当前位置:文档之家› 张量定义及算法

张量定义及算法

张量定义及算法
张量定义及算法

张量的基本概念(我觉得说的比较好-关键是通俗)

向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了。 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射。 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计算机水平,不只对数值计算有极深的造诣,对一个程序如何编译成汇编代码,如何在CPU 中执行,操作系统如何对内存处理,那些程序又如何在内存中调度,反正听得多了,我也能

对麦克斯韦方程组的理解

对麦克斯韦方程组的理解 摘要:理解麦克斯韦方程组的内在含义。并且麦克斯韦方程组有优美的对称性和协 变性,因此用洛伦兹变换及电磁场量验证麦克斯韦方程组在洛伦兹变换下为不变式。 关键词:麦克斯韦方程组 对称性 协变性 1、引言:数学是研究物理的有力工具,数学描述的概括性和抽象性令人敬畏,也 令人敬佩,物理是一门定量的科学,必然大量的使用数学;物理上出现的数学公式反映自然现象的规律和本质,学习物理时,既要弄清楚数学公式的数学意义,更要弄清楚物理内涵,这样才能对数学公式由敬畏变成敬佩,并产生学习的愉悦,以下谈谈自己对麦克斯韦方程组的一点浅浅的体会。 麦克斯韦于1865年完成了他的论文“电磁场的一个动力学理论”。在这篇论文中提出了电磁场的八个基本方程,全面概括了电磁场运动的特征。并非常敏锐的引入了位移电流。指出了电磁场的存在及传播规律。这些光辉的预言,在1888年被德国的科学家赫兹在实验上证实了。 麦克斯韦方程组充分表现了电场和磁场的对称性和协变性,从而体现了自然世界优美的对称性和协变性。 麦克斯韦方程组因为其的优美,被认为是上帝书写的。 2、麦克斯韦方程组的的对称性 麦克斯韦方程组可以概括整个电磁学规律,它具有优美的对称性; t B E ??- =?? (1) t E J u B ??+=??000εμ (2) ερ = ??E (3) 0=??B (4) 麦克斯韦方程组反映普遍情况下电荷电流激发电磁阀以及电磁场内部矛盾运动的规律。它的主要特点是揭示了变化电磁场可以相互激发的运动规律,从而在理论上预言了电磁场的存在,并指出光就是一种电磁波,麦克斯韦方程组不仅揭示了电磁场的运动规律,更揭示了电磁场可以独立于电荷之外单独存在,这就更加深了我们对电磁场物质性的认识。 麦克斯韦方程组是宏观电磁现象的理论基础,它的应用范围极其广泛,利用它原则上可以解决各种宏观电磁现象。因此电磁场的计算都可以归结为对这组方程的求解过程。比如,稳恒磁场就是 0=??t B ,0=??t E 的特殊情况下 的麦克斯韦方程;在讨论电磁波及在真空中 的传播问题时,就是令0,0==J ρ,就可以得到关于E 和B 的完全对称的波动方程: 012222 =??-?t E c E ;012222 =??=-?t B c B

集合的概念及其运算

第一节 集合 一.考试要求: 理解集合,子集,补集,交集,并集的概念,了解空集和全集的意义,了解属于、包含、相等关系的意义,掌握有关的术语和符号,并用它们正确表示一些简单的集合。 二.基本概念和性质 1.集合的基本概念: 某些指定的对象集在一起成为一个集合。其中每一个对象叫做集合的_______,集合中的元素具有________、_________、________三个特性。 2.集合的三种表示方法:_________、________、_________,它们各有优点,用什么方法来 表示集合要具体问题具体分析。 3.集合中元素与集合的关系分为__________或_________,它们用符号___或____表示。 4.集合间的关系及运算 子集:___________________________________称A 为B 的子集,记作为_____; 真子集:___________________________________称A 为B 的真子集,记为_____; 空集:____________________,记为_____ 补集:如果已知全集U ,集合A U ?,则U C A =_________________; 交集:A B =___________________;并集:A B =_____________________ 5.集合中常用运算性质 若,A B B A ??则______,若,A B B C ??则_______, ___A ?, 若,A ≠?则___A ?,___,__,__,__A A A A A A =?==?= __U A C A = __,()__,()__U U U A C A C A B C A B === ____A B A B A B ??=?= 6.熟练掌握描述法表示集合的方法,理解下列五个常见集合: {}{}{}{}{}(1)|()0,:______________(2)|()0,:_________________ (3)|():____________________(4)|(),:________________(5)(,)|(),:__________________________ x f x x R x f x x R x y f x y y f x x M x y y f x x M =∈>∈==∈=∈ 7.特别注意: (1)空集和全集是集合中的特殊集合,应引起重视,特别是空集,避免误解或漏解。 (2)为了直观表示集合之间的关系,常用韦恩图来解决问题,另外要充分利用数轴和平面 直角坐标系来反映集合及其关系。 (3)解决有关集合问题,关键在于集合语言的转化。 三、例题选讲

张量的基本概念(我觉得说的比较好,关键是通俗)

简单的说:张量概念是矢量概念和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是二阶张量,而三阶张量则好比立体矩阵,更高阶的张量用图形无法表达。 向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了。 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射。 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计

一种基于张量投票的牙齿特征识别的方法

种基于张量投票的牙齿特征识别的方法 与治疗的参考点。为了快速准确的识别牙齿特征,本文提出 了一种基于张量投票的提取算法。该算法通过计算将牙齿三 维网格数据拓扑成为半边结构,将输入的每个顶点进行张量 编码,根据张量投票矩阵的特征值进行候选特征点的选取。 对于候选特征点,通过邻域搜索将其进行聚类,并通过非极 大值抑制选取最终的特征。实验结果表明,该方法可以有效 识别牙齿表面不同类型的特征,具有较高的准确性和实用性。 关键词:特征提取;半边结构;张量投票;邻域搜索 号: TP18 文献标识码: A 文章编号: 1009-3044 2016)12-0182-03 1 概述 牙齿特征位于牙冠表面,与牙齿的生理学功能密切相关, 失。牙齿特征是正畸医师评估患者咬合情况的参考点,这些 特征的正确接触与排列也是正畸治疗所追求的最终目标。因 此,牙齿特征识别对于正畸医师在临床治疗时评估咬合情况 以及制定治疗计划都具有非常重要的意义。 目前,临床上一般都会对患者的错颌畸形情况进行 Angle 错颌分类 [1],以便对患者病情进行讨论和研究,并进一步的 制订治疗方案。在口腔正畸学的不断发展中,也出现了几种 正畸指数,用来评估采取正畸治疗的必要性或者对正畸治疗 的效果进行评价。这些指数包括 PAR [2]( Peer Assessment Rating )指数、AB0-0GS[3] (American Board of 摘要:在正畸治疗中 ,牙齿表面特征是非常重要的测量 中图分类 主要包含牙尖、 中央窝、切嵴等。牙冠表面的牙釉质是人体 最坚硬的组织结构,这种特征结构在治疗过程中 般不会丢

Orthodontics- Objective Grading System)、IOTN[4](The Index of Orthodontic Treatment Need )指数等。Angle错颌分类主要依据上颌第磨牙的近中颊尖与下颌第一磨牙近中颊沟之间的位置关系。 ABO-OGS指数与PAR指数等评估标准考察的主要对象也是牙 尖和沟槽等部位相互的距离与排列情况。因此,从治疗前的诊断与分类,到治疗中的考察,再到治疗完成后的评估,牙齿特征贯穿始终。识别与记录这些特征是正畸中必经的步骤。 Kondo[5]等人提出首先计算牙齿图像中每一点的梯度方 向不连续性(the magnitude of the discontinuities in gradient orientation ),然后利用阈值来选取特征点,最后通过形态学操作来进行筛选。仲哲等人[6]提出的方法需要计算每个顶点 的曲率和需要手工建立每颗牙齿坐标系,并人工选取顶点与坐标轴之间阈值,而阈值选择对提取结果有着很大的影响。 王寅等人[7]提出的方法使用了三维SUSAN算法,针对不同位 置的不同类型的牙齿和特征都需要选择不同的阈值,无法在牙列上直接提取特征。 目前,市场上主流的商业化的口腔CAD/CAM 软件都使 用了交互式的牙齿特征提取方法。在CERES腔修复系统中,用户需要自行选取一系列的牙齿特征点,在选取过程中,系统会把已经提取的特征点逐个进行优化;3Shape 口腔修复系统则需要先在牙根附近定位8 个标志点,通过8 个标志点粗略定位特征点,随后优化提取出特征点;Dental Wings 口腔修复系统将牙齿三维曲面展开到平面中,通过在二维曲面的牙冠区域选取出初始点,计算并得出二维特征线,随后映射回三维曲面得到最终的牙齿特征。 上述几种牙齿特征提取算法与口腔修复系统软件都可

张量定义

§1 张量的定义 张量: 在三维笛卡儿(Descartes)坐标系中,一个含有三个与坐标相关的独立变量集合,通常可以用一个下标表示。 例如,对于位移分量u,v,w可以表示为u 1,u2,u3,缩写记为u i,i=1, 2, 3。对 于坐标x,y, z可以表示为x i。 对于一个含有九个独立变量的集合,可以用两个下标来表示。 例如九个应力分量或应变分量(由于对称,实际独立的仅有六个)可以分别表 示为σij和εij,其中σ11, σ22分别表示σx, σxy(就是τxy);ε11 , ε22分别表示εx, εxy()等。 同样,一个含有27个独立变量的集合可以用三个下标表示;而含有81个独立变量的集合可以用四个下标表示,依次可以类推。 为了给张量一个确切的定义,首先讨论矢量定义。在坐标系Ox 1x2x3中。矢量 OP的三个分量ζ 1, ζ 2,ζ3可以缩写作ζi,同一矢量OP在新坐标系Ox'1x'2x'3中,写作ζ '1,ζ '2,ζ '3,缩写为ζ'i。 设坐标系Ox 1x2 x3与Ox'1x'2x'3的夹角方向余弦如下表所示 方向余弦n i'j的第一下标对应于新坐标轴,而第二下标对应于原坐标轴。则矢量在新老坐标系中的关系为 或者 上式可以缩写为

或者。 a2, a3)和OP(ζ1, ζ2, ζ3),作它们的标量积,则 考察矢量A(a 1, 显然,此标量积与坐标轴的选取无关,如果上述矢量作坐标变换,则 反之,如ζ ' 为已知矢量,而a i为与坐标有关的三个标量,使一次形式在坐标变换时保持不变。根据矢量定义,则a i也是矢量。 推广上述的命题,可以给张量一个解析的定义。设(ζ 1, ζ 2, ζ3)和(η 1, η 2, η3)是矢量,a ij是与坐标有关的九个量,若当坐标变换时,双一次形式 保持不变,则称由两个下标i,j确定的九个量的集合a ij为二阶张量。a ij中的每一个分量被称作张量(对于指定的坐标系)的分量。 根据上述定义,可以推导出坐标变换时张量分量的变换规律。由题设条件,当坐标变换时,有 代入坐标变换关系,则 注意到

对麦克斯韦方程组的几点新认识

对麦克斯韦方程组的几点新认识 水悦 (安徽大学物理与材料科学学院,安徽合肥 230039) 摘要:经过上学期对《电动力学》和这学期《电磁场与电磁波》课程的学习,使我们认识到麦克斯韦方程组的重要性,麦克斯韦方程组是电磁理论的核心方程组,它是深刻理解好整个电磁理论的基础。在原有学习的基础上,查阅大量资料,现从麦克斯韦方程组所蕴涵的物理简单美、对称美与统一美角度重新审视麦克斯韦方程组,并从审美的角度加深对它的理解。最后,再结合上述分析简单探讨一下麦克斯韦方程组中所透露出的哲学思想,从学科相互渗透的角度进一步加深理解。 关键词:麦克斯韦方程组;简单美;对称美;统一美;哲学 1865年,麦克斯韦在英国皇家学会上宣读了其举世瞩目的论文——《电磁场的动力学理论》,在这篇论文中,他提出了伟大的麦克斯韦方程组。这个方程的伟大之处体现在三个方面,首先,它对电磁理论做出了正确地描述,体现了科学的“真”。其次,利用它可以造福人类,又有“善”的一面;同时,它被誉为“19世纪最美的方程”,有人甚至称之为“像诗一样美的方程组”,可见它还是“美”的。因此,它是“真”、“善”、“美”的统一。同时,将物理学与哲学相结合,我们还可以看到麦克斯韦方程组所蕴含着的哲学规律,这正是学科间的相互渗透,作为一名理科学生,也同样很值得我们仔细去思考、去品味。 1 麦克斯韦方程组的美 1.1 简单美 麦克斯韦方程组在历史上的建立过程非常复杂,但它的逻辑基础却很简单。它是由麦克斯韦在3个基本电磁实验定律(库仑定律、毕奥一萨伐尔定律、法拉第电磁感应定律)的基础上,引出涡旋电场与位移电流的2个假设,并将这些定律与假设加以整合与推广而得到。由库仑定律与毕奥一萨伐尔定律可以导出静态场的麦克斯韦方程组,而动态场的麦克斯韦方程组是在此基础上作了两个重大改进。第一个改进是从法拉第电磁感应定律出发,可以得出处于变化磁场中的导体会产生感应电场,麦克斯韦进一步将它推广,认为只要有变化的磁场就会产生感应电场,并将它称为涡旋电场,涡旋电场的产生与是否存在导体无关,只不过有导体存在时,在涡旋电场的作用下会产生涡旋电流。引入涡旋电场的概念后就可以得到动态场电场的旋度方程。因此,从逻辑上看,涡旋电场既是法拉第电磁感应定律的一个引申和推广,它并不是一个独立的逻辑基础。第二个改进是由麦克斯韦一个人完成的,他为了协调当时的磁场旋度方程与电荷守恒定律间的矛盾,天才地提出了位移电流的假设,认为位移电流也是产生磁场的源,于是就得到了动态场磁场的旋度方程。因此,位移电流假设相当于一个定律,是与三大实验定律并列的一个定律。综上所述,从麦克斯韦方程组建立过程来看,库仑定律、毕奥一萨伐尔定律、法拉第电磁感应定律、位移电流假设构成了麦克斯韦方程组简单的逻辑基础。 麦克斯韦方程组的数学形式也具有简单性,而且从麦克斯韦方程组的发展历史来看,它是逐渐变得简单的。麦克斯韦方程最初给出的是20个方程与20个变量,如下式所示:

移动正方形算法在2D张量投票中的应用

Software Engineering and Applications 软件工程与应用, 2015, 4, 11-18 Published Online April 2015 in Hans. https://www.doczj.com/doc/e714289318.html,/journal/sea https://www.doczj.com/doc/e714289318.html,/10.12677/sea.2015.42002 Application of Marching Square Algorithm in 2D Tensor Voting Xiaofang Shao, Dalong Li, Yan Tang Qingdao Branch of NAEI, Qingdao Shandong Email: pugongying_0532@https://www.doczj.com/doc/e714289318.html, Received: Apr. 3rd, 2015; accepted: Apr. 23rd, 2015; published: Apr. 29th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/e714289318.html,/licenses/by/4.0/ Abstract Marching Cube is a classic algorithm applied in 3D medical visualization for its simpleness and practicality. Marching Square algorithm is the 2D version of Marching cube, which is used mainly in extracting isolines. Tensor voting algorithm introduces this algorithm to detect general curves. This paper presents the application of Marching Square in 2D tensor voting. Experimental results show its efficiency and the influence of scale parameter. Keywords Marching Square, Perceptual Completion, Curve Detection 移动正方形算法在2D张量投票中的应用 邵晓芳,李大龙,汤燕 海军航空工程学院青岛校区,山东青岛 Email: pugongying_0532@https://www.doczj.com/doc/e714289318.html, 收稿日期:2015年4月3日;录用日期:2015年4月23日;发布日期:2015年4月29日 摘要 移动立方体(Marching Cube)算法是三维医学可视化领域应用的经典算法,因其简单实用而得到广泛推

张量投票算法及其应用

华东师范大学 硕士学位论文 张量投票算法及其应用 姓名:秦菁 申请学位级别:硕士专业:基础数学 指导教师:沈纯理 20080501

摘要 本文主要介绍了一种新的数据分析算法,即张量投票算法.该算法完全利用图像数据,根据张量分析,矩阵论和几何的知识,对数据点进行编译和几何阐释,再根据心理学中的Gestalt原理制定一个数据点与周围的数据点之问的信息传递规则,从而推断出一些几何结构.这种方法有诸多优点o.局部性,对噪声的鲁棒性,非迭代的,可处理大量数据的,可同时表示各种几何结构类型等.本文从二维情形开始对该算法进行了详细的数学描述,并推广到高维空间. 这种算法与现在流行的基于偏微分方程的图像处理方法不同,在第三章中就该算法的应用提出了三个方面:1.图像去噪;2.图像分割;3.图像序列.其中,图像去噪是完全利用张量投票算法对数据的处理,可以看到这种算法的有效性.而对于图像中轮廓线的提取,以前也有很多基于能量泛函和偏微分方程的工作,本文从另外一个角度把张量投票算法中出现的显著性信息放到能量泛函中得到跟以前一致,并更精细的方程.限于时间,这个改进的方法没有进一步与之前的方法进行比较和分析.最后,对图像序列中研究不多的过渡图像生成的问题做一些结合张量投票算法的尝试.而这个问题在文献【23】中并没有得到有效的解决,但我们的方法部分解决了这一问题. 关键词:张量投票算法,图像去噪,轮廓提取,图像序列分析 2

第一章绪论 1.1张量分析的基本知识 1.1.1张量的定义和性质 假设y是一个II维的实向量空间,三(y;R)表示从y到实数集R的线性函数空间.可以证明己(y;R)与y有相同的维数n.因此y和L(V;R)为同构的.L(y;R)也经常被称为y的对偶空间,记为P. 若Ⅵ….,K都是向量空间,一个函数A:v1×…×K_÷R当满足如下条件: A(Vl,v2,…,oil‰1+n2i%2,…,vs)=耐A("1,…,钉j,…,%)+ai2A(v1,…,谚,…,%), 讹i,吐∈R,叫,蛾2∈K,i=1….,8函数A称为8重线性函数.若向量空间Ⅵ….,K中要么为向量空间y要么为其对偶空间V’,则称A为y上的一个张量.即V上的p,q)阶张量(P和口均为正整数)为一个p+g)重线性函数: A:V’×…×V’×V×…×V_R 、-?___—-v—_-_一、?__-_、一.—?___, p口 当P=q=0时定义(0,0)型张量即为R中的一个数量,仞,o)型张量也称为P阶反变张量,(o,口)型张量也称为q阶协变张量.其余类型的张量称为混合张量,一般我们称p,q)型张量为P+q阶的张量.用馏表示全体y上的p,口)阶张量所构成的空间,它是一个矿+q维的线性空间,以 eil@…o eipo哼lo…o吃,il,…,ip,jl,…,Jq=1,…,Tt. 为基底.其中el,…,en为V的基,e:,…,e:为V+中的对偶基. 例如,一阶张量就是一个线性作用将一个向量映为一个数量,从而任何一个向量与一个已知向量的内积可以看作一个一阶张量.同理,二阶张量可以定义为一个把两 1

张量的基本概念我觉得说的比较好,关键是通俗

简单的说:张量概念是矢量概念和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是二阶张量,而三阶张量则好比立体矩阵,更高阶的张量用图形无法表达。 向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变 换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的 概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等.线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价. 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何 比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了. 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射. 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计算

1.1.3集合的基本运算

教学目的: 知识与技能: 1、理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; 2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集; 3、能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 过程与方法:针对具体实例,通过类比实数间的加法运算引入了集合间“并”的运算,并在此基础上进一步扩展到集合的“交”的运算和“补”的运算。类比方法的使用体现了知识之间的联系,渗透了数学学习的方法。 情感、态度与价值观: 1、类比方法让学生体会知识间的联系; 2、Venn 图表达集合运算让学生体会数形结合思想方法的应用对理解抽象概念的作用; 3、通过集合运算的学习逐渐发展学生使用集合语言进行交流的能力。 教学重点:集合的交集与并集、补集的概念; 教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”; 教学过程: 一、复习回顾: 1:什么叫集合A 是集合B 的子集? 2:关于子集、集合相等和空集,有哪些性质? (1) .A A ?; (2) 若A B ?,且B A ?,则.A B =; (3) 若,,A B B C ??则C A ?; (4) A ??. 二、创设情境,新课引入 问:实数有加法运算,两个集合是否也可以相加呢?考察下列各个集合,你能说出集合C 与集合A ,B 之间的关系吗? (1){ }{}{}6,5,4,3,2,1,6,4,2,5,3,1===C B A ; (2){}是有理数x x A =,{}是无理数x x B =,{} 是实数x x C =.

学生讨论并引出新课题. 三、师生互动,新课讲解: 1、并集 一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union) 记作:A∪B读作:“A并B”即: A∪B={x|x∈A,或x∈B} 例1:(1)设A={4,5,6,8},B={3,5,7,8},求:A∪B。 (2)设集合A={x|-1

张量分析中文翻译(最新整理)

柯西应力张量是一个二阶张量。该张量的元素在三维笛

,其中新的基矢量按照如下公式由旧的基矢量变换得到,

指数之间的变换规律如下: 11111111,,,,11,,,,=n n n m n n m n n m n m i i i j j j j i i i j j i i j j T R R R R T ++++???∧???--????????????()()这样的张量称为阶或类型为(n,m-n )型的张量[4].这样的讨论产生了张量的一般定义。 定义:(n,m-n )型的张量是多线性映射的分配,即: 对于基f=(e 1,...,e N ) 是如此,如果应用如下基变换 多维阵列变成“协变”规律形式 11111111,,,,11,,,,[f,]=[f ] n n n m n n m n n m n m i i i j j j j i i i j j i i j j T R R R R R T ++++??????--????????????()()多维阵列定义张量满足“协变”规律,这个可以追溯到里奇的早期工作。如今,这种定义在一些物理和工程书籍中仍然经常使用。 张量场 在许多实际应用当中,特别是微分几何和物理领域,通常把张量的元素考虑成为函数形式。事实上,这只是Ricci 早期的工作。在当今的数学术语里面,这样的对象称为张量场,但是它们通常仅仅指的的张量本身。 本文当中的“协变”规律的定义采用一种不同的形式,张量场的基底由基础空间的坐标所决定,而且,“协变”规律的定义通过坐标函数的偏导数来表示, ,定义如下坐标变换 多线性映射 有一种定义张量的方法是站在多维阵列的角度的,从被定义对象基独立性和几何对象的本质来看,这种定义方法并不明显。尽管这种方法也可以说明变化规律对基独立性的觉得作用,但有时还是首选张量更本质的定义。一种方法是张量定义成多线性映射。这种方法中(n,m )类型的张量被定义成一种映射。 copies copies :, n m T V V V V R **???????????→ 式中V 表示向量空间,V *表示该向量空间对应的共轭向量空间,其中的变元是线性的。 通过把多线性映射(n,m )型的张量T 应用到V 的基{e 1}和V *的基共轭基{ε1}中,即: 1111(,,,,)i in i in j jm j jm T T e e εε??????≡??????

集合的基本关系及运算A

集合的基本关系及运算 A 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: 1.理解集合之间包含与相等的含义,能识别一些给定集合的子集.在具体情境中,了解空集和全集的含义. 2.理解两个集合的交集和并集的含义,会求两个简单集合的交集与并集.理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 学习策略: 数形结合思想,如常借助于数轴、维恩图解决问题;分类讨论的思想,如一元二次方程根的讨论. 二、学习与应用 1.集合元素的特征 性、 性、 性. 2.元素与集合的关系: (1)如果a 是集合A 的元素,就说a A ,记作a (2)如果a 不是集合A 的元素,就说a A ,记作a 3.集合的分类 (1)空集: 元素的集合称为空集(empty set),记作: . (2)有限集: 元素的集合叫做有限集. “凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对性.我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记. 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

(3)无限集:元素的集合叫做无限集. 4.常用数集及其表示 非负整数集(或自然数集),记作 正整数集,记作*或+ 整数集,记作 有理数集,记作 实数集,记作 要点一:集合之间的关系 1.集合与集合之间的 “包含 ”关系 集合A是集合B的部分元素构成的集合,我们说集合B集合A; 子集:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系, 称集合A是集合B的子集(subset).记作:,当集合A不包含于集合B时,记作,用Venn图表示两个集合间的“包含”关系:A B(B A) ?? 或 要点诠释: (1)“A是B的子集”的含义是:A的任何一个元素都是B的元素, 即由任意的x A ∈,能推出x B ∈. (2)当A不是B的子集时,我们记作“A?B(或B?A)”, 读作:“A不包含于B”(或“B不包含A”). 真子集:若集合A B,存在元素x B且x A,则称集合A是集合B 的真子集(proper subset).记作:(或) 规定:空集是任何集合的集,是任何非空集合的集. 2.集合与集合之间的“相等”关系 A B B A ?? 且,则A与B中的元素是一样的,因此A B 要点梳理——预习和课堂学习 认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习.课堂笔记或者其它补充填在右栏.预习和课堂学习更多知识点解析请学习网校资源ID:#3072#388901

张量分析中文翻译

张量 张量是用来描述矢量、标量和其他张量之间线性 关系的几何对象。这种关系最基本的例子就是点积、 叉积和线性映射。矢量和标量本身也是张量。张量可 以用多维数值阵列来表示。张量的阶(也称度或秩) 表示阵列的维度,也表示标记阵列元素的指标值。例 如,线性映射可以用二位阵列--矩阵来表示,因此该 阵列是一个二阶张量。矢量可以通过一维阵列表示, 所以其是一阶张量。标量是单一数值,它是0阶张量。 张量可以描述几何向量集合之间的对应关系。例 如,柯西应力张量T 以v 方向为起点,在垂直于v 终点方向产生应力张量T(v),因此,张量表示了这两个 向量之间的关系,如右图所示。 因为张量表示了矢量之间的关系,所以张量必 须避免坐标系出现特殊情况这一问题。取一组坐标 系的基向量或者是参考系,这种情况下的张量就可 以用一系列有序的多维阵列来表示。张量的坐标以 “协变”(变化规律)的形式独立,“协变”把一种 坐标下的阵列和另一种坐标下的阵列联系起来。这 种变化规律演化成为几何或物理中的张量概念,其 精确形式决定了张量的类型或者是值。 张量在物理学中十分重要,因为在弹性力学、流体力学、广义相对论等领域中,张量提供了一种简洁的数学模型来建立或是解决物理问题。张量的概念首先由列维-奇维塔和格莱格里奥-库尔巴斯特罗提出,他们延续了黎曼、布鲁诺、克里斯托费尔等人关于绝对微分学的部分工作。张量的概念使得黎曼曲率张量形式的流形微分几何出现了替换形式。 历史 现今张量分析的概念源于卡尔?弗里德里希?高斯在微分几何的工作,概念的 制定更受到19世纪中叶代数形式和不变量理论的发展[2]。“tensor ”这个单词在 1846年被威廉·罗恩·哈密顿[3]提及,这并不等同于今天我们所说的张量的意思。 [注1]当代的用法是在1898年沃尔德马尔·福格特提出的[4]。 “张量计算”这一概念由格雷戈里奥·里奇·库尔巴斯特罗在1890年《绝对微分几何》中发展而来,最初由里奇在1892年提出[5]。随着里奇和列维-奇维塔1900年的经典著作《Méthodes de calcul différentiel absolu et leurs applications 》(绝对微分学的方法及其应用)出版而为许多数学家所知[6]。 在20世纪,这个学科演变为了广为人知的张量分析,1915年左右,爱因斯坦的广义相对论理论中广泛应用了这一理论。广义相对论完全由张量语言表述。爱因斯坦曾向几何学家马塞尔·格罗斯曼学习过张量方法,并学得很艰苦。[7]1915 年到1917年之间,列维·奇维塔 在与爱因斯坦互相尊重互相学习的氛围下,对爱因斯坦的张量表述给与了一些指正。 “我很佩服你的计算方法的风采,它必将使你在数学大道上策马奔腾,然而我们却只能步履蹒跚。”阿尔伯特·爱因斯坦,意大利相对论数学家[8]。 柯西应力张量是一个二阶张量。该张量的元素在三维笛卡尔坐标系下组成如下矩 阵: 312()()()111213212223313233 T T T =e e e σσσσσσσσσσ??=???????????? 该矩阵的各列表示作用在 e 1,e 2,e 3方向正方体表面上的应力(单位面积上的力)。

集合的基本概念与运算

第1讲 集合的基本概念与运算 吴江市高级中学 李文静 一、高考要求 ①理解子集、补集、交集、并集的概念; ②了解空集和全集的意义;③了解属于、包含、相等关系的意义;④掌握有关的术语和符号,并会用它们正确表示一些简单的集合. 二、两点解读 重点:①集合的三大性质; ②集合的表示方法 ;③集合的子、交、并、补等运算. 难点:①新问题情境下集合概念的理解;②点集和数集的区别;③空集的考查. 三、课前训练 1.设集合A={1,2},B={1,2,3},C={2,3,4}则=C B A Y I )(( ) ( A ) {1,2,3} ( B ) {1,2,4} ( C ) }4,3,2{ ( D ) }4,3,2,1{ 2.设集合}01{<<-=m m P ,044{2<-+∈=mx mx R m Q ,对任意的实数x 恒成立},则下列关系中成立的是( ) (A) P Q (B) Q P (C)Q P = (D)P Q =?I 3.已知集合}{2x y y A ==,}2{x y y B ==,则=B A I ____________. 4.设集合A={5,)3(log 2+a },集合B={a ,b }.若B A I ={2},则B A Y = . 四、典型例题 例1 设集合},412{Z k k x x M ∈+==,},2 1 4{Z k k x x N ∈+==, ,则( ) (A) M N (B) N M (C)M N = (D)M N =?I 例2 设集合},,1),{(22R y R x y x y x M ∈∈=+=,},,1),{(2R y R x y x y x N ∈∈=-=,则集合N M I 中元素的个数为( ) (A ) 1 (B) 2 (C) 3 (D) 4 例3设P 、Q 为两个非空实数集合,定义集合},|{Q b P a b a Q P ∈∈+=+,若},5,2,0{=P }6,2,1{=Q ,则P +Q 中元素的个数是_______________. 例4 已知集合}06{2=-+=x x x M ,}01{=-=mx x N ,若M N ?,则实数m 的取值构成的集合为______________________. 例 5 已知R a ∈,二次函数a x ax x f 22)(2--=.设不等式0)(>x f 的解集为A ,又知集合 ? ≠ ? ≠ ? ≠ ? ≠

用3D动画讲解《麦克斯韦方程组》(20171025)

用3D动画讲解《麦克斯韦方程组》(20171025) 2016-06-18 麦克斯韦方程组的优美,在于物理和数学 两个方面。 动图 物理上,完全解释了(经典)电磁现象的根源: 静态情况:电荷产生电场(Gauss Law),电流产生磁场(Ampere Law); 动态情况:变化的电场可以产生磁场(Maxwell-Ampere Law),变化的磁场也可以产生电场(Faraday Law)。 所以,(经典)电磁现象可以由电荷以及电荷的运动(电流)产生了电场、磁场、以及变化的电场和磁场(电磁场)来解释。数学上,方程的形式很简洁,但是却不是完全对称的,因为磁场没有源(磁单核)。并且,整个的四个微分方程, 全是用散度和旋度表示,也就可以统一为广义的斯托克斯定理(微分几何中的)。 进一步,爱因斯坦将张量分析引入物理系之后,原来的四个微分方程,可以简化为两个更简洁的张量方程。 再进一步,在整体微分几何(外代数)建立之后,用外微分形式,可以将麦克斯韦方程组用一个极其简单的方程来表示,当然,默认有一个限制条件(Bianchi identity)。在这里,并不只是简简单单的只写一个方程这么简单,而是允许我们进

行更方便的推广,再引入非交换李代数后,直接就得到了Yang-Mills场方程,因此电磁现象只是更广义的物理框架的特殊形式而已。事实上是麦克斯韦方程预言了电磁波的存在。期初,电荷守恒定律与静态安培环路定律产生矛盾,delta 叉乘E = 0 此处好像不太适合了,麦克斯韦用数学方法推导引入了位移电流,也就是J,建立了Maxwell Equation, 奠定 电磁理论。对于上述几个方程,简单解释一下,帮助理解这几个微分方程:1.电场不仅由电荷所激发,而且也由磁场变化所激发 2.磁场不仅由带电粒子运动所激发,而且也由电场变化所激发 (偏导体现变化,比如变化的电场会激发磁场,变化的磁场可以激发电场。同时第一个旋度方程的负号是关键,使电场与磁场构成相互激励相互约束的关系3.电场线有源 4.磁场 线无源(此处,源的强度为零,即散度为零。同时自然界存在电荷,不存在磁荷,所以磁场无通量源)为什么说他美呢,因为大麦克斯韦仅仅用四个方程就构成了ECE本 科最难的几门课之一,简单暴力美学,想当初,谁知道这个课本上的大胡子这么凶残文字整理自:知乎 ------------------------------------------

相关主题
文本预览
相关文档 最新文档