当前位置:文档之家› 混凝土JS750设计

混凝土JS750设计

混凝土JS750设计
混凝土JS750设计

目录

第一章JS750总体概述 (1)

1.1毕业设计课题 (1)

1.2设计的总体要求: (1)

1.3设计大纲 (1)

1.3.1设计原则 (1)

1.3.2原始数据 (1)

1.4搅拌机概述 (2)

1.5毕业设计的意义 (3)

第二章混凝土搅拌机简介 (4)

2.1分类 (4)

2.2型号 (5)

2.3搅拌主机结构详细说明 (5)

2.3.1搅拌机盖 (6)

2.3.2搅拌筒体 (6)

2.3.3搅拌装置 (6)

2.3.4轴端密封 (7)

2.3.5传动装置 (7)

2.3.6衬板 (8)

2.3.7卸料门 (8)

2.4搅拌主机类型选择 (8)

2.4.1自落式混凝土搅拌机 (9)

2.4.2强制式混凝土搅拌机 (9)

第三章设计的主要内容 (10)

3.1总体设计 (10)

3.1.1搅拌装置 (10)

3.1.2传动系统 (10)

3.1.3上料系统 (10)

3.1.4供水系统 (10)

3.1.5机架与支腿 (11)

3.1.6电气控制系统 (11)

3.2主要机构具体结构设计及参数设计 (11)

3.2.1搅拌装置 (11)

3.2.2传动系统 (15)

3.2.3上料系统 (16)

3.2.4供水系统 (19)

3.2.5电气控制系统 (21)

3.2.6机架与支腿 (21)

第四章电动机选型和主要参数计算 (23)

4.1电机选型 (23)

4.1.1选择电动机类型和结构形式 (23)

4.1.2选择电动机的容量 (23)

4.1.3双卧轴强制搅拌机轴上功率的计算 (24)

4.1.4电动机的功率计算 (26)

4.2重要参数的计算 (26)

4.2.1搅拌时间的确定 (26)

4.2.2周期性混凝土搅拌机的生产率计算 (27)

4.2.3搅拌机的容量 (27)

4.2.4强制式混凝土搅拌机转速的校核 (27)

4.2.5搅拌筒的容积利用系数的确定 (28)

4.2.6搅拌筒长度L与直径D之比L/D的确定 (28)

4.3计算总传动比和分配各级传动比 (29)

4.3.1传动装置的总传动比 (29)

4.3.2分配各级传动 (29)

4.4计算传动装置的转速和动力参数 (29)

4.4.4各轴转速 (30)

4.4.2各轴功率 (30)

4.4.3各轴转矩 (30)

第五章联轴器选型和搅拌轴的设计与校核 (32)

5.1轴的相关设计内容 (32)

5.2轴设计 (33)

5.2.1初步确定轴的最小直径 (33)

5.2.2联轴器的计算转矩 (33)

5.2.3装配方案比较与设计 (34)

5.3根据轴向定位的要求确定各段轴颈和长度 (35)

5.3.1II-III段长度和直径的确定 (35)

5.3.2初步选择滚动轴承 (35)

5.4确定轴上圆角和倒角尺寸 (36)

5.5求轴上载荷 (36)

5.5.1作出轴的计算简图 (37)

5.5.2求出水平面上各力 (37)

5.5.3求出垂直面上各力 (38)

5.5.4根据水平面和垂直面得弯矩图作出总弯矩图 (40)

5.5.5由扭矩平衡作出扭矩图 (40)

5.5.6由M和扭矩图合成作出计算扭矩图M (41)

5.5.7搅拌轴截面模量W的计算 (41)

第六章轴承校核 (43)

6.1求两轴承受到的径向载荷R1和R2 (43)

6.2求两轴承的计算轴向力A1和A2 (43)

第七章轴承润滑密封理论与润滑系统设计 (45)

7.1脂润滑 (45)

7.2油润滑 (46)

7.2.1飞溅润滑 (46)

7.2.2浸油润滑 (46)

7.2.3刮油润滑 (47)

7.3密封 (47)

设计总结 (49)

参考文献 (50)

致谢 (51)

JS750混凝土搅拌机设计

摘要:

本次设计的JS750混凝土搅拌机是我们的主要设计机型。它是强制式卧轴混凝土搅拌机中的一种,强制式混凝土搅拌机不仅能搅拌干硬性混凝土,而且能搅拌轻骨料混凝土,能使混凝土达到强烈的搅拌作用,搅拌非常均匀,生产率高,质量好,成本低。它是目前国内较为新型的搅拌机,整机结构紧凑、外型美观。其主要组成结构包括:搅拌装置,搅拌传动系统,上料、卸料系统,供水系统,机架及行走系统,电气控制系统,润滑系统等。

主要设计计算内容是JS750混凝土搅拌机机架的设计,主要包括:整体结构方案的确定、电动机的选择和主要参数计算、联轴器选型、搅拌轴的设计与校核、轴承的润滑密封、润滑系统的设计、JS750混凝土搅拌机的装配图及零部件图的绘制。

关键词:混凝土搅拌机,机架,槽钢。

Abstract:

This design JS750concrete mixer is our main design model.It is forced horizontal-axis concrete mixer,forced one of concrete mixer can not only the mixing of dry,rigid concrete,and can stir light weight aggregate concrete,can make concrete achieve strong mixing effect,stirring very evenly,productivity is high,quality is good,the cost is low.It is the present domestic relatively new mixer,the machine has compact structure,good appearance.Its main composition structure including:agitator,stirring transmission system,loading,unloading system,water supply system,rack and mobile system,electric control system,lubrication system,etc.

Main design calculation content is JS750concrete mixer frame design,mainly including: overall structure scheme determination,the choice and the main parameters of electric motor calculation,stirring shaft couplings selection,the design and check,the lubrication seal, lubrication system design,the JS750concrete mixer parts and assembly drawing.

Keyword:concrete mixer,rack,the channel。

第一章JS750总体概述

1.1毕业设计课题

JS750混凝土搅拌机设计

1.2设计的总体要求

①满足使用要求

②满足经济性要求

③力求整机的布局紧凑合理

④工业性要求简单而实用

⑤满足有关的技术标准

1.3设计大纲

1.3.1设计原则

①搅拌机技术条件应满足GB9142-2000《混凝土搅拌机技术条件》规范;

③所用图纸的幅面应符合GB4457-2000《中华人民共和国标准机械制图》中的相关规定。

1.3.2原始数据

①出料容积750L

②进料容积1200L

③搅拌电机额定功率30KW

④最大骨料粒径80/60㎜

⑤生产率:()≥30h

m/3

1.4搅拌机概述

混凝土时建筑材料中的一种主要的材料,它是以水泥做为黏结剂把骨料粘在一起的,属于一种非匀质材料,其用途广,用量大。

混凝土搅拌机就是用来大量生产混凝土的机械。混凝土搅拌机有自落式和强制式。混凝土从塑性混凝土发展到干性,硬性混凝土,强制式搅拌机得到了很大发展。强制式混凝土搅拌机不仅能搅拌干硬性混凝土,而且能搅拌轻骨料混凝土,能使混凝土达到强烈的搅拌作用,搅拌非常均匀,生产率高,质量好,成本低。因此,强制式搅拌机得到了很大的发展,但这种搅拌机的功率损耗比较大。

本次设计的JS750混凝土搅拌机是我们的主要设计机型,如图1.1。为了适应不同混凝土搅拌机的搅拌要求,搅拌机发展了许多机型,它们在结构和性能上各有特点,但按工作原理可划分为自落式和强制式。JS750混凝土搅拌机属于强制式搅拌机的一种,J—搅拌机,S—双卧轴,750—出料容量750L。它主要由搅拌系统,搅拌传动系统,上料、卸料系统,供水系统,机架及行走系统,电气控制系统等组成。它是目前国内较为新型的搅拌机,整机结构紧凑、外型美观。JS750双卧轴混凝土搅拌机具有操作简便的特点,既能搅拌干硬性混凝土又能搅拌塑性混凝土,还能搅拌砂浆和轻骨料。它具有单机独立作业和与PLD系列配料机组成简易式混凝土搅拌站的双重优越性,还可为搅拌站提供配套主机,适用于各类大、中、小预制构件厂及公路、桥梁、水利、码头等工业及民用建筑工程,是一种高效率机型,应用非常广泛。

该机采用底开门卸料,所以搅拌筒不用倾翻,因而节省了动力,简化了结构,布置也比较紧凑合理。

图1.1JS750混凝土搅拌机

1.5毕业设计的意义

通过本次毕业设计,我们对JS750混凝土搅拌机有了完整的了解和深刻认识。而且学会把所学知识有效的用运到解决实际问题中的能力,不仅对课本所学知识有了更深层次的掌握,同时提高了自己解决实际问题的能力。学会了更好的查阅相关资料,为以后打下良好基础。本次毕业设计使我们受益匪浅,通过研究解决一些工程技术问题,各方面的能力均有提升。

第二章混凝土搅拌机简介

本设计说明书详细叙述了有关强制式混凝土搅拌主机的工作原理和结构以及相关设计内容,我的设计思路是根据拟订的传动路线,从电机的选择、电机带轮和减速器带轮的设计、联轴节和减速器以及联轴器的选择、搅拌轴的设计与计算并伴有轴承的选择与校核计算、卸料门的设计以及润滑系统的设计,最后还有主机的装配工艺等内容。本次设计我在老师和公司的综合指导下和详细查阅有关机械方面书籍来完成毕业设计的。以下从工作原理逐步展开:

工作原理:主要由水平安置的两个相连水平安置的圆槽形拌筒,两根按相反方向转动的搅拌轴和转动机构等组成,在两根轴上安装了几组搅拌叶片,其前后上下都错开一定的空间,从而使混合料在两个搅拌桶内轮番地得到搅拌,一方面将搅拌筒底部和中间的混合料向上翻转,另一方面又将混合料沿轴线分别向前后推压,从而使混合料得到快速而均匀的搅拌,因此,该类搅拌机具有自落式和强制式两种搅拌功能,搅拌效果好,耐磨性好,能耗低,宜制成大容量搅拌机。

2.1分类

混凝土搅拌机是制备混凝土的专用机械,其种类很多。按混凝土搅拌机的工作性质分有:周期性搅拌机和连续作用搅拌机两大类;按混凝土的搅拌原理分有:自落式搅拌机和强制式搅拌机两大类;按搅拌筒形状分为:鼓筒式,锥式(含锥形及梨形)和圆周盘式等搅拌机,常用的是周期性搅拌机,其具体分类如下:

2.2型号

混凝土搅拌机的型号由搅拌机机型号和主要参数组合而成,其意义如下:

例如:JS2000C型搅拌机

2.3搅拌主机结构详细说明

混凝土搅拌机由搅拌机盖、搅拌筒体、搅拌装置、轴端密封、传

动装置、衬板、卸料门润滑系统。

2.3.1.搅拌机盖

搅拌机盖是为搅拌主机工作时防尘和进料连接而设计的,盖与桶体间采用螺栓联结,中间有密封胶条,各进料口形状和位置可接不同机型或用户要求制作,检视门有安全开关。

搅拌机盖设计的喷雾系统有效地压住投料时扬起的粉尘并与吸尘装置连在一起,确保环保要求。

2.3.2.搅拌筒体

搅拌筒体由优质钢板整体弯成“奥米加Ω”形状,而且由特别管状框架承托,有足够的刚度和强度,保证主机的正常运作。

2.3.3.搅拌装置

两根搅拌轴上的多组搅拌臂和叶片组成搅拌装置,保证桶体内混合料℃能在最短时间内作充分的纵向和横向掺和,达到充分拌和的目的。搅拌臂分为进给臂、搅拌臂、返回臂,同时为了便于磨损后的调整和更换,每组搅拌叶片均能方便地在受力磨损的方向调整,直至搅拌叶片正常磨损后的更换。

为适应不同工况和骨料粒径的要求,搅拌臂可在轴上做60o、120o和180o的排列,以达到搅拌最大骨料粒径。

叶片为高强度抗冲击耐磨铸铁,正常生产时能达到3700罐/次,其性能指标符合JG/T5045.1—93规定(HRC≥58,冲击值≥5.0N.M/mm2,抗弯强度600N/mm2)。

2.3.4.轴端密封

对卧轴式混凝土搅拌机,因工作时主轴浸没在摩擦力很强的砂石水泥材料中,如果没有行之有效的轴端密封措施,主轴颈会很快被磨损,毁坏,产生严重的漏浆,影响级配。

采用三道密封及骨料架油封和液压系统供油旁泵,其工作原理用压盖1,耐磨橡胶圈2和转毂3为第一道密封,为防止砂浆浸入缝隙,由注油孔向内腔注入压力油脂,至主缝中有少量油脂挤出为止,用油脂外溢来阻挡砂浆入侵,第二道密封由转毂3转毂6和O型密封圈组成即浮动环密封,浮动环组借助O型圈的弹性保持一定的压紧力和磨损后的间隙补助,由注油孔注入润滑油脂,转毂为粉末冶金专用件,密封面经研磨加工,最后由安装的J型骨架密封组成第三道。

搅拌轴的支承由独立的轴承座和带锥套调心滚子轴承共同承担,同时通过两个骨架油封的作用能有效的保证轴承的良好工作环境,以保证机的正常运作。

2.3.5.传动装置

JS型搅拌主机采用进口和国产两种螺旋锥齿行星减速机传动,减速机与搅拌主轴间采用鼓型齿联轴器联结,搅拌主轴采用高速端十字轴万向联轴器同步,使两轴作反向同步运转,达到强制搅拌效果,与传统的大小的链轮传动,大齿轮同步的结构相比,具有结构紧凑,传动平稳,遇非正常过载时能通过皮带打滑保护等特点。

为保证减速机的正常工作,传动装置中可以选配冷却装置散热器的功率为0.055KW,由本机所附加的自动感温器控制,在减速机油温达到60度时自动启动,油泵的动力由主电机通过皮带传动提供。

2.3.6.衬板

弧衬板为高硌耐磨合金铸铁,其性能指标符合JG/T5045.2—93规定(HRC≥54,冲击值≥7.0N.M/mm2,抗弯强度≥600N/mm2)特殊设计的菱形结构能提高衬板的使用寿命,端衬板为优质高Mn耐磨钢板制成.

2.3.7.卸料门

卸料门的结构形式独特可靠,整体弧面与桶内衬板面持平,能有效地减少强烈冲击,磨损真正做到优质耐久,另外,卸料门两端的支承轴承座可上下调节,接触面磨损后可以调节间隙,确保卸料门的密封.卸料门采用进口液压系统驱动,与传统的气动形式相比具有结构紧凑,动作平稳,开门定位准确,能手动开关门等特点,油泵系统产生的高压油通过控制系统,经高压油管作用到油缸,驱动卸料门的开关,通过调节卸料门轴端接近开关的位置和电控系统共同使用,可以实现卸料门的开门到位的任意调整,以实现不同的卸料速度.

2.4搅拌主机类型选择

由于强制式混凝土搅拌机有立轴式和卧轴式两大类。立轴式有分为涡浆式和行星式。混凝土搅拌机是将石子(粗骨料)、沙子(细骨料)、水泥、水和某种添加剂搅拌成匀质混合料的机械。广泛应用于工业和民用建筑、道路、桥梁、港口和机场、矿山等建筑行业中。为适应搅拌不同性质的混凝土的要求,以发展了很多机型,各种机型和性能各有其特点。从不同的角度进行划分:按工作性质分为周期式和连续式;按搅拌方式分为自落式和强制式;按装置方式分为固定式和移动式;按出料方式分为倾翻式和非倾翻式;按搅拌桶外型分为犁式、锥式、鼓式、槽式、盘式。下面分自落式和强制式两类来介绍和选择。

2.4.1.自落式混凝土搅拌机

它靠旋转着的鼓筒中的叶片将物料提高到一定高度后落下进行搅拌的最常用的的有JG型鼓筒式、JZ式双锥反出料式和JF型双锥倾翻式混凝土搅拌机。

2.4.2.强制式混凝土搅拌机

它靠旋转的叶片对混合料产生剪切、挤压、翻转和抛出等多种作用的组合进行拌和的,搅拌作用强烈,搅拌时间短,适用于搅拌干硬性混凝土和轻骨料混凝土,由于叶片容易受磨损或被粗骨料卡住,故一般不易搅拌骨料颗粒教大的混凝土。

第三章设计的主要内容3.1总体设计

3.1.1搅拌装置

搅拌筒、搅拌叶片、搅拌轴以及支承结构的确定.

3.1.2传动系统

传动系统方案的确定;

传动系统结构形式的确定;

传动系统结构型式和基本组成组成;

动力设备型式和配置;

画出结构方案草图。

3.1.3上料系统

上料系统机构型式的选择;

上料架的结构及基本组成;

画出结构草图。

3.1.4供水系统

供水方式的选择;

供水系统的组成和设备配置;

画出结构草图。

3.1.5机架与支腿

机架的基本组成;

机架的结构型式。

3.1.6电气控制系统

整机电气控制系统方案的确定;

电气系统原理图的确定;

画出电气原理图。

3.2主要机构具体结构设计及参数设计

3.2.1搅拌装置

搅拌装置包括:搅拌筒、搅拌轴、搅拌臂、搅拌叶片和侧叶片,具体结构如下图3.1所示:

图3.1双卧轴搅拌机搅拌装置

1—搅拌筒;2—搅拌轴;3—搅拌臂;4—搅拌叶片;5—侧叶片搅拌筒内装有两根水平配置的搅拌轴,每根轴上均装有搅拌叶片。在靠近搅拌筒两端的搅拌臂上分别装有侧叶片,可刮掉端面上的混凝土,并改变混凝土的流向。如图3.1所示,叶片与村板间隙≤5mm。

(1)搅拌筒结构及卸料方式的确定

①搅拌筒的结构尺寸如下:

容积利用系数j=0.41

筒体长1582mm筒径D=1400mm

=1468mm 筒体总长度2572mm外径D

=1.22m3

搅拌筒的几何容积V

②卸料方式的确定:目前卧轴式搅拌机主要采用倾翻室和底开门式两种卸料方式,由于JS750的出料容量为750L,虽不是很大,但

考虑到搅拌筒的尺寸及结构,采用倾翻室虽然不太可能,它的筒体近

似于长方体,故采用底开门式,既可使混凝土顺利地在搅拌过程中卸出,也可避免使筒体倾翻,这样既安全,又节省了劳力,表现出很多自由的特点,操作也方便,故而采用底开门式卸料。

(2)搅拌叶片、搅拌轴及支承结构

①搅拌叶片:

根据目前国内外卧轴式搅拌机叶片结构型式看,广泛采用铲片式,就单个叶片来说,它是一个平板,他通过搅拌臂与轴形成一体,使全部叶片呈螺旋线分布,叶片间没有直接联系,因而这种化整为零的结构方式具有很突出的优点。它使得叶片的加工安装非常方便,从而代替了加工安装要求高的螺旋带叶片。从磨损角度看,铲片式易受到局部磨损,这是因为物料与叶片之间的滑动逐步不均匀,而且波动,易形成卡料,使磨损加剧,搅拌效果有所下降,故从磨损和搅拌效果来看,铲片式比螺旋带式差。

搅拌装置由两根水平轴和安装在该轴上的两段相距1800的反向螺旋带组成,两根轴上的螺旋方向也不一样,这样可以保证混合料在筒内循环运动。从理论上讲,当一端的螺旋带叶片开始从上向罐内的混凝土拌合料切入时,另一端螺旋带叶片从混凝土拌合料中抄起,在两组叶片相互交替作业过程中,排出叶片把拌合料挑起在该端下底部形成无料或少料空间,同时切入叶片把拌合料从一端向另一端进行轴向和周向的复合位移,而另一根轴上的叶片则把混凝土拌合料向相反的方向移动,使得筒内的混凝土循环移动。另外被挑起的混凝土拌合料在螺旋带片后部的空挡处落下,使拌合料之间产生连续的摩擦,先落下的拌合料不断受到后落下的拌合料冲击,使水泥活性不断提高。在叶片切入端由于各点线速度不同,拌合料在受挤压的同时,相互间有较大的相对位移,所以较大的水泥团粒将被分散细化。由于这种机型的结构紧凑,容积利用系数较大,砼拌合料的位移行程达最小值。而各颗粒之间相互作用的时间则达最大值,这是双轴强制搅拌机综合性能较好的关键所在。

图3.2搅拌装置

1.轴Ⅰ

2.侧叶片Ⅰ

3.搅拌叶片支承臂Ⅱ

4.搅拌叶片

5.搅拌叶片支承臂Ⅰ

6.侧叶片Ⅱ

7.搅拌叶片支承臂Ⅲ

8.轴Ⅱ由以上分析可以看出,铲片式不如螺旋带式好,但考虑加工安装要求及目前厂家现有的生产技术条件,我们决定采用铲片式,以达到经济、简便,生产效率高的效果。

本次设计采用两组铲片,第一根轴上采用右螺旋铲片,第二根轴上采用左螺旋铲片。每根轴上的叶片数目定为6(包括两片侧叶片及四片搅拌叶片)。

②搅拌轴

搅拌轴的主要尺寸经过初步验算,考虑安全裕量,直径定为90mm,

轴的结构型式,就目前厂家生产状况来看,一般采用实心轴,空心轴一般都具有省材,重量轻,受力效果号等优点,但加工困难,装置要求高,造成生产率低,一般不被采用。采用实心轴加工方便,而且也可靠实用,铲片式搅拌轴系统存在搅拌臂与搅拌轴的联接方式问题,现有的插孔焊接式、抱轴式、卡轴式,考虑插孔焊接式有简单优势,又对轴的强度无削弱,因而采用焊接式。

③支承结构

考虑本次设计采用底开门的卸料方式,所以此支承与传统支承不一样,先把筒体固定在底座上,而把两根轴通过轴承支承在筒体上。

由于搅拌筒内装流塑态的混凝土拌合料,因此搅拌轴必须采用轴端密封,以防止砂浆污损轴承。浮动密封是经过实践证明了的被公认是较理想的密封,本机即采用这种密封。

3.2.2传动系统

传动按传动方式可分为两种:机械传动和液压传动。液压传动具有重量轻,体积小,结构紧,驱动力大等特点,但考虑到目前国内状况,液压马达虽然比以前在质量上提高了,但价格昂贵,用于一般的搅拌机上,成本太高,不经济,故而我们选用传统的机械传动。传动系统由电动机、皮带轮、减速箱、开式齿轮等组成,如图3.3所示。电动机8通过皮带轮7、5带动二级齿轮减速箱,减速箱两轴通过由两个开式小齿轮10和两个开式大齿轮9组成的两对开式齿轮副分别带动两根水平布置的搅拌轴反向等速回转。

混凝土配合比设计的步骤

混凝土配合比设计的步骤 (1)初步配合比的计算 按照已选择的原材料性能及混凝土的技术要求进行初步计算,得出“初步配合比”; (2)基准配合比的确定 经过试验室试拌调整,得出“基准配合比”; (3)实验室配合比的确定 经过强度检验(如有抗渗、抗冻等其他性能要求,应当进行相应的检验),定出满足设计和施工要求并比较经济的“试验室配合比”(也叫设计配合比); (4)施工配合比 根据现场砂、石的实际含水率,对试验室配合比进行调整,求出“施工配合比”。 ㈠初步配合比的计算 1)确定配制强度 2)初步确定水灰比值(W/C) 3)选择每1m3混凝土的用水量(W0) 4)计算混凝土的单位水泥用量(C0) 5)选取合理砂率Sp 6)计算1m3混凝土中砂、石骨料的用量 7)书写初步配合比 (1)确定配制强度(fcu,o) 配制强度按下式计算: f cu.v f cu.k 1?645 (2)初步确定水灰比(W/C) 采用碎石时: C f cu,v °.46f ce(W 0.07) 采用卵石时: C f cu,v 0.48 f ce (0.33) W (3)选择单位用水量(mW0) ①干硬性和塑性混凝土用水量的确定 a.水灰比在0.40?0.80范围时,根据粗骨料的品种、粒径及施工要求的混凝土拌合物稠度,其用水量可按表4-20 (P104 )选取。 b.水灰比小于0.40的混凝土以及采用特殊成型工艺的混凝土用水量,应通过试验确 ②流动性和大流动性混凝土的用水量宜按下列步骤进行 a.以表4-22中坍落度90mm的用水量为基础,按坍落度每增大20mm用水量增加5kg,计算出未掺外加剂时的混凝土的用水量; b.掺外加剂时的混凝土的用水量可按下式计算:

普通混凝土配合比设计方法及例题

普通混凝土配合比设计方法[1] 一、基本要求 1.普通混凝土要兼顾性能与经济成本,最主要的是要控制每立方米胶凝材料用量及水泥用量,走低水胶比、大掺合料用量、高砂率的设计路线; 2.普通塑性混凝土配合比设计时,主要参数参考下表 ; ②普通混凝土掺合料不宜使用多孔、含碳量、含泥量、泥块含量超标的掺合料; ③确保外加剂与水泥及掺合料相容性良好,其中重点关注缓凝剂、膨胀剂等与水泥及掺合料的相容性,相容性不良的外加剂,不得用于配制混凝土; 3 设计普通混凝土配合比时,应用excel编计算公式,计算过程中通过调整参数以符合表1给出的范围。

2 术语、符号 2.1 术语 2.1.1普通混凝土ordinary concrete 干表观密度为2000~2800kg/m3的水泥混凝土。 2.1.2 干硬性混凝土stiff concrete 拌合物坍落度小于10mm且须用维勃时间(s)表示其稠度的混凝土。 2.1.3塑性混凝土plastic concrete 拌合物坍落度为10mm~90mm的混凝土。 2.1.4流动性混凝土pasty concrete 拌合物坍落度为100mm~150mm的混凝土。 2.1.5大流动性混凝土flowing concrete 拌合物坍落度不小于160mm的混凝土。 2.1.6抗渗混凝土impermeable concrete 抗渗等级不低于P6的混凝土。 2.1.7抗冻混凝土frost-resistant concrete 抗冻等级不低于F50的混凝土。 2.1.8高强混凝土high-strength concrete 强度等级不小于C60的混凝土。 2.1.9泵送混凝土pumped concrete 可在施工现场通过压力泵及输送管道进行浇筑的混凝土。 2.1.10大体积混凝土mass concrete 体积较大的、可能由胶凝材料水化热引起的温度应力导致有害裂缝的结构混凝土。 2.1.11 胶凝材料binder 混凝土中水泥和矿物掺合料的总称。 2.1.12 胶凝材料用量binder content 混凝土中水泥用量和矿物掺合料用量之和。 2.1.13 水胶比water-binder ratio 混凝土中用水量与胶凝材料用量的质量比。 2.1.14 矿物掺合料掺量percentage of mineral admixture 矿物掺合料用量占胶凝材料用量的质量百分比。 2.1.15 外加剂掺量percentage of chemical admixture 外加剂用量相对于胶凝材料用量的质量百分比。

混凝土配合比设计步骤分析报告

普通混凝土的配合比设计 普通混凝土的配合比是指混凝土的各组成材料数量之间的质量比例关系。确定比例关系的过程叫配合比设计。普通混凝土配合比,应根据原材料性能及对混凝土的技术要求进行计算,并经试验室试配、调整后确定。普通混凝土的组成材料主要包括水泥、粗集料、细集料和水,随着混凝土技术的发展,外加剂和掺和料的应用日益普遍,因此,其掺量也是配合比设计时需选定的。 混凝土配合比常用的表示方法有两种;一种以1m3混凝土中各项材料的质量表示,混凝土中的水泥、水、粗集料、细集料的实际用量按顺序表达,如水泥300Kg、水182 Kg、砂680 Kg、石子1310 Kg;另一种表示方法是以水泥、水、砂、石之间的相对质量比及水灰比表达,如前例可表示为1:2.26:4.37,W/C=0.61,我国目前采用的量质量比。 一、混凝土配合比设计的基本要求 配合比设计的任务,就是根据原材料的技术性能及施工条件,确定出能满足工程所要求的技术经济指标的各项组成材料的用量。其基本要; (1)达到混凝土结构设计要求的强度等级。 (2)满足混凝土施工所要求的和易性要求。 (3)满足工程所处环境和使用条件对混凝土耐久性的要求。 (4)符合经济原则,节约水泥,降低成本。 二、混凝土配合比设计的步骤 混凝土的配合比设计是一个计算、试配、调整的复杂过程,大致可分为初步计算配合比、基准配合比、实验室配合比、施工配合比设计4个设计阶段。首先按照已选择的原材料性能及对混凝土的技术要求进行初步计算,得出“初步计算配合比”。基准配合比是在初步计算配合比的基础上,通过试配、检测、进行工作性的调整、修正得到;实验室配合比是通过对水灰比的微量调整,在满足设计强度的前提下,进一步调整配合比以确定水泥用量最小的方案;而施工配合绋考虑砂、石的实际含水率对配合比的影响,对配合比做最后的修正,是实际应用的配合比,配合比设计的过程是逐一满足混凝土的强度、工作性、耐久性、节约水泥等要求的过程。 三、混凝土配合比设计的基本资料 在进行混凝土的配合比设计前,需确定和了解的基本资料。即设计的前提条件,主要有以下几个方面; (1)混凝土设计强度等级和强度的标准差。 (2)材料的基本情况;包括水泥品种、强度等级、实际强度、密度;砂的种类、表观密度、细度模数、含水率;石子种类、表观密度、含水率;是否掺外加剂,外加剂种类。 (3)混凝土的工作性要求,如坍落度指标。 (4)与耐久性有关的环境条件;如冻融状况、地下水情况等。 (5)工程特点及施工工艺;如构件几何尺寸、钢筋的疏密、浇筑振捣的方法等。 四、混凝土配合比设计中的三个基本参数的确定 混凝土的配合比设计,实质上就是确定单位体积混凝土拌和物中水、水泥。粗集料(石子)、细集料(砂)这4项组成材料之间的三个参数。即水和水泥之间的比例——水灰比;砂和石子间的比例——砂率;骨料与水泥浆之间的比例——单位用水量。在配合比设计中能正确确定这三个基本参数,就能使混凝土满足配合比设计的4项基本要求。

混凝土配合比设计的基本原则

混凝土配合比设计的基本原则 1. 1 坚固性 坚固性是指混凝土的强度指标,因为混凝土的质量在目前是以抗压强度指标为主要依据的。影响混凝土抗压强度的因素很多,主要有水泥强度等级及水灰比、骨料种类及级配、施工条件等。 1) 水泥强度等级:水泥强度等级大致代表了水泥的活性,即在相同配合比的情况下,水泥强度等级越高,混凝土的强度等级也越高。在混凝土配合比设计中,主要从经济合理的角度来选择水泥强度等级,如果对水泥强度等级和品种没有选择的余地,那只能靠在配合比设计中调整比例,掺加外加剂等综合性措施加以解决。 2) 水灰比:混凝土单位体积中所用水的重量和水泥的重量比被称为水灰比。水灰比越大,混凝土的强度越低,为此,在满足和易性的前提下,混凝土用水量越少越好,这是混凝土配合比设计中的一条基本原则。 3) 骨料的种类及级配:砂子、石子在混凝土中起骨架作用,因此统称骨料。砂石由石材的品种、颗粒级配、含泥量、坚固性、有害物质等指标来表示它的质量。砂石质量越好,配制的混凝土质量越好。当骨料级配良好,砂率适中时,由于组成了密实骨架,可使混凝土获得较高的强度。 4) 施工条件:如果施工条件较好,并有一定的管理措施时,可适当降低混凝土的坍落度;反之,如现场施工条件较差时,应适当提高混凝土的坍落度。

1. 2 和易性 混凝土的和易性是指在一定施工条件下,确保混凝土拌合物成分均匀,在成型过程中满足振动密实的混凝土性能。常用坍落度和维勃稠度来表示。 不同类型的构件,对和易性的要求在施工验收规范中已有规定,但还要结合施工现场的设备条件和管理水平来确定。影响混凝土和易性的因素很多,但主要一条就是用水量。增加用水量,混凝土的坍落度是增加了,但是混凝土的强度也下降了。因此,采用使用减水剂的方法成了改善混凝土和易性最经济合理和最有效的方法。 1. 3 耐久性 混凝土的耐久性是它抵抗外来及内部被侵蚀破坏的能力,新疆(北疆) 地处严寒地带,夏季炎热干燥,冬季严寒多雪,混凝土受大气的侵蚀很严重,所以,施工验收规范对最大水灰比和最小泥用量都作了规定,但是仅仅执行这些规定还不能完全满足耐久性的要求。为了提高混凝土的耐久性,就必须在配合比设计中考虑采取相应的措施,如水泥品种和强度等级的选择,砂石级配和砂率的调整,但最主要的是用混凝土外加剂和掺合料来提高混凝土的耐久性。 1. 4 经济性 混凝土配合比的设计应在保证质量的前提下,省工省料才是最经济的。水泥是混凝土中价值最高的材料,节约水泥用量是混凝土配合比设计中的一个主要目标,但必须是采用合理的措施达到综合性的经济指标才是行之有效的。首先,使用混凝土外加剂和掺合料,使用减水剂既可以改善混凝土的和易性,也可以达到节约水泥的目的,掺加粉煤灰可以代替部分水泥,并改善混凝土的性能。其次,加强技术管理,提高混凝土的匀质性。最后,根据当地的砂石质量情况采用合理砂率和骨料级配。 2 混凝土配合比设计的步骤 2. 1 熟悉现行的规范和技术标准 普通混凝土配合比设计的方法和步骤,应该遵守国家建设部发布的行业标准J GJ 5522000 普混凝土配合比设计规程。该标准规定了配合比设计应分三个步骤。 1) 配合比的设计计算;2) 试配;3) 配合比的调整与确定。该标准给出了许多全国性统一用的技术参数,如混凝土试配强度计算公式、混凝土用水量选用表、混凝土砂率选用表等。此外,配合比设计还必须掌握GB 5020422002 混凝土结构工程施工及验收规范和GB J107287 混凝土强度检验评定标准。 2. 2 原材料的准备和检验混凝土由四种材料组成:水泥、砂子、石子和水。目

普通混凝土配合比设计规程《JGJ 55-2011》

普通混凝土配合比设计规程 《JGJ 55-2011》 3 基本规定 3.0.1 混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能和耐久性能的设计要求。混凝土拌合物性能、力学性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。 3.0.2 混凝土配合比设计应采用工程实际使用的原材料,并应满足国家现行标准的有关要求;配合比设计应以干燥状态骨料为基准,细骨料含水率应小于0.5%,粗骨料含水率应小于0.2%。 3.0.3 混凝土的最大水胶比应符合《混凝土结构设计规范》GB50010的规定。 3.0.4 混凝土的最小胶凝材料用量应符合表3.0.4的规定,配制C15及其以下强度等级的混凝土,可不受表3.0.4的限制。 表3.0.4 混凝土的最小胶凝材料用量 最大水胶比最小胶凝材料用量(kg/m3) 素混凝土钢筋混凝土预应力混凝土 0.60 250 280 300 0.55 280 300 300 0.50 320 ≤0.45330 3.0.5矿物掺合料在混凝土中的掺量应通过试验确定。钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-1的规定;预应力钢筋混凝土中矿物掺合料最大掺量宜符合表3.0.5-2的规定。 表3.0.5-1 钢筋混凝土中矿物掺合料最大掺量 矿物掺合料种类水胶比最大掺量(%) 硅酸盐水泥普通硅酸盐水泥 粉煤灰≤0.40≤45≤35 >0.40 ≤40≤30 粒化高炉矿渣粉≤0.40≤65≤55 >0.40 ≤55≤45 钢渣粉-≤30≤20 磷渣粉-≤30≤20 硅灰-≤10≤10 复合掺合料≤0.40≤60≤50 >0.40 ≤50≤40 注:①采用硅酸盐水泥和普通硅酸盐水泥之外的通用硅酸盐水泥时,混凝土中水泥混合材和矿物掺合料用量之和应不大于按普通硅酸盐水泥用量20%计算混合材和矿物掺合料用量之和; ②对基础大体积混凝土,粉煤灰、粒化高炉矿渣粉和复合掺合料的最大掺量可增加5%; ③复合掺合料中各组分的掺量不宜超过任一组分单掺时的最大掺量。 表3.0.5-2 预应力钢筋混凝土中矿物掺合料最大掺量 矿物掺合料种类水胶比最大掺量(%) 硅酸盐水泥普通硅酸盐水泥 粉煤灰≤0.40≤35≤30 >0.40 ≤25≤20

C混凝土配合比设计新

C混凝土配合比设计新 Revised by BLUE on the afternoon of December 12,2020.

绥滨至嘉荫公路项目绥滨至名山段A5合同段(K24+300—K29+800)C35混凝土配合比设计龙建路桥股份有限公司

C35混凝土配合比设计 一、设计资料 1、部位:涵洞(盖板、桥面铺装、支撑梁、防撞墙、搭板等) 2、设计标号:C35 3、原材料 (1)水泥:安邦河普通硅酸盐水泥。 (2)中砂:松花江,II区中砂。 (3)碎石:富锦北山石场,连续级配碎石。 (4)水:饮用水,比重cm3 二、设计步骤 (一)计算初步配合比 1、确定试配强度 R yp=R y+Zσ 设计强度R y=35(MPa),标准差σ查表取值为5。 保证率Z= 计算得出R yp = (MPa) 2、计算水灰比 已知水泥实际强度和混凝土配制强度,按混凝土要求强度等级计算水灰比: R s= γc R b W/C=AR s/ R yp+ABR s 因统计资料较少,所以选取富余系数γc=,水泥标号R b= MPa、水泥实际强度Rs=.

A、B为经验系数,由于设计采用碎石为粗集料,所以A取,B取 经计算得出: 水灰比W/C=。 3、选定单位用水量(m wo) 根据混凝土拌合物坍落度为3-7cm,碎石最大粒径为查表选用混凝土 用水量m wo =155kg/m3 4、计算单位用灰量(m co) m co = m wo W/C 经计算m co=364 kg/m3 5、选定砂率βs 根据采用碎石的最大粒径和水灰比查表选定砂率βs为34% 6、计算砂石用量 假定混凝土湿表观密度ρcp=2400kg/m3。 m so+m Go=ρcp-m co-m wo m so/m so+m Go m so为单位中砂用量m Go为单位碎石用量 经计算:m so=639kg/m3 G O=1241kg/m3 7、确定初步配合比 m co:m wo:m so:m Go=364:155:639:1241=1::: (二)调整配合比: 以初步配合比为基准,在砂率不变、用水量不变的情况下,对水灰比进行变动调节。以水灰比上、下调动%。 则确定出三组配合比情况为: A:m co:m wo:m so:m Go=364:155:639:1241

普通混凝土配合比设计讲义

第七讲普通混凝土配合比设计 一、与混凝土有关的基本概念 1.混凝土—用水泥、砂、石、掺合料、水以及外加剂按设计比例配制,经搅拌、成型、养护而得的水泥混凝土称为普通混凝土,简称混凝土。它是一种原料易得、施工便利、具有较好耐久性和强度的建筑材料。 2.混凝土标号—是指混凝土按标准方法成型,标准立方体试件(200mm×200mm×200m)在标准养护条件下(温度20±3℃,相对湿度大于90%)养护28d所得的抗压强度值,单位为kgf/cm2(以三个试件测值的算术平均值作为该组试件的抗压强度值,三个测值中的最小值与较大值之差超过较大值20%时,舍去最小值,以剩余的两个测值的平均值作为该组试件的抗压强度值)。 3.混凝土强度等级—是指混凝土按标准方法成型、标准立方体试件(150mm×150mm×150mm)在标准养护条件下(温度20±2℃,相对湿度95%以上)养护28d所得的抗压强度总体分布中的一个值,强度低于该值的百分率不超过5%,以C与立方体抗压强度标准值MPa (N/mm2)表示。如:混凝土立方体抗压强度标准值fcu,k=20MPa,其强度等级表示为C20。(混凝土立方体抗压强度以三个试件测值的算术平均值作为该组试件的抗压强度值。当三个测值中的最大值或最小值与中间值的差值超过中间值的15%时,则取中间值做为该组试件的抗压强度测定值,当最大值或最小值与中间值的差值均超过中间值

的15%时,则该组试件的抗压强度测定值无效。) 4.混凝土强度等级与混凝土标号的换算。 混凝土强度等级=混凝土标号÷10-2 5.混凝土立方体试件抗压强度换算系数。 6.混凝土强度与齡期的关系 龄期—是指混凝土强度增长所需的时间。强度与龄期的关系,在标准养护时:R3→40%R28; R7→60~70%R28; R28达到设计强度。 7.砂率 砂率是指混凝土中砂在骨料(砂及石子)总量中所占的质量百分率。影响砂率的一般因素为: ⑴砂率随粗骨料的粒径增大而减小;随粒径减小砂率应增大。 ⑵细砂时砂率小,粗砂时砂率应增大。 ⑶卵石时砂率小,碎石时砂率应加大。 ⑷水灰比小时砂率小,水灰比增大时砂率应增大。

混凝土坍落度试验

建筑 混凝土坍落度试验 砼坍落度试验 1、试验步骤 (1)每次测定前,用湿布湿润坍落度筒、拌和钢板及其他用具,并把筒放在不吸水的刚性 水平底板上,然后用脚踩住 2个脚踏板,使坍落度筒在装料时保持位置固 定。 (2)取拌好的混凝土拌和物15L,用小铲分 3层均匀地装入筒内,使捣实后每层高度为筒 高的 1/3左右。每层用捣棒沿螺旋方向在截面上由外向中心均匀插捣25次。插捣筒边混凝 土时,捣棒可以稍稍倾斜。插捣底层时,捣棒应贯穿整个深度,插捣第二层和顶层时,捣棒 应插透本层至下一层的表面。浇灌顶层时,混凝土应灌到高出筒口,插捣过程中, 如混凝土沉落到低于筒口,则应随时加料,顶层插捣完毕后,刮去多余混凝土,并用镘刀抹平。 (3)清除筒边底板上的混凝土后,垂直平稳地提起坍落度筒。坍落度筒的提离过程应在5~10s内完成。从开始装料到提起坍落度筒的整个过程应不间断地进行,并应 150s内完成。2、试验结果确定与处理 (1)提起坍落度筒后,立即量测筒高与坍落后混凝土试体最高点之间的高度差,即 为该混凝土拌和物的坍落度值。混凝土拌和物坍落度以mm为单位,结果精确至 1mm。(2)坍落度筒提离后,如混凝土发生崩坍或一边剪坏现象,则应重新取样再测定。如第二 次试验仍出现上述现象,则表示该混凝土拌和物和易性不好,应予记录备查。 (3)观察坍落后的混凝土试体的粘聚性和保水性。粘聚性的检查方法是用捣棒在已坍落的 混凝土锥体侧面轻轻敲打,此时,如果锥体逐渐下沉,则表示粘聚性良好,如果锥体倒塌、 部分崩裂或出现离析现象,则表示粘聚性不好。保水性以混凝土拌和物中稀浆析出的程度来 评定。如坍落度筒提起后无稀浆或仅有少量稀浆自底部析出,则表示此混凝土拌和物保水性 良好;坍落度筒提起后如有较多的稀浆从底部析出且锥体部分的混凝土也因失浆而骨料外 露,则表明此混凝土拌和物的保水性能不好。 (4)和易性的调整 1)当坍落度低于设计要求时,可在保持水灰比不变的前提下,适当增加水泥浆量。 2)当坍落度高于设计要求时,可在保持砂率不变的条件下,增加集料的用量。 3)当出现含砂量不足,粘聚性、保水性不良时,可适当增加砂率,反之减小砂率。 混凝土坍落度试验 一、实验目的 混凝土由各组成材料按一定比例配合、搅拌而成。混凝土拌和物的和易性是一项综合性的 指标,它包括流动性、粘聚性和保水性等三方面的性能。由于它的内涵较为复杂,根据我国的现 行标准规定,采用“坍落度”和“维脖稠度”来测定混凝土拌和物的流动性。这里先进行“坍落 度”试验。(本试验适用于坍落度值不小于10 mm,骨料粒径不大于40mm混凝土伴和物)。 二、实验设备和仪器

普通混凝土配合比设计(最新规范)

6.1.5 普通混凝土配合比设计 混凝土配合比设计就是根据工程要求、结构形式和施工条件来确定各组成材料数量之间的比例关系。常用的表示方法有两种: 一种是以1m3混凝土中各项材料的质量表示,如某配合比:水泥240kg,水180kg,砂630kg,石子1280kg,矿物掺合料160kg,该混凝土1m3总质量为2490kg; 另一种是以各项材料相互间的质量比来表示(以水泥质量为1),将上例换算成质量比为:水泥∶砂∶石∶掺合料=1∶2.63∶5.33∶0.67,水胶比=0.45。 1.混凝土配合比的设计基本要求 市政工程中所使用的混凝土须满足以下五项基本要求: (1)满足施工规定所需的和易性要求; (2)满足设计的强度要求; (3)满足与使用环境相适应的耐久性要求; (4)满足业主或施工单位渴望的经济性要求; (5)满足可持续发展所必需的生态性要求。 2.混凝土配合比设计的三个参数 混凝土配合比设计,实质上就是确定胶凝材料、水、砂和石子这四种组成材料用量之间的三个比例关

系: (1)水与胶凝材料之间的比例关系,常用水胶比表示; (2)砂与石子之间的比例关系,常用砂率表示; (3)胶凝材料与集料之间的比例关系,常用单位用水量(1m3混凝土的用水量)来表示。 3.混凝土配合比设计步骤 混凝土配合比设计步骤包括配合比计算、试配和调整、施工配合比的确定等。 (1)初步配合比计算 1)计算配制强度(f cu,o)。根据《普通混凝土配合比设计规程》(JGJ 55—2011)规定,混凝土配制强度应按下列规定确定: ①当混凝土的设计强度小于C60时,配制强度应按下式确定: f cu,o≥f cu,k+1.645σ 式中f cu,o——混凝土配制强度,MPa; f cu,k——混凝土立方体抗压强度标准值,这里取混凝土的设计强度等级值,MPa; σ——混凝土强度标准差,MPa。 ②当混凝土的设计强度不小于C60时,配制强度应按下式确定:

混凝土配合比设计的步骤

混凝土配合比设计的步骤 (1)初步配合比的计算 按照已选择的原材料性能及混凝土的技术要求进行初步计算,得出“初步配合比”; (2)基准配合比的确定 经过试验室试拌调整,得出“基准配合比”; (3)实验室配合比的确定 经过强度检验(如有抗渗、抗冻等其他性能要求,应当进行相应的检验),定出满足设计和施工要求并比较经济的“试验室配合比”(也叫设计配合比); (4)施工配合比 根据现场砂、石的实际含水率,对试验室配合比进行调整,求出“施工配合比”。 ㈠初步配合比的计算 1)确定配制强度 2)初步确定水灰比值(W/C ) 3)选择每1m3混凝土的用水量(W0) 4)计算混凝土的单位水泥用量(C0) 5)选取合理砂率Sp 6)计算1m3混凝土中砂、石骨料的用量 7)书写初步配合比 (1)确定配制强度(fcu,o) 配制强度按下式计算: σ 645.1..+=k cu v cu f f (2)初步确定水灰比(W/C) 采用碎石时: ,0.46( 0.07)cu v ce C f f W =- 采用卵石时: ,0.48( 0.33)cu v ce C f f W =- (3)选择单位用水量(mW0) ①干硬性和塑性混凝土用水量的确定 a. 水灰比在0.40~0.80范围时,根据粗骨料的品种、粒径及施工要求的混凝土拌合物稠度,其用水量可按表4-20(P104)选取。 b. 水灰比小于0.40的混凝土以及采用特殊成型工艺的混凝土用水量,应通过试验确定。 ②流动性和大流动性混凝土的用水量宜按下列步骤进行 a. 以表4-22中坍落度90mm 的用水量为基础,按坍落度每增大20mm 用水量增加5kg ,计算出未掺外加剂时的混凝土的用水量; b. 掺外加剂时的混凝土的用水量可按下式计算: (1) w wo m m αβ=-

C25普通混凝土配合比设计说明

C25普通混凝土配合比设计说明 一、设计所依据的试验规程及规范: 《普通混凝土配合比设计规程》JGJ 55-2011 《公路工程水泥及水泥混凝土试验规程》JTG E30-2005 《公路工程集料试验规程》JTG E42-2005 《公路工程岩石试验规程》JTG E41-2005 《通用硅酸盐水泥》GB 175-2007 《混凝土外加剂》GB 8076-2008 《公路桥涵施工技术规范》JTG/T F50-2011 二、设计要求: C25普通混凝土的配合比设计应满足:施工要求的工作性、结构要求的力学性能; 体积稳定性能和混凝土结构在所处环境条件下要求的耐久性,设计坍落度120-160mm,能满足混凝土结构工程的要求,确保其施工要求的工作性,体积稳定性,耐久性和设计强度等级要求。主要应用桥涵工程墩台基础、台身、台帽、墙身基础、排水工程等。 三、原材料情况: 1.粗集料:采用接山镇前寨子砂石料厂生产的碎石、规格为5-10mm:10-20mm:16-31.5mm,比例为(30%:50%:20%)。 2.细集料:采用接山镇前寨子砂石料厂生产的河砂,规格为Ⅱ级中砂。 3.水泥:山东鲁珠集团有限公司生产的P.O 42.5水泥。 4. 外加剂:长春北华建材有限公司生产的聚羧酸高性能减水剂,掺量0.9%,减水率初 选15%。 5.水:饮用水。 四.初步配合比确定 1.确定混凝土配制强度: 已知设计强度等级为25Mpa,无历史统计资料,查《普通混凝土配合比设计规程》JGJ 55-2011表4.0.2查得:标准差σ=5.0 Mpa ?cu,0= ?cu,k+1.645σ= 25+1.645×5.0=33.225MPa 2.计算水泥实际强度(?ce) 已知采用P.O 42.5水泥,28d胶砂强度(?ce)无实测值时,可按下式计算: 水泥强度等级值的富余系数,可按实际统计资料确定;当缺乏实际统计资料时,也可按表

普通混凝土配合比设计

普通混凝土配合比设计例题 设计C20泵送混凝土,材料:水泥P.O42.5,中砂(筛余量25-0%),碎石(5-30mm)连续级配,减水剂YAN(参量0.8%,减水率14%)。 普通混凝土配合比设计,一般应根据混凝土强度等级及施工所要求的混凝土拌合物坍落度(或工作度——维勃稠度)指标进行。如果混凝土还有其他技术性能要求,除在计算和试配过程中予以考虑外,尚应增添相应的试验项目,进行试验确认。 普通混凝土配合比设计应满足设计需要的强度和耐久性。水灰比的最大允许值,可参见表1 混凝土的最大水灰比和最小水泥用量表1 注:1.当采用活性掺合料取代部分水泥时,表中最大水灰比和最小水泥用量即为替代前的水灰比和水泥用量。 2.配制C15级及其以下等级的混凝土,可不受本表限制。 混凝土拌合料应具有良好的施工和易性和适宜的坍落度。混凝土的配合比要求有较适宜的技术经济性。 普通混凝土配合比设计步骤 普通混凝土配合比计算步骤如下: (1)计算出要求的试配强度f cu,0,并计算出所要求的水灰比值; (2)选取每立米混凝土的用水量,并由此计算出每立米混凝土的水泥用量;

(3)选取合理的砂率值,计算出粗、细骨料的用量,提出供试配用的计算配合比。 以下依次列出计算公式: 1.计算混凝土试配强度f cu,0,并计算出所要求的水灰比值(W/C) (1)混凝土配制强度 混凝土的施工配制强度按下式计算: f cu,0≥f cu,k+1.645σ 式中f cu,0——混凝土的施工配制强度(MPa); f cu,k——设计的混凝土立方体抗压强度标准值(MPa); σ——施工单位的混凝土强度标准差(MPa)。 σ的取值,如施工单位具有近期混凝土强度的统计资料时,可按下式求得: 式中f cu,i——统计周期内同一品种混凝土第i组试件强度值(MPa); μfcu——统计周期内同一品种混凝土N组试件强度的平均值(MPa); N——统计周期内同一品种混凝土试件总组数,N≥250 当混凝土强度等级为C20或C25时,如计算得到的σ<2.5MPa,取σ=2.5MPa;当混凝土强度等级等于或高于C30时,如计算得到的σ<3.0MPa,取σ=3.0MPa。 对预拌混凝土厂和预制混凝土构件厂,其统计周期可取为一个月;对现场拌制混凝土的施工单位,其统计周期可根据实际情况确定,但不宜超过三个月。 施工单位如无近期混凝土强度统计资料时,可按表2取值。 σ取值表表2 查表取σ=5N/mm则f cuo≥20 N/mm+1.645×5 N/mm≈28 N/mm (2)计算出所要求的水灰比值(混凝土强度等级小于C60时)

新旧混凝土配合比设计规程的比较

新旧混凝土配合比设计规程的比较 混凝土配合比设计新标准是2011年颁布并开始执行的JGJ55-2011,取代了旧标准JGJ55-2000,新标准中增加和修订了一些内容,使得标准更科学,更规范,更符合工程实际。新旧标准的主要区别有五个方面:一、增加了混凝土耐久性要求的规定(氯离子、含气量、碱含量等);二、修订了普通混凝土试配强度的计算公式和强度标准差;三、修订混凝土水胶比计算公式中胶砂强度取值和回归系数αa和αb;四、在混凝土试配中增加了耐久性试验验证的内容; 五、增加了高强混凝土试配强度计算公式、水胶比、胶凝材料用量和砂率推荐表。下面分别详细论述。 第一个方面,新标准增加了混凝土耐久性要求的规定(氯离子、含气量、碱含量等)。混凝土配合比设计应满足混凝土配制强度、拌合物性能、力学性能、长期性能和耐久性能的设计要求。混凝土拌合物性能、力学性能、长期性能和耐久性能的试验方法应分别符合现行国家标准《普通混凝土拌合物性能试验方法标准》GB/T50080、《普通混凝土力学性能试验方法标准》GB/T50081和《普通混凝土长期性能和耐久性能试验方法标准》GB/T50082的规定。强调混凝土配合比设计应满足耐久性能要求这是本次规程修订的重点之一。新标准规定混凝土配合比设计应满足混凝土耐久性设计的要求有:一、混凝土拌合物中水溶性氯离子最大含量应符合表3.0.6的要求。混凝土拌合物中水溶性氯离子含量应按照现行行业标准《水运工程混凝土试验规程》

JTJ 270中混凝土拌合物中氯离子含量的快速测定方法进行测定。 二、长期处于潮湿或水位变动的寒冷和严寒环境、以及盐冻环境的混凝土应掺用引气剂。引气剂掺量应根据混凝土含气量要求经试验确定;掺用引气剂的混凝土最小含气量应符合表3.0.7的规定,最大不宜超过7.0%。 三、对于有预防混凝土碱骨料反应设计要求的工程,混凝土中最大碱含量不应大于 3.0kg/m3,并宜掺用适量粉煤灰等矿物掺合料;对于矿物掺合料碱含量,粉煤灰碱含量可取实测值的1/6,粒化高炉矿渣粉碱含量可取实测值的1/2。 第二个方面,新标准修订了普通混凝土试配强度的计算公式和强度标准差。混凝土配制强度应按下列规定确定: 1.当混凝土的设计强度等级小于C60时,配制强度应按下式计算:

普通混凝土配合比设计归纳

普通混凝土配合比设计(新规范) 一、术语、符号 1.1 普通混凝土 干表观密度为2000kg/m3~2800kg/m3的混凝土。 (在建工行业,普通混凝土简称混凝土,是指水泥混凝土) 1.2 干硬性混凝土 拌合物坍落度小于10mm且须用维勃稠度(s)表示其稠度的混凝土。 (维勃稠度可以合理表示坍落度很小甚至为零的混凝土拌合物稠度,维勃稠度等级划分为5个。) 1.3 塑性混凝土 拌合物坍落度为10mm~90mm的混凝土。 1.4 流动性混凝土 拌合物坍落度为100mm~150mm的混凝土。 1.5 大流动性混凝土 拌合物坍落度不低于160mm的混凝土。

1.6 胶凝材料 混凝土中水泥和矿物掺合料的总称。 1.7 胶凝材料用量 混凝土中水泥用量和矿物掺合料用量之和。 1.8 水胶比 混凝土中用水量与胶凝材料用量的质量比。(代替水灰比) (胶凝材料和胶凝材料用量的术语和定义在混凝土工程技术领域已被广泛接受) 二、设计方法、步骤及相关规定 2.1 基本参数 (1)水胶比W/B; (2)每立方米砼用水量m w; (3)每立方米砼胶凝材料用量m b; (4)每立方米砼水泥用量m C; (5)每立方米砼矿物掺合料用量m f; (6)砂率βS:砂与骨料总量的重量比; (7)每立方米砼砂用量m S; (8)每立方米砼石用量m g。 2.2 理论配合比(计算配合比)的设计与计算 基本步骤:

? 混凝土配制强度的确定; ? 计算水胶比; ? 确定每立方米混凝土用水量; ? 计算每立方米混凝土胶凝材料、矿物掺合料和水泥用量; ? 确定混凝土砂率; ? 计算粗骨料和细骨料用量。 (1)混凝土配制强度的确定 ? 混凝土配制强度应按下列规定确定: 当混凝土设计强度等级小于C60时,配制强度应按下式确定: σ645.1,0,+≥k cu cu f f (1) 式中:0,cu f ——混凝土配制强度(MPa ); k cu f ,——混凝土立方体抗压强度标准值,这里取混凝土的设计强 度等级值(MPa ); σ——混凝土强度标准差(MPa )。 当设计强度等级不小于C60时,配制强度应按下式确定: k cu cu f f ,0,15.1≥ (2) ? 混凝土强度标准差应按下列规定确定: 有近1~3个月同品种、同等级混凝土强度资料,且试件组数不小于30,

混凝土配合比设计

第四节混凝土的配合比设计 混凝土配合比是指混凝土中各组成材料(水泥、水、砂、石)用量之间的比例关系。常用的表示方法有两种:①以每立方米混凝土中各项材料的质量表示,如水泥300kg、水180kg、砂720kg、石子1200kg; ②以水泥质量为1的各项材料相互间的质量比及水灰比来表示,将上例换算成质量比为水泥∶砂∶石=1∶∶4,水灰比=。 一、混凝土配合比设计的基本要求 设计混凝土配合比的任务,就是要根据原材料的技术性能及施工条件,合理选择原材料,并确定出能满足工程所要求的技术经济指标的各项组成材料的用量。混凝土配合比设计的基本要求是:(1)满足混凝土结构设计所要求的强度等级。 (2)满足施工所要求的混凝土拌合物的和易性。 (3)满足混凝土的耐久性(如抗冻等级、抗渗等级和抗侵蚀性等)。 (4)在满足各项技术性质的前提下,使各组成材料经济合理,尽量做到节约水泥和降低混凝土成本。 二、混凝土配合比的三个参数 (一) 水灰比(W/C) 水灰比是单位体积混凝土中水与水泥质量的比值,是影响混凝土强度和耐久性的主要因素。其确定原则是在满足强度和耐久性的前提下,尽量选择较大值,以节约水泥。 (二)砂率(βS) 砂率是指砂子质量占砂石总质量的百分率。砂率是影响混凝土和易性的重要指标。砂率的确定原则是在保证混凝土拌和物粘聚性和保水性要求的前提下,尽量取小值。 (三)单位用水量 单位用水量是指1m3混凝土的用水量。单位用水量的多少反映了单位混凝土中水泥浆与集料之间的比例关系。在混凝土拌和物中,水泥浆的多少显著影响混凝土的和易性,同时也影响强度和耐久性。其确定原则是在达到流动性要求的前提下取较小值。 水灰比、砂率、单位用水量是混凝土配合比的三个重要参数,在配合比设计中正确地确定这三个参数,就能使混凝土满足上述设计要求。 三、混凝土配合比设计的方法步骤 (一)配合比设计的基本资料 (1)明确设计所要求的技术指标,如强度、和易性、耐久性等。 (2)合理选择原材料,并预先检验,明确所用原材料的品质及技术性能指标,如水泥品种及强度等级、密度等;砂的细度模数及级配;石子种类、最大粒径及级配;是否掺用外加剂及掺和料等。 (二)初步配合比的计算 1.确定混凝土试配强度() 在正常施工条件下,由于人、材、机、工艺、环境等的影响,混凝土的质量总是会产生波动,经验证

混凝土配合比设计

水泥配合比混凝土 (一)、混凝土的组成:水泥、集料、水。 1、水泥起黏结作用 2、集料(粗集料、细集料)起骨架作用(填充作用) 粗集料:(1)、力学性质 (2)、粒径、颗粒形状和级配 (3)、有害物质 细集料:(1)、力学性质 (2)、分类、等级和规格 (3)、颗粒级配 (4)、有害物质 3、水,一般饮用水赋予新拌混凝土流动性作用,(二)、水泥混凝土的工作性和强度的影响因素 一,混凝土工作性的影响因素 影响混凝土拌合物工作性的因素概括为内因和外因两类。(外因:指施工环境条件,包括外界环境的气温、湿度、时间等;内因:包括原材特性、用水量、水灰比和砂率等)(1)、水泥浆的数量和稠度 新拌混凝土中,水泥浆填充集料间的空隙,包裹集料赋予新拌混凝土一定的流动性。(1、水泥浆数量过多,将出现流浆现象,容易发生离析;2、水泥浆数量过少,集料间缺少黏结物质,粘聚性变差,易出现崩坍;3、水泥浆干稠,

新拌混凝土的流动性差,施工困难;4、水泥浆过稀,造成粘聚性和保水性不良,产生流浆和离稀现象。) 对新拌混凝土流动性起决定作用的是用水量的多少。(提高水灰比或增加水泥浆都表现为用水量的增加)不能单纯改变用水量调整新拌混凝土的流动性。单纯加大用水量会降低混凝土的强度和耐久性。 (2)砂率 砂率是指混凝土中砂的质量占砂、石总质量的百分率。(砂率的变动,会影响新拌混凝土中集料的级配,使集料的空隙率和总表面积有很大的变化,对新拌混凝土的和易性产生显著影响)(在水泥浆数量一定时:1、砂率过大,集料的总表面积和空隙率都会增大、起润滑作用的水泥浆相对减少,新版混凝土的流动性减小;2、砂率过小,集料的空隙率显著增加,不能保证粗集料之间的有足够的砂浆层,降低新拌混凝土的流动性,并会严重影响粘聚性和保水性,容易造成离析、流浆等现象。) 所以,砂率有个合理范围,处于这一范围的砂率称为合理砂率。当采用合理砂率时咋爱用水量和水泥用量一定的情况下能使混凝土拌合物获得最大的流动性且能保持良好的粘聚性和保水性。 合理砂率随着集料种类、最大粒径和级配、砂子的粗细程度和级配、混凝土的水灰比和施工要求的流动性而变化,需

混凝土坍落度平行检验记录

混凝土坍落度平行检验记录 1、检验方法:用坍落度检测器和钢尺量测检查。 2、检验数量:施工单位应对每车预拌混凝土坍落度进行检查,监理单位至少每10车随机抽取1次平行检验,且不少于1次。 3、检验时间:混凝土搅拌车到达浇筑现场,浇筑前。 4、本表可用于施工单位自检或监理单位平行检验混凝土坍落度使用。用于施工单位自检时,监理单位可不签字;用于监理平行检验时,检查人由监理员签字。 5、现场检测坍落度与厂家配合比坍落度差距较大时应及时通知混凝土厂家调整。

钢筋外观质量平行检验记录

1、钢筋进场后,外观质量检测应在监理单位的见证下进行。除本表格外,检测结果同时应在监理见证记录中予以体现。 2、检验频率:以同牌号、同炉号、同规格、同交货状态的钢筋,每60t 为一批,60t 的按每30t 一批,不足30t 以一批计,每批抽检1次。 3、钢筋重量偏差的测定: (1)测量钢筋重量偏差时,试样应从不同根钢筋上截取,数量不少于5支。每支试验长度不小于500mm 。长度应逐支测量,精确到1mm 。测量试样总重量时,应精确到不大于总重量的1%。 (2)用钢丝刷清除钢筋试样表面杂物后,称取试样总重量。用下式计算钢筋实际重量和理论重量的偏差(%): 100理论重量 试样总长度) 理论重量试样总长度(试样实际总重量)%重量偏差(???-= 4、外观质量:钢筋应平直、无损伤,钢筋表面不得有裂纹、起皮、油污、颗粒状或片状锈蚀等。根据检测结果在相应栏内填“有”或“无”,平直栏直接填“平直”或“弯曲”。 5、产品标牌上的标识炉批号应与质量保证书上一致,并做好记录。当不一致时,应查明材料来源,否则应退货。 6、当钢筋表面存在裂纹、起皮应退货;若存在损伤、不平直应剔出退货;存在油污应清理干净;存在颗粒状或片状老锈应除尽,若影响截面尺寸,应降级处理。 7、外观检查合格后,应及时见证取样送有资质的检测机构进行力学性能检测,检测合格后方可使用。 (3)钢筋理论重量可见下表:

混凝土配合比设计的详细步骤

混凝土配合比设计的步骤 1.计算配合比的确定 (1)计算配制强度 当具有近期同一品种混凝土资料时,σ可计算获得。并且当混凝土强度等级为C20或C25,计算值<2.5MPa 时,应取σ=2.5MPa ;当强度等级≥C30,计算值低于<3.0MPa 时,应取用σ=3.0MPa 。否则,按规定取值。 (2)初步确定水灰比(W/C) ce b a cu ce a f f f C W ααα+= 0,(混凝土强度等级小于C60) a α、 b α回归系数,应由试验确定或根据规定选取: ce f 水泥28d 抗压强度实测值,若无实测值,则 ce f ,g 为水泥强度等级值,c γ为水泥强度等级值的富余系数。 若水灰比计算值大于表4-24中规定的最大水灰比值时,应取表中规定的最大水灰比值 (3)选取1m3混凝土的用水量(0w m ) 干硬性和塑性混凝土用水量: ①根据施工条件按表4-25选用适宜的坍落度。 ②水灰比在0.40~0.80时,根据坍落度值及骨料种类、粒径,按表4-26选定1m3混凝土用水量。 流动性和大流动性混凝土的用水量:

以表4-26中坍落度90mm 的用水量为基础,按坍落度每增大20mm 用水量增加5kg 计算出未掺外加剂时的混凝土的用水量; 掺外加剂时的混凝土用水量: () β-=10w wa m m wa m 是掺外加剂混凝土每立方米混凝土的用水量;0w m 未掺外加剂混凝土每立方米混凝土的用 水量;β外加剂的减水率。 (4)计算混凝土的单位水泥用量( c m ) 如水泥用量计算值小于表4-24中规定量,则应取规定的最小水泥用量。 (5)选用合理的砂率值(βs) 坍落度为10~60mm 的混凝土:如无使用经验,砂率可按骨料种类、粒径及水灰比,参照表4-27选用 坍落度大于60mm 的混凝土:在表4-27的基础上,按坍落度每增大20mm ,砂率增大1%的幅度予以调整; 坍落度小于10mm 的混凝土:砂率应经试验确定。 6)计算粗、细骨料的用量(mg0,ms0) A.重量法: 0c m 、0g m 、0s m 、0w m 为1m3混凝土的水泥用量、粗骨料用量、细骨料用量和用水量。cp m 为 1m3混凝土拌合物的假定重量,取2350~2450kg/m3。 B .体积法 c ρ、g ρ、s ρ分别为水泥密度、粗骨料、细骨料的表观密度;w ρ为水的密度,α混凝土的含 气量百分数,在不使用引气型外加剂时,α可取为1。 2.基准配合比的确定(调整和易性) ①若流动性太大,在砂率不变的条件下,适当增加砂、石; ②若流动性太小,保持水灰比不变,增加适量水和水泥; ③若粘聚性和保水性不良,可适当增加砂率 ④调整后,测拌合物的实际表观密度ρc,t ,计算1m3混凝土各材料的用量:

普通混凝土配合比设计、试配与确定

普通混凝土配合比设计、试配与确定 第1题 已知水胶比为0.40,查表得到单位用水量为190kg,采用减水 率为20%的减水剂,试计算每方混凝土中胶凝材料用量kg A.425 B.340 C.380 D.450 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第2题 普通混凝土的容重一般为_____ kg/m3 A.2200~2400 B.2300~2500 C.2400~2500 D.2350~2450 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注:

第3题 已知水胶比为0.35,单位用水量为175kg,砂率为40%,假定每立方米混凝土质量为2400kg,试计算每方混凝土中砂子用量kg A.438 B.690 C.779 D.1035 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第4题 某材料试验室有一张混凝土用量配方,数字清晰为 1:0.61:2.50:4.45,而文字模糊,下列哪种经验描述是正确的。 A.水:水泥:砂:石 B.水泥:水:砂:石 C.砂:水泥:水:石 D.水泥:砂:水:石 答案:B 您的答案:B 题目分数:3 此题得分:3.0

批注: 第5题 预设计C30 普通混凝土,其试配强度为()MPa A.38.2 B.43.2 C.30 D.40 答案:A 您的答案:A 题目分数:3 此题得分:3.0 批注: 第6题 关于水灰比对混凝土拌合物特性的影响,说法不正确的是( ) A.水灰比越大,粘聚性越差 B.水灰比越小,保水性越好 C.水灰比过大会产生离析现象 D.水灰比越大,坍落度越小 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第7题

相关主题
文本预览
相关文档 最新文档