识和能力。 3、介绍我国古代在勾股定理研究方面所取得的成就,激发爱国热情,勤奋学习。 重点:勾股定理的内容及证明。 难点:勾股定理的证明。 学习过程: 一、预习新知 1、正方形边长和面积有什么数量关系? 2、以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系? 归纳:等腰直角三角形三边之间的特殊关系。 (1)那么一般的直角三角形是否也有这样的特点呢? (2)组织学生小组学习,在方格纸上画出一个直角边分别为3和4的直角三角形,并以其三边为边长向外作三个正方形,并分别计算其面积。 (3)通过三个正方形的面积关系,你能说明直角三角形是否具有上述结论吗? (4)对于更一般的情形将如何验证呢? 二、课堂展示 方法一; 如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。 S正方形=_______________=____________________ 方法二; 已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。求证:a2+b2=c2。 c b a D C A B

a b a b c c A B C D E 以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于2 1 ab. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o. ∴ ∠DEC = 180o―90o= 90o. ∴ ΔDEC 是一个等腰直角三角形, 它的面积等于 2 1c 2. 又∵ ∠DAE = 90o, ∠EBC = 90o, ∴ AD ∥BC. ∴ ABCD 是一个直角梯形,它的面积等于_________________ 归纳:勾股定理的具体内容是 。 三、随堂练习 1、如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示) ⑴两锐角之间的关系: ; (2)若∠B=30°,则∠B 的对边和斜边: ; (3)三边之间的关系: 四、课堂检测 1、在Rt △ABC 中,∠C=90° ①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________; ④若a ∶b=3∶4,c=10则S Rt△ABC =________。 2、已知在Rt △ABC 中,∠B=90°,a 、b 、c 是△ABC 的三边,则 ⑴c= 。(已知a 、b ,求c ) ⑵a= 。(已知b 、c ,求a ) ⑶b= 。(已知a 、c ,求b ) 3、直角三角形两直角边长分别为5和12,则它斜边上的高为__________。 4、已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 5、等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A C B D

“三线合一”性质的逆定理

一、等腰三角形的“三线合一”性质的逆定理 “三线合一”性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 逆定理:①如果三角形中任一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。 ②如果三角形中任一角的角平分线和它所对边的高重合,那么 这个三角形是等腰三角形。 ③如果三角形中任一边的中线和这条边上的高重合,那么这个 三角形是等腰三角形。 简言之:三角形中任意两线合一,必能推导出它是一个等腰三角形。证明①:已知: ⊿ABC中,AD是∠BAC的角平分线, AD是BC边上的中线, 求证:⊿ABC是等腰三角形。 分析:要证等腰三角形就是要证AB=AC,直接通过证明这两条线所在的三角形全等不行,那就换种思路,在有中点的几何证明题中常用的添辅助线 的方法是“延长加倍”,即延长AD到E点,使AD=ED, 由此问题就解决了。 证明:延长AD到E点,使AD=ED,连接CE 在⊿ABD和⊿ECD中 AD=DE ∠ADB=∠EDC BD=CD ∴⊿ABD≌⊿ECD ∴AB=CE, ∠BAD=∠CED ∵AD是∠BAC的角平分线 ∴∠BAD=∠CAD ∴∠CED=∠CAD ∴AC=CE ∴AB=AC ∴⊿ABC是等腰三角形。 三个逆定理中以逆定理②在几何证明的应用中尤为突出。 证明②:已知: ⊿ABC中,AD是∠BAC的角平分线,AD是BC边 上的高, 求证:⊿ABC是等腰三角形。 分析:通过(ASA)的方法来证明⊿ABD和⊿ACD的全等,由此 推出AB=AC得出⊿ABC是等腰三角形 证明③:已知: ⊿ABC中,AD是BC边上的中线,又是BC边上 的高,

求证:⊿ABC是等腰三角形。 分析:AD就是BC边上的垂直平分线,用(SAS)的方法来 证明⊿ABD和⊿ACD的全等,由此推出AB=AC得出 ⊿ABC是等腰三角形。(即垂直平分线的定理) 二、“三线合一”的逆定理在辅助线教学中的应用 (1)逆定理②的简单应用 例题1 已知:如图,在⊿ABC中,AD平分∠BAC,CD⊥AD,D 为垂足,AB>AC。 求证:∠2=∠1+∠B 分析:由“AD平分∠BAC,CD⊥AD”推出AD所在的 三角形是等腰三角形,所以延长CD交AB于点E, 由逆定理②得出⊿AEC是等腰三角形由此就可得出 ∠2=∠AEC,又∠AEC=∠1+∠B,所以结论得证。 (2)逆定理②与中位线综合应用 例题1 已知:如图,在⊿ABC中,AD平分∠BAC,交BC于点D,过点C作AD的垂线,交AD的延长线于点E,F为BC的中点,连结EF。 求证: EF∥AB, EF=(AC-AB) 分析:由已知可知,线段AE既是∠BAC的角平分 线又是EC边上的高,就想到把AE所在的等腰三角形构造出 来,因而就可添辅助线“分别延长CE、AB交于点G”。 简单证明:由逆定理②得出⊿AGC是等腰三角形, ∴点E是GC的中点 ∴EF是⊿BGC的中位线 ∴得证。 例题2 如图,已知:在⊿ABC中,BD、CE分别平分∠ABC, ∠ACB,AG⊥BD于G,AF⊥CE于F,AB=14cm,AC=9cm,BC=18cm. 求: FG的长。 分析:通过已知条件可以知道线段CF和BG满足逆 定理②的条件,因此就想到了分别延长AG、A F来构造等腰三角形。 简单证明:分别延长AG、AF交BC于点K、H由逆定理②得出⊿ABK是等腰三角形 ∴点G是AK的中点 同理可得点F是AH的中点 ∴FG是⊿AHK的中位线 由此就可解出FG的长。

八年级数学三角形中位线培优专题训练

八年级数学三角形中位线培优专题训练 一、内容提要 1. 三角形中位线平行于第三边,并且等于第三边的一半。 梯形中位线平行于两底,并且等于两底和的一半。 2. 中位线性质定理的结论,兼有位置和大小关系,可以用它判定平行,计算线段的长度, 确定线段的和、差、倍关系。 3. 运用中位线性质的关键是从出现的线段中点,找到三角形或梯形,包括作出辅助线。 4. 中位线性质定理,常与它的逆定理结合起来用。它的逆定理就是平行线截比例线段定理 及推论, ①一组平行线在一直线上截得相等线段,在其他直线上截得的线段也相等 ②经过三角形一边中点而平行于另一边的直线,必平分第三边 ③经过梯形一腰中点而平行于两底的直线,必平分另一腰 5. 有关线段中点的其他定理还有: ①直角三角形斜边中线等于斜边的一半 ②等腰三角形底边中线和底上的高,顶角平分线互相重合 ③对角线互相平分的四边形是平行四边形 ④线段中垂线上的点到线段两端的距离相等 因此如何发挥中点作用必须全面考虑。 二、例题 例1. 已知:△ABC 中,分别以AB 、AC 为斜边作等腰直角三角形ABM 和CAN ,P 是BC 的中 点。求证:PM =PN 证明:作ME ⊥AB ,NF ⊥AC ,垂足E ,F ∵△ABM 、△CAN 是等腰直角三角形 ∴AE =EB =ME ,AF =FC =NF , 根据三角形中位线性质 PE = 21AC =NF ,PF =2 1 AB =ME P

PE ∥AC ,PF ∥AB ∴∠PEB =∠BAC =∠PFC 即∠PEM =∠PFN ∴△PEM ≌△PFN ∴PM =PN 例2.已知△ABC 中,AB =10,AC =7,AD 是角平分线,CM ⊥AD 于M ,且N 是BC 的中点。求MN 的长。 分析:N 是BC 的中点,若M 是另一边中点, 则可运用中位线的性质求MN 的长, 根据轴称性质作出△AMC 的全等三角形即可。 辅助线是:延长CM 交AB 于E (证明略 例3.如图已知:△ABC 中,AD 是角平分线,BE =CF ,M 、N 分别是BC 和EF 的中点 求证:MN ∥AD 证明一:连结EC ,取EC 的中点P ,连结PM 、PN MP ∥AB ,MP = 21AB ,NP ∥AC ,NP =2 1 AC ∵BE =CF ,∴MP =NP ∴∠3=∠4=2 MPN -180∠ ∠MPN +∠BAC =180 (两边分平行的两个角相等或互补) ∴∠1=∠2=2 MPN -180∠ , ∠2=∠3 ∴NP ∥AC ∴MN ∥AD 证明二:连结并延长EM 到G ,使MG =ME 连结CG ,FG 则MN ∥FG ,△MCG ≌△MBE ∴CG =BE =CF ∠B =∠BCG ∴AB ∥CG ,∠BAC +∠FCG =180 N C

人教版八年级数学下册导学案(全册)

第十六章 二次根式 第1课时 二次根式的定义 学习目标: 了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字 母的取值范围。 理解二次根式的非负性 学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导: 看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。(2)被开方数必须是 数。 判断下列格式哪些是二次根式? ⑴ 3.0 ⑵ 3- ⑶ 2 )2 1(- ⑷ ()223≥-a a ⑸ 12+a ⑹ 3+a ⑺ a ⑻()02?-x x 学: 代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义? 2-x ⑵ x -21 ⑶13-+ -x x ⑷2x ⑸3x (6) ()01-a (1)常见的非负数有:a a a ,,2 (2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。 巩固练习: 已知(),03122 =-++b a 求a,b 的值 2.已知053232=--+--y x y x 则y x 8-的值为 练: 1.下列各式中:①52+- x ②2009 ③33 ④π ⑤22a - ⑥ 3+-x 其中是二次根式的有 。 2.若1 21 3-+-x x 有意义,则x 的取值范围是 。 3.已知122+-+-= x x y ,则=y x 4.函数x y +=2中,自变量x 的取值范围是() (A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子ab a 1+ -有意义,则P (a,b )在第( )象限 (A )一 (B)二 (C)三 (D)四 6.若,011=-++b a 则=+20112011 b a 7.方程084=--+-m y x x ,当y>0时,m 的取值范围是 8.已知01442=-++ +-y x y y ,求xy 的值

17.1.1勾股定理导学案

17.1 勾股定理(1) 学习目标: 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。 3.介绍我国古代在勾股定理研究方面所取得的成就,激发爱国热情,勤奋学习。 重点:勾股定理的内容及证明。 难点:勾股定理的证明。 学习过程: 一.预习新知(阅读教材第64至66页,并完成预习内容。) 1正方形A、B 、C的面积有什么数量关系? 2以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系? 归纳:等腰直角三角形三边之间的特殊关系。 A B C (1)那么一般的直角三角形是否也有这样的特点呢? (2)组织学生小组学习,在方格纸上画出一个直角边分别为3和4的直角三角形,并以其三边为边长向外作三个正方形,并分别计算其面积。 (3)通过三个正方形的面积关系,你能说明直角三角形是否具有上述结论吗? (4)对于更一般的情形将如何验证呢?

二.课堂展示 方法一; 如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。 S 正方形=_______________=____________________ 方法二; 已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2+b 2=c 2。 分析:左右两边的正方形边长相等,则两个正方形 的面积相等。 左边S=______________ 右边S=_______________ 左边和右边面积相等, 即 化简可得。 方法三: 以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o. ∴ ∠DEC = 180o―90o= 90o. ∴ ΔDEC 是一个等腰直角三角形, 它的面积等于 c 2. 又∵ ∠DAE = 90o, ∠EBC = 90o, ∴ AD ∥BC. ∴ ABCD 是一个直角梯形,它的面积等于_________________ 归纳:勾股定理的具体内容是 。 2 12 1 b b b

三角形中位线定理 优秀教案

三角形中位线定理 【教学目标】 1.本节课的认知目的是使学生了解三角形的中位线概念及其性质定理,重点是熟悉和掌握三角形中位线定理,并能正确地运用这个定理去解决一些简单的几何问题。 2.本节课利用几何画版平台,动态演示了例题几何图形的多种变化,使学生初步认识事物的动与静、变与不变这一矛盾的对立与统一的辩证唯物主义思想。 【教学重难点】 重点:掌握定理的实质和定理的应用。 难点:定理的证明。 【教学过程】 教 学 过 程 设计思路及应用分析 导读 1.概括这节课的学习内容和认知目标; 2.引入三角形的中位线概念。 连结三角形两边中点的线段叫三角形的中位线 注意:三角形的中位线和三角形的中线不同。 C B A E D C B A E D 对比:三角形有三条中位线,它们组成一个三角形; 三角形有三条中线,它们相交于一点。 C B A E D C B A E D F F 特别强调了本节课的制作特色是动态演示,学习方法是探索研究。 这里用动态连结并配上音 乐,以引起学生的注意。 这里的三条中位线和三条 中线使用闪烁的手法,加 强对比的效果。

三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半 定理表达式 证明:延长DE 到F ,使EF=DE ,连结CF 。 演示:打开几何画板 1.依次拖动三角形的三个顶点,注意DE 和 BC 长度的变化,观察它们的数量关系。 2.自点 D 作 BC 的平行线 FG ,再拖动三个顶点,观察 DE 与 BC 的位置关系。 定理表达式更能清楚地反 映定理的题设和结论。 中位线定理的证明方法较多,因为不作为本节课的重点,所以这里只选用了一种学生比较熟悉的直接证法。 也可以先演示再证明,通过 演示,使学生更直观地了解三角形的中位线和第三边的数量关系以及位置关系。 说明:关闭几何画板时,选择“不保存”。 本例题选自课本,证法一与课本相同。 引导学生分析为什么要连辅助线。 C B A E D A B C D E F

三角形中位线定理及逆定理的证明教学教材

定理 三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG

又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法四:

延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEF、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理

相关主题
文本预览
相关文档 最新文档