当前位置:文档之家› 基于FLAC_3D_的复杂条件下露天转地下开采空区围岩变形及破坏特征

基于FLAC_3D_的复杂条件下露天转地下开采空区围岩变形及破坏特征

基于FLAC_3D_的复杂条件下露天转地下开采空区围岩变形及破坏特征
基于FLAC_3D_的复杂条件下露天转地下开采空区围岩变形及破坏特征

煤柱尺寸对巷道围岩变形和破坏状况研究

煤柱尺寸对巷道围岩变形和破坏状况研究摘要:该文对矿区煤柱及围岩现场应力测试,分析了不同地质情况下不同的煤柱尺寸内应力受采动影响的变化趋势,提出如何进行煤柱尺寸的优化设计,从而保证在具体的地质情况及支护方式下煤柱的尺寸满足巷道的正常使用要求。 关键词:煤柱围岩应力;尺寸优化;巷道支护 abstract: in this paper the coal pillar mining area and surrounding rock stress test, analyze the different geological conditions of different internal stress pillar size by mining the change trend of influence, and puts forward how to carry on the pillar size optimization design, so as to ensure the geological conditions in specific ways and the support of the size of the coal pillar meet the normal use of the requirements. keywords: pillar surrounding rock stress; size optimization; of support 中图分类号: p614 文献标识码:a 文章编号: 0 前言 采准巷道[1]大多布置在煤层中,煤柱尺寸不仅对巷道围岩的稳定性有很大影响,而且影响煤炭资源回收率。煤柱尺寸偏小,不能承受采动时矿山压力的影响,容易发生危险事故;煤柱尺寸偏大时,

深部围岩变形破坏时效性分析

深部围岩变形破坏时效性分析 1.引言 围岩应力场和位移场的分布规律是地下工程设计中必须解决的主要问题。地下洞室的失稳破坏,往往是从洞室周边开始、由于围岩应力超载或围岩位移过量所致,而岩石的流变性使得围岩的变形具有很强的时效性。一方面由于岩石和岩体本身的结构和组成反映出明显的流变性质,另一方面也由于岩体的受力条件(包括长期受力和三轴应力状态)使流变性质更为突出,因此,在矿山和地下工程中表现的力学现象,包括地压、变形、破坏等等几乎都与时间有关。巷道或隧道开挖后,在地应力的作用下,围岩往往会向巷道或隧道内慢慢地移动收敛,具体表现是:侧墙逐渐向内移动,底板慢慢隆起,顶拱则进一步开裂。各种长期监测资料表明,自洞室开挖至数月或数年内,围岩的变形和应力分布均随时间发生变化。现在己经认识到岩体流变的普遍性,并用塑性流动和粘性流动来解释地下工程的时间效应问题。岩石的流变变形也是导致岩体地下工程中支护结构产生变形和破坏的主要原因,作用于地下结构衬砌上的载荷会随时间而增长,大型边坡和地下洞室的变形会逐渐加大,甚至会引起灾难性的后果。 因此,对地下洞室变形时效性的研究,也是我们在地下工程中合理选择支护类型及支护结构的前提,对于研究开挖后的工程岩体的动态特征以及岩体工程的设计,均具有十分重要的意义。 2.岩体时效(Rock Timeliness)的影响因素 岩体流变性质和时效特征是岩石材料的固有力学属性,也是用以解释和分析地质构造运动现象和进行岩体工程长期稳定性预测的重要依据。根据大地构造测试结果,地壳目前的平均蠕变速率为106l/s。不少大断层至今仍有持续移动的迹象。在边坡、隧洞、基坑、矿井、铁路路基等岩体工程中,岩体流变现象很常见。近年来,由于能源开发的扩大和环境保护要求的提高,所进行的天然气、液化气、油料以及核废料地下储藏课题研究,将岩石材料在不同荷载水平和不同温度条件下的长期变形与稳定问题提到了十分紧迫和重要的地位。一般认为,岩体工程中的时间效应主要是由以下几个方面的因素所引起的: (l)、岩石材料本身所具有的粘性性质,如蠕变、松弛、滞后以及弹性后效等。一般的软岩,如盐岩、泥岩、粘土岩等,其粘滞系数都达到106-109MPa.S。硬岩的流变性态相对较弱,如测得的花岗岩的粘滞系数为1013MPa .S。然而,由于受到成岩过程中的地质构造运动影响,岩石材料中存在各种裂隙、节理、层理等构造面,这一结构特点导致脆性岩体亦呈现较强的

跨采巷道围岩变形破坏与控制张玉涛

浅谈跨采巷道围岩变形破坏与控制 张玉涛 (淮北矿业集团公司临涣煤矿,安徽淮北235136) 摘 要 该文主要介绍了跨采巷道围岩的变形机理及变形特点,并概述了跨采巷道围岩稳定控制的关键。关键词 跨采巷道 围岩变形 控制 中图分类号TD325 文献标识码 A doi :10.3969/j.issn.1005-2801.2012.06.106 Brief Talk on Deformation And Control Of Surrounding Rocks Of Roadway Affected By Overhead Mining Zhang Yu -tao (Linhuan Coal Mine ,Huaibei Mining Industy Group ,Huaibei 235136,China ) Abstract The paper presented the deformation mechanism and features of surrounding rocks of roadway affected by overhead mining ,and briefly summa-rized the key of control measures of roadway affected by overhead mining. Key words roadway affected by overhead mining deformation of surrounding rocks control *收稿日期:2012-05-08 作者简介:张玉涛(1982-),男,安徽阜阳人,2011年本科毕业于安徽理工大学采矿工程专业,助理工程师,现任淮北矿业集团临涣煤矿综采三区主管技术员。 我国现阶段煤层底板巷道主要采用跨采的方式,跨采形式分为横跨和纵跨两种方式,跨采巷道受采动影响的程度主要取决于巷道位置、围岩性质及巷顶与煤层底板的垂直间距。在开采过程中,只有了解跨采巷道的变形破坏机理,合理布置巷道,因地制宜的采取有效的加固维护措施,才能够减少巷道变形量,满足矿井通风、运输和行人的要求。1跨采巷道变形破坏机理1.1 底板垂直应力传递规律 在工作面的推进过程中,随着上覆岩层自上而下的冒落、破断与沉降,工作面前方煤壁会形成超前支承压力,在采空区则会出现应力降低现象即卸压,在底板岩层中,也会相应的出现垂直应力的集中区和卸压区,它与支承应力的分布大体是相一致的。 煤壁下方应力集中等值线呈现出斜向煤壁前方的泡形传递状态,采空区下方则是斜向煤壁后方的泡形。当巷道位于采空区下方时,巷道处于卸压状态,主要受水平应力作用;当跨采巷道位于煤柱下方时,巷道位于应力集中区,垂直应力占主导地位。随着底板岩层深度的增加,应力集中系数和卸压程度减小,应力分布逐步缓和。1.2 跨采巷道变形破坏机理 在工作面的跨采过程中,跨采巷道的围岩应力平 衡状态被扰动,进而在跨采巷道某些部位产生了新的应力集中,底板巷道围岩处于二向围压状态,本身经受不住大的变形能量,因此,跨采巷道周边围岩的应力状态将再次调整,塑性区的范围进一步扩大,并产生更大的压力和流动,最终导致跨采巷道围岩的最外层破裂区范围不断扩大,产生更大的碎胀变形。 跨采巷道变形失稳主要是由剪胀变形作用导致的,破裂区范围内的围岩自身稳定性差,围岩和支护体系的相互作用决定了跨采巷道能否长期保持稳定以及受跨采影响的程度和范围。2跨采巷道围岩变形特点2.1 跨采方式不同 工作面开采时,横跨巷道存在围岩变形的相对稳定区,与横跨巷道相比,纵跨巷道围岩变形破坏严重,无相对稳定区,巷道的变形主要是顶底板的移近造成的,且变形量呈持续上升趋势。2.2 巷道位置不同 跨采巷道围岩变形与巷道所处位置密切相关。当巷道位于采空区下方时,巷道总体变形量较大,变形特征以两帮内移为主;当跨采巷道位于停采线下方时,巷道煤柱侧帮部及底板变形较大;当跨采巷道位于煤柱下方时,巷道变形强烈,变形特征呈全断面收缩,底鼓严重。随着与工作面垂距的加大,巷道的变形破坏程度减小。3跨采巷道的围岩稳定控制3.1 跨采巷道的位置优化 由于底板应力传播特性以及矿压显现的区域性, 4 7 12012年第6期

围岩变形弹塑性分析

围岩变形弹塑性分析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

§ 隧道围岩重分布应力的计算 隧道开挖前,岩体中每个质点均受到天然应力的作用而处于相对平衡状 态;隧洞开挖后,洞壁岩体因失去了原有岩体的支撑,破坏了原有的平衡状态,从而产生向洞内空间的膨胀变形,其结果又改变了相邻质点的相对平衡关系,引起应力、应变和能量的重新调整,达到新的平衡关系,形成新的应力状态。 弹性围岩重分布应力 对于那些坚硬致密的块状岩体,当天然应力大约等于或小于其单轴抗压强度的一般时,隧道开挖后的围岩将呈弹性变形状态。这类围岩可近似视为各向同性、连续、均质的线弹性体,其围岩应力重分布可用弹性力学的基本理论来分析,隧洞半径相对于洞长很小时,可按平面应变问题考虑,围岩重分布应力可用柯西(Kirsh )课题求解。 图2-1是柯西课题的简化模型。设无限大弹性薄板,在边界上受沿X 方向的外力P 作用,薄板中有一半径为R 0的圆形小孔。取如图极坐标,薄板中任一点M (r ,θ)的应力及方向如图所示,按平面问题考虑,不计体力,则M 点的各应力分量,即径向应力?r 、环向应力?θ和剪应力τθ与应力函数?间的关系,根据弹性理论可表示为: 22222 2 21111r r r r r r r r r θθ θ θφφσθφσφφτ??=+???=?????? ?? =?? ?? ?? -???(2-1) 上式的边界条件为: ()()() ()000cos 22 2 sin 22 r r b r r b r r r b r b p p b R p b R b R σθτθ στ====? =+ ? ?? =- ?? ? ==?? (2-2) 设满足该方程的应力函数φ是: () 222ln cos 2A r Br Cr Dr F φθ-=++++(2-3) 带入上式并考虑边界条件,可求得应力函数为: 2222 00222 00ln 1cos 22222pR R r r r R R r φθ? ?=-----?????? (2-4) 代入可得各应力分量:

某滑坡的变形和破坏机理分析研究

某滑坡的变形和破坏机理分析研究 介绍了某滑坡的特征,分析了滑坡区区域工程地质和水文地质特征,对该滑坡体的变形和破坏机理进行了研究和分析。分析表明:人为活动和地形地貌是滑坡发生变形破坏的主要因素,降雨诱发、岩层产状等因素是造成滑坡发生滑动和进一步破坏的诱发因素。 标签:滑坡变形破坏诱发因素 1概述 塔山滑坡位于广东省开平市长沙区平岗村塔山开元塔底。由于建设工程的需要,在塔山的东南侧进行采石,采用放炮等土石法,致使塔山南侧岩石大量开采形成陡崖,并使周边岩土体产生裂缝,之后由于人为因素和自然因素的影响,塔山南侧裂缝逐渐扩大,至90年代,开始形成滑坡。1999~2001年,在修建塔山公园公路时对山体坡脚进行开挖,在公路北侧形成高约10~17m,坡度约35~45°的高陡边坡,滑坡距公路最近的平岗村居民区约22m,山坡坡脚距公路最近仅2m左右。2004年和2005年雨季,由于连降暴雨,滑坡有活动下滑的趋势,滑坡体前缘公路路面隆起,最高处隆起约40cm,隆起部分面积约有20~30m2,公路北侧排水沟产生变形歪斜,部分已经破坏,水沟上方在雨水后有地下水浸出,形成间歇性下降泉,平岗村内部分房屋墙面产生裂痕,进出塔山公园的公路曾数次被塔山山坡上崩塌的土体破坏。 2滑坡变形形态特征 X 根据实地踏勘,除滑坡体后壁出现较大裂缝外,滑坡周界及滑坡体底部也有约13处裂缝,现将裂缝走向一致的裂缝分为一组,共五组裂缝(表1)。 3滑坡体的工程地质与水文地质特征 塔山滑坡滑坡体主要由第四系坡积土层、风化残积土层、侏罗系中上统百足山群、全风化、强风化、少量中风化基岩组成(见图1)。滑坡体中上部为残积土层,主要由粉土、粉质粘性土组成,呈可塑状或松散状,含较多的碎石和砂、砾石,透水性较好;风化残积土层主要由粉质粘性土,含少量碎石和砂砾石组成,局部夹有全风化、强风化岩,其透水性较差;基岩主要为全风化、强风化泥质粉砂岩,含少量强、中风化岩块,其透水性较好;滑床基本处在中—微风化泥质粉砂岩、粉砂质泥岩中,岩石呈中厚层状,岩质坚硬,局部裂隙发育,透水性好。 滑坡区地下水主要为第四系冲积土层、残坡积土层中的孔隙水和基岩裂隙水,地下水补给来源主要为大气降水的渗入补给和相邻含水层之间的侧向补给。

软岩大变形

软岩大变形 软岩大变形问题从20世纪60年代就作为世界性难题被提了出来,在地下工程的建设过程中,软岩问题一直是困扰工程建设和运营的重大难题之一。特别是“九五”期间,我国10个能源建设基地有8个都相继出现了软岩问题,造成多对矿井的停产建设。每年有大量的隧洞在软弱围岩中开挖,随着开挖深度的增加,软岩问题愈趋严重,直接影响着工程安全以及人身安全。随着人类工程活动的不断增强, 软岩隧洞系指塑性大变形工程岩体有关的岩体工程,而工程软岩是指在工程力作用下能产生显著塑性变形的工程岩体。工程软岩的定义不仅重视软岩的强度特征,而且强调软岩所承受的工程力荷载的大小,强调从软岩的强度和工程力荷载的对立统一关系中分析、把握软岩的相对性实质。 1.软岩大变形破坏特征 软岩隧洞的大变形破坏特征不仅受围岩的力学性质影响,而且受隧洞所处的地应力环境和工程因素控制。我国许多煤矿在采深不大的情况下,坑道的变形破坏并不强烈,常规支护即可维护隧洞稳定。加大采深后,这些煤矿坑道额稳定性降低,变形破坏趋于强烈,常规支护难以维护坑道稳定,因此,软岩隧洞的变形破坏特征受多种因素控制。一般来说,软岩隧洞的破坏具有以下特征: (1) 变形破坏方式多 除一般隧洞中常见的变形破坏方式拱顶下沉、坍塌外,还有片帮和底鼓、底围隆破,隧洞表现出强烈的整体收敛和破坏。变形破坏表现的形式既有结构面控制,又有应力控制型,尤以应力控制型为主。 (2) 变形量大 拱顶下沉大于10cm,有的高达50cm,两帮挤入在20~80cm之间,底鼓非常强烈,在常规无仰拱支护的情况下,强烈的底鼓往往将整个隧洞封闭。 (3) 变形速度高 软岩隧洞初期收敛速度可以达到3cm/d,即使施作了常规锚喷支护以后,软岩隧洞的收敛速度依然很高,可达2cm/d,而且其变形收敛速度降低缓慢,因此,在不长的时间内其变形收敛就很大,多则一年,少则几个月就将隧洞封闭。 (4) 持续时间长 由于软岩具有强烈的流变性和低强度,因此,软岩隧洞开挖以后,围岩的应力重分布持续时间很长,软岩隧洞变形破坏持续很长时间,往往长达1~2年。 (5) 因位置而异

金属材料损坏与变形

金属材料与热处理陈健 晶体的缺陷第二章金属材料的性能 ⑴了解金属材料的失效形式, ⑵了解塑性变形的基本原理, ⑶提高对金属材料的性能的认识。 正确理解载荷,内力、应力的含义。 应力的应用意义。 ⑴与变形相关的概念 ⑵金属的变形 讲授、提问引导、图片展示、举例分析、

一,晶体的缺陷: 1点缺陷:间隙原子,空位原子,置代原子,在材料上表现为:使材料强度,硬度和电阻增加。 2线缺陷:刃位错(如图:P-6),在材料上表现为:使得金属材料的塑性变形更加容易。 3面缺陷:有晶界面缺陷和亚晶界面缺陷,表现为金属的塑性变形阻力增大,内部具有更高的强度和硬度。因此晶界越多,金属材料的力学性能越好。 第二章金属材料的性能 导入新课: 我们经常见到一些机械零件因受力过大被破坏,而失去了工作能力。大家能否举些身边的例子呢? ——如:弯曲的自行车辐条,断掉的锯条、滑牙的螺栓等。 机械零件常见的损坏形式有三种: 变形:如铁钉的弯曲。 断裂:如刀具的断崩。 磨损:如螺栓的滑扣。 本次课给大家介绍金属材料损坏的形式、变形概念与本质等等,首先我们来了解一些基本概念。

一、与变形相关的概念 ㈠、载荷 1、概念 金属材料在加工及使用过程中所受的外力。 2、分类:根据载荷作用性质分,三种: ⑴、静载荷:大小不变或变化过程缓慢的载荷。 ——如:桌上粉笔盒的受力,用双手拉住一根粉笔两端慢慢施力等。 ⑵、冲击载荷:突然增加的载荷。 ——如:用一只手捏住粉笔的一端,然后用手去弹击粉笔。 ⑶、变交载荷:大小、方向或大小和方向随时间发生周期性变化的载荷。 ——如:通过在黑板上绘图分析自行车轮转动时辐条的受力。 根据载荷作用形式分,载荷又可以分为拉伸载荷、压缩载荷、弯曲载荷、剪切载荷和扭曲载荷等。 拉伸载荷压缩载荷弯曲载荷 剪切载荷扭曲载荷 ㈡、内力 见车工工艺书 P32, 图2—20

岩体的变形与破坏的本构关系

第三章岩体的变形与破坏 变形:不发生宏观连续性的变化,只发生形、体变化。 破坏:既发生形、体变化、也发生宏观连续性的变化。 1.岩体变形破坏的一般过程和特点 (1)岩体变形破坏的基本过程及发展阶段 ①压密阶段(OA段): 非线性压缩变形—变形对应力的变化反应明显; 裂隙闭合、充填物压密。 应力-应变曲线呈减速型(下凹型)。 ②弹性变形阶段(AB段): 经压缩变形后,岩体由不连续介质转变为连续介质; 应力-应变呈线性关系; 弹性极限B点。 ③稳定破裂发展阶段(BC段): 超过弹性极限(屈服点)后,进入塑性变形阶段。 a.出现微破裂,随应力增长而发展,应力保持不变、破裂则停止发展; b.应变:侧向应变加速发展,轴向应变有所增高,体积压缩速率减缓(由于微破裂的出现);

④不稳定破裂发展阶段(CD段): 微破裂发展出现质的变化: a.破裂过程中的应力集中效应显著,即使是荷载应力保持不变,破裂仍会不断地累进性发展; b. 最薄弱部位首先破坏,应力重分布导致次薄弱部位破坏,直至整体破坏。“累进性破坏”。 c. 应变:体积应变转为膨胀,轴向及侧向应变速率加速增大; ※结构不均匀;起始点为“长期强度”; ⑤强度丧失、完全破坏阶段(DE段): 破裂面发展为宏观贯通性破坏面,强度迅速降低, 岩体被分割成相互分离的块体—完全破坏。 (2)岩体破坏的基本形式 ①张性破坏(图示); ②剪切破坏(图示):剪断,剪切。 ③塑性破坏(图示)。 破坏形式取决于:荷载条件、岩体的岩性及结构特征; 二者的相互关系。 ①破坏形式与受力状态的关系: a.与围压σ3有关: 低围压或负围压—拉张破坏(图示); 中等围压—剪切破坏(图示); 高围压(150MN/m2=1500kg/cm2)—塑性破坏。 的关系: b.与σ 2 σ2/σ 3 <4(包括σ 2 =σ3),岩体剪断破坏,破坏角约θ=25°; σ2/σ 3 >8(包括σ 2 =σ1):拉断破坏,破坏面∥σ1,破坏角0°; 4≤σ2/σ3≤8:张、剪性破坏,破坏角θ=15°。 ②破坏形式与岩体结构的关系: 完整块体状—张性破坏; 碎裂结构、碎块结构—塑性破坏; 裂隙岩体—取决于结构面与各主应力之间的方位关系。

露天转地下开采过渡前期高效开采方案

第21卷 露天转地下开采在矿业市场是广泛存在的问题,也是矿业市场长足发展而需要解决的问题。正由于矿体的赋存条件和技术经济等方面的原因,大部分露天开采的矿山,不可能用露天开采将矿床一次采完,而多数矿山是上部用露天开采,之后过渡到地下开采,或者是在露天开采转地下开采过渡期间的联合开采。目前我国应用较为广泛的即为露天转地下联合开采。为了实现稳定产量或者产量波动不大,一般采用不停产过渡,露天产量逐渐减少,地下产量逐渐增加,直至露天开采结束,地下开采达到设计产量,这段交替时间成为露天转地下开采的过渡时期。黑山铁矿在完成了多年的露天开采之后,将转入地下开采,本文以黑山铁矿为例,研发出一套露天转地下高效开采技术方案。 1矿区概况 黑山铁矿为河北钢铁集团矿业有限公司的下 属矿山,位于河北省承德市北31km 处,地属承德县高寺台镇王营村管辖,面积1.58km 2。黑山铁矿为岩浆侵入型大型钒钛磁铁矿床,用露天开采至+650m 水平,+650m 之下转入地下开采。地采范围内矿石总储量2190.51万t ,其中650m 标高以下0~28线之间1873.02万t ,0线以东及28线以西230.83万 t ;650m 标高以上境界外86.66万t 。黑山铁矿矿区 内共查明大小矿体46个,其中以Ⅰ号采场的1号和2号矿体规模最大;其次是Ⅱ号采场的3#、6#、8#矿体为中等规模。地采设计应用无底柱分段崩落法开采,设计生产能力100万t/a 。 2矿区开采条件 2.1 矿区工程地质特征 黑山铁矿矿体围岩分两类,一类是斜长岩类, 多作为高品位铁矿石的直接围岩,矿体与围岩界限 收稿日期:2012-07-16 作者简介: 南世卿(1958-),男,教授级高工,采矿工程博士,河北钢铁集团矿山设计研究院院长,E-mail :nanshiqing@https://www.doczj.com/doc/ec12862842.html, 。 露天转地下开采过渡前期高效开采方案研究 南世卿1,任凤玉2,宋爱东1 (1.河北钢铁集团矿山设计研究院,河北唐山063000;2.东北大学,辽宁沈阳110004) 摘要:本文针对黑山铁矿在露天转地下开采过渡前期遇到的诸多技术问题,进行了大量的科学技术研究, 解决了采矿方法与地压控制的关建技术难题,研发出适合黑山铁矿条件的露天转地下高效开采技术方案,为黑山铁矿露天转地下产量平稳过渡与地下高效开采提供了技术保障。 关键词: 露天转地下;过渡期;高效开采;方案研究中图分类号:TD852文献标志码:A 文章编号:1004-4051(2012)zk-0343-04 Study on the high efficient method of open pit to underground mining transitional earlier stage NAN Shi-qing 1,REN Feng-yu 2,SONG Ai-dong 1 (1.Hebei Iron and Steel Group mining design Co.,Ltd.,Tangshan 063000,China ; 2.Northeastern University ,Shenyang 110004,China ) Abstract :Contraposing Heishan iron mine from open pit to underground mining transitional earlier stage many technical issues,This article make many science and t echnology research,Solve Mining method and pressure control,research and development a high efficient method which suit HeShan iron mine condition,provide technical support for open pit to underground mining production smooth transition and the efficient exploitation. Key words:open pit to underground mining;transitional period;efficient exploitation;scheme research 第21卷增刊 2012年8月中国矿业 CHINA MINING MAGAZINE Vol.21,zk August 2012 露天地下联合开采

围岩大变形定义

关于软岩大变形,目前还没有形成一致和明确的定义。Karl Terzaghi(1946)最早对隧道围岩大变形进行描述和定义,他指出:“挤压变形岩石是指含有相当数量黏土矿物的岩石”,变形行为会以“不容易察觉的体积增加缓慢地侵入隧道净空,挤压变形的先决条件是岩石中高含量的具有膨胀性细微或亚微云母矿物和黏土矿物”。国际岩石力学学会于1995 年成立了专业委员会研究岩石挤压变形问题,提出挤压变形的定义“挤压变形是一种与时间相关的变形行为,通常发生在地下空间开挖面周边,一般由于极限剪切应力失稳而导致的蠕变所造成,这种变形可能会在开挖期间停止,也有可能持续非常长的时间”。 仔细分析这两种经典定义,太沙基实际上讨论了地质软岩的概念,定义强调岩石成分的特殊性,对力学机制没有涉及。而国际岩石力学学会的定义则强调大变形是与时间有关的变形行为,产生原因是由于极限剪切应力失稳。实际上,上述定义只强调了一个现象的两个方面,均有一定缺陷。陈宗基等(1983)认为,围岩收敛变形机制应包括塑性楔体、流动变形、围岩膨胀、扩容、挠曲五个方面,与前述定义有重叠之处;翁汉民等(1999)认为不能从变形量的大小定义大变形,具有显著变形是大变形问题的外在表现,其本质是由剪应力产生的岩体剪切变形发生错动、断裂分离破坏,岩体向地下空间方向产生挤压变形来定义大变形;何满潮等(2002)基于地下空间大变形现象将软岩分为膨胀型软岩、高应力软岩、节理化软岩、复合型软岩四类;李天斌等(2005)基于产生围岩大变形的地质环境及力学机制,将其定义为:隧道及地下工程中,由软弱岩体构成的围岩,在高或相对高地应力、地下水或自身膨胀性的作用下,其自承能力丧失或部分丧失,产生具有累进性和明显时间效应的塑性变形且变形得不到有效约束的现象,它既区别于岩爆运动脆性破坏,又区别于围岩松动圈中受限于一定结构面控制的坍塌、滑动等破坏;赵旭峰(2007)提出挤压现象是一种在隧道开挖中与时间有关的大变形,与岩体的时效力学行为紧密相关,表现为在工程扰动力作用下,当岩体所承受的剪应力超过某极限值时,所发生的随时间发展的显著粘弹塑性变形;上述对大变形的定义均较好地概况了前述两种经典定义。

露天转地下开采的平稳过渡

露天转地下开采的平稳过渡 2006-12-1 9:50:44 中国选矿选煤网 露天转地下开采的平稳过渡 ——通钢板石矿业公司上青矿考察报告 高战敏 迟淑萍 (鞍钢集团矿业设计院,辽宁鞍山114004) 摘要:露天转地下开采是许多大中型矿山迟早要面对和解决的一个问题。本文简要介绍了板石矿业公司上青矿露天转地下开采平稳过渡的经验以及对眼前山铁矿露天转地下开采的借鉴意义。 关键词:露天矿;露天转地下开采;平稳过渡;经验 中图分类号:TD85-9 文献标识码:A 文章编号:1671-8550(2006)03-0029-02 0 引言 露天转地下开采是地表有矿体出露、且矿体埋藏较深矿山和矿体埋深虽不是很大、但地表缺乏足够容量排土场的矿山迟早要面临和解决的一个问题。由于露天开采多采矿少剥岩,甚至只采矿不剥岩和地表缺乏合适排土场以及人们环保意识的增强,一些矿山的露天转地下开采要提前进行。 20世纪60年代,我国就有冶山铁矿北采区等矿山或采区陆续从露天转为地下开采。近年来,通钢板石沟和首钢石人沟等铁矿也从露天转为地下开采。板石矿业公司上青矿是近几年露天转地下开采工作比较成功的一座矿山。 1矿山概况 上青矿开采对象为矿区的4#、5#和6#矿组.矿体平均厚度约30m,矿石平均地质品位34.11%。原露天开采分为3个采区,分别为老西端、北露天和南露天采区。其中北露天采区始建于1966年。2002年转入地下开采,累计采出矿量1000多万t,转入地下开采最主要的原因是原露天坑帮地形很陡。扩帮露天开采经济上极不合理。该矿地下开采设计生产能力110万t/a,2004年实际产量超过120万t,估计2005年产量为115万t。 2上青矿目前开采工艺系统 2.1矿井开拓运输

黄土隧道围岩变形规律

科技信息 SCIENCE&TECHNOLOGYINFORMATION 2013年第5期0引言 近些年来,甘肃省经济发展迅速,但是发展经济的前提,交通必需先发展。随着高含水率黄土隧道修筑的增加,施工中出现了一些问题,许多学者作了大量的研究。采用隧道理论计算与现场监控量测相结合的方法,为隧道安全施工提供了重要保证,进一步优化了初期支护和二次衬砌的参数,提高了施工速度和质量。本文以石羊岭隧道为工程依托,通过MIDAS/GTS 数值计算和现场监控量测,对隧道留核心土施工法施工过程进行数值计算,并与现场监控量测数据对比,得出留核心土施工法施工对石羊岭隧道开挖比较合理[1-3],为高含水率黄土隧道施工积累经验,研究具有一定的参考价值。 1工程概况 石羊岭隧道位于定西市安定区。隧道全长1288m ,隧道起点端里程桩号K6+232,隧道终点端里程桩号K7+520,洞体最大埋深约123.7m ,位于K6+824.3m 处;进出口均位于黄土冲沟,距乡村公路较近,交通便利。 隧道位于临县境内黄土梁峁区,隧址区(Q 3eol )黄土大面积覆盖,微地貌为黄土残梁、黄土陡坎,隧址区走向近东北向,山梁顶部较平缓,山梁两侧为冲沟,山坡为中陡坡。 石羊岭梁隧道进口段围岩由第四系上更新统(Q 3al+pl )粉质粘土组成,其状态为坚硬-硬塑,松软结构,地下水出水状态为滴渗水,围岩级别Ⅴ级。岩体较破碎,含水率高,稳定性差,开挖后易坍塌,侧壁不稳定,需加超前小导管,本文用于数值计算的目标断面为K6+450,隧道埋深70m 。 计算所采用的断面初期支护采用型钢混凝土联合支护,C25喷射混凝土、I20a 型钢、钢筋网联合支护,对于Ⅴ级围岩需在顶部做超前小导管,采用准42超前小导管,长3m ,混凝土喷层厚度为0.3m 。 2隧道施工过程数值模拟 2.1模型建立2.1.1约束的确定 依据圣维南原理、有限元计算误差和工程的要求,选取的计算范围为3~5倍洞径,但当超过5倍洞径,位移一般控制在5%以内,误差较小。 2.1.2钢拱架力学模拟 运用等效的方法考虑时,采取抗压刚度相等的原则,并用钢架的弹性模量折算给喷射混凝土,简化初期支护,计算为: E=E 0+ S g ×E g S c 上式中,E 为折算后混凝土弹性模量;E 0为原混凝土弹性模量;S g 为钢拱架截面积,E g 为钢材弹性模量;S c 为混凝土截面积。 因此模型尺寸长×宽=100m ×84m 。模型地面为无约束自由面,四周采用横向变形约束条件,底部采用竖向约束条件。计算中土体采用摩尔—库仑准则,初期支护采用C25混凝土材料,厚度0.3m 。初始应力场仅考虑土体自重应力场,忽略地层的地层构造应力。整个模型共个363节点,共1263单元。地层采用平面单元,初期支护采用梁单元[4-5],计算模型见图1。2.2参数选取 根据工程地质勘察报告,数值计算采用的参数见表1。 表1 模型计算材料参数 Table 1Physical and mechanical parameters of model materials 2.3 现场开挖过程模拟 依据现场施工方案,留核心土法施工模拟,先开挖上半部分,再开挖核心土,最后开挖下半部分,在开挖时荷载释放系数为0.6,初期支护阶段荷载释放系数为0.4。2.4数值模拟结果分析 2.4.1隧道围岩竖向位移分析 (a )开挖上台阶竖向位移云图 (b )开挖核心土及下台阶竖向位移云图 图2围岩竖向位移云图 Fig.2Vertical displacement contours of the surrounding rock, 黄土隧道围岩变形规律分析 辛纯涛吴勇 (甘肃省交通科学研究院有限公司,甘肃兰州730050) 【摘要】结合石羊岭隧道工程,对高含水率黄土隧道开挖支护后围岩变形进行了研究。利用Midas/GTS 有限元分析软件,建立了有限元计算模型,分析了石羊岭黄土隧道开挖支护后的位移场,并与现场监控量测数据进行了分析对比,得到了黄土隧道的围岩变形规律,给出了合理的支护方案。结果表明:留核心土施工法适用于此隧道,并从开挖过程得到隧道位移分布及影响范围;从现场监控量测数据可以得出,变形经历三个过程,最终处于稳定状态。数值计算结果与现场监测数据基本一致,并得到初期支护与二次衬砌间隔的时间为25天。 【关键词】黄土隧道;MIDAS/GTS 数值计算;现场监测;围岩变形 作者简介:辛纯涛(1986—),男,助理工程师,主要从事隧道检测及岩土数值计算。 图1隧道计算模型 Fig.1Computation model of the tunne 名称密度 (KN/m 3)弹性模量 (MPa)粘聚力 (KPa)内摩擦角 (°)泊松比 层厚 (m)黄土18.50534.420.050.3100喷射混凝土24.0015000--0.20.3小导管 78.50 20000 - - 0.3 4.5 ○科教前沿○78

岩体的变形与破坏

岩体的变形与破坏 1 基本概念及研究意义 变形:岩体的宏观连续性无明显变化者。 破坏:岩体的宏观连续性已发生明显变化。 岩体破坏的基本形式:(机制)剪切破坏和拉断(张性)破坏。 一、岩体破坏形式与受力状态的关系 岩体破坏形式与围岩大小有明显关系。 注意:岩全破坏机制的转化随围压条件的变化而变化。 破坏机制转化的界限围压称破坏机制转化围压。 一般认为,1/5~1/4[σ]不可拉断转化为剪切。 1/3~2/3[σ]可由剪切转化为塑性破坏。 有人认为(纳达),可用2σ偏向1σ的程度来划分应力状态类型。 应力状态类型参数 3 13122σσσσσα---= (=1,即σ2=σ1; =-1,即σ2=σ3) 二、岩体破坏形式与岩体结构的关系 低围压条件下岩石三 轴试验表明。 坚硬的完整岩体主要表现为张性破坏。 含软弱结构面的块状岩体,当结构面与最大主应力夹角合适时,则表现为沿结构面的剪切。 碎裂岩体的破坏方式介于二者之间。 碎块状或散体状岩体主要为塑性破坏。 对第一种情况,某破坏判据已经介绍很多了。 第二种情况,可采用三向应力状态莫尔圆图解简单判断。 三、岩体的强度特征 单轴应力状态时,结构与1σ方向决定了岩体的破坏形式。 复杂应力状态时,含一组结构面的岩体破坏形式与岩体性质、结构面产状,应力状态关系很大。 2 岩体在加荷过程中的变形与破坏 2.1 拉断破坏机制与过程 一、拉应力条件下的拉断破坏 当0331≤+σσ时,拉应力对岩石破坏起主导作用。

t S -=][3σ 二、压应力条件下的拉断破坏 压应力条件下裂缝尖端拉应力集中最强的部位位于与主压应力是?=40~30β地方向上,并逐渐向与 1σ平行地方向扩展。当0 331>+σσ时,破坏准则为: t S 8)/()(31231=+-σσσσ 3σ=0时为单轴压拉断。 2.2 剪切变形破坏机制与过程 一、潜在剪切面剪断机制与过程 A .滑移段 B .锁固段 进入稳定破裂阶段后,岩体内部应力状态变化复杂。产生一系列破裂。 (1)拉张分支裂隙的形成,原理同前。 (2)不稳定破裂阶段法向压碎带的形成,削弱锁固段岩石。 (3)潜在剪切面贯通。 剪胀,压碎带剪坏,锁固段变薄弱,最终全面贯通。 剪切破坏过程中岩石销固段被各个击破,所以整个剪切过程中剪切位段具有脉动的特征。 二、单剪应力条件下变形破坏机制与过程 即力偶作用于有一定厚度的剪切带中。 这种应力条件下可出现的两种破坏,张性雁裂和压扭性雁裂。其中张性雁裂对软弱带的强度削弱最大。 三、沿已有结构面剪切机制及过程(略) 2.3 弯曲变表破坏机制与过程 一、弯曲变形的基本形式 按受力条件:横弯、纵弯。 按约束条件:简支梁、外伸梁、悬臂梁。 梁弯曲时,轴受挤压,两翼受剪力作用→板梁滑脱 二、横弯条件下岩体的弯形与破坏 a. 轴部区 若以[] 2)()()(2121213231σσσσσσσ-+-+-=,y σ代表岩石的曲服应力。 极梁弯曲变形分三个阶段。 ①轻微隆起阶段 弯曲初期。梁底中心两侧出现局部塑性破坏,顶部受拉,但尚未破坏。(H/D=1.8%),H 上隆量。 ②强列隆起阶段

地下洞室围岩大变形机制研究

地下洞室围岩大变形机制研究 发表时间:2015-10-08T13:12:07.820Z 来源:《基层建设》2015年5期供稿作者:罗荣辉[导读] 四川公路桥梁建设集团有限公司华东机华分公司四川成都隧道穿越高应力、软弱破碎围岩条件及复杂恶劣地质环境的情况不可避免,与此同时,隧道围岩大变形问题也凸显出来。罗荣辉 四川公路桥梁建设集团有限公司华东机华分公司四川成都 610200 摘要:基于地下洞室危岩大变形工程特性,揭示了围岩大变形卸荷作用机制,并介绍了卸荷作用过程及围岩变形特性;提出了瞬时—弹性—塑性—流变变形机制,其机制包括瞬时变形、弹性变形阶段、塑性变形阶段、流变变形阶段;解译了弱面剪切机制,并给出弱面剪切机制的强度准则。 关键词:地下工程;大变形机制;围岩;地下洞室1 引言 近年来,随着中国队基础设施建设投资力度的逐渐加大,铁路、公路隧道工程的建设规模得到了迅猛发展,隧道工程施工的机械化程度和施工技术水平也得到了很大的提高。目前,在中国路网主骨架“八纵八横”总体战略实施过程中,铁路、公路隧道已经向长、大、深埋方向发展[1,2],因此隧道穿越高应力、软弱破碎围岩条件及复杂恶劣地质环境的情况不可避免,与此同时,隧道围岩大变形问题也凸显出来。 本文介绍了地下洞室围岩大变形的卸荷作用机制、瞬时—弹性—塑性—流变变形机制、弱面剪切机制等机制,研究成果对于深入了解围岩大变形机理具有积极意义。 2 地下洞室围岩大变形机制研究2.1 卸荷作用机制地下洞室岩体开挖后,产生应力重分布,如图1所示,应力迹线岩体应力在没开挖前平面上受竖向均布荷载,开挖后被开挖的洞室岩体产生应力集中,应力迹线在洞室周围由直线变为弧形曲线,越靠近洞室周壁应力变化越显著。因此洞室开挖后岩体由三向应力状态变为平面应力状态,即在洞室周围形成侧向临空面,而临空面的形成伴随着而瞬间卸荷作用的产生。岩石的卸荷破坏变形主要是因卸荷导致的破裂前的扩容作用和宏观剪切破坏。从岩石三轴和单轴压缩试验应力——应变曲线可以看出当岩体受荷达到某一值时岩石体积膨胀,这是由 应力差急剧变化引起的变形破坏,此后岩体进入累进破坏阶段,最终完全破裂。卸荷变形破坏作用机制过程:1)卸荷初始阶段,岩体基本保持原状,但岩体内有微小裂缝的形成;2)卸荷达到一定程度后,侧向临空面处岩体处于平面应力状态,即拉—压作用,受拉—压作用微小裂缝尖端应力集中而张拉扩展,由卸荷岩体应力—应变曲线可知,此时侧向应变和轴向应变基本相等,但由侧向应变曲线和轴向应变曲线的切线斜率知侧向应变速率明显大于轴向应变速率,并处于加速增长状态。3)卸荷作用继续发展,裂缝继续扩展,对于硬质岩体由于拉——压作用裂缝部分贯通并表现为竖向裂缝的增多和侧向岩体的鼓起,裂缝表现为追踪效应,应力——应变曲线上表现为应变的急剧增大,变形速率趋于稳定并有减缓的趋势,但侧向变形速率仍大于轴向变形速率。对于软质岩体随着时间的推移表现为一定的流变特性,岩体变形曲线为近于平行。4)卸荷作用最后阶段对于硬质岩体裂缝完全贯通破裂,破裂面形成,表现为剪切破坏,岩体较为破碎,并且竖向裂隙比较集中,并伴有显著的竖向破裂面。对于软质岩体流变使变形缓慢进行,表现为侧向挤出和塑性流变。 2.2 瞬时—弹性—塑性—流变变形机制1)瞬时变形 瞬时变形是岩体开挖应力释放后瞬间产生的变形量,与岩体性质、岩体初始应力场、地下水、岩体构造等有关,是一种非线性变形机制,变形伴随岩体的张裂,一般变形量较小。2)弹性变形阶段弹性变形是岩体进入线弹性变形阶段产生的变形量,此阶段弹性模量(E)为一常数,应力和应变呈现线性关系,表达式如下:(1)式中,——应力值;——变形量对于硬质岩体弹性变形时间较长,但变形量较小,对于许多处于高应力区的硬质岩体开挖后一般处于弹性变形阶段;对于软质岩体,弹性变形很快结束进入屈服阶段,但变形量较硬质岩体大。3)塑性变形阶段塑性变形是岩体卸荷后受拉压作用使岩体超过屈服强度后产生的不可逆的变形量。对于硬质岩体,变形进入此阶段,岩体变形急剧增大并趋于峰值。对于软质岩体或处于高温高压作用下的硬质岩体塑性变形持续时间较长,表现为塑性变形和侧墙的岩体挤出,如围岩颈缩、底鼓、侧向突出等。现有的弹塑性机制弹性阶段在应力应变图上为线性变化,而对塑性变形有线性、幂指数型等变化。4)流变变形阶段

露天转地下采矿方法的研究

露天转地下采矿方法的研究 近些年,随着经济的快速发展,对于各种金属矿山的过渡开采,已经造成了我国国内现有的资源逐渐的枯竭,尤其浅层资源已经没有了可以开采的地方。我们对金属矿业的开采已经逐步转向地下开采时期,但是如何度过这个过度时期,对于我们选择的开采方式是非常严峻的考验。由露天转向地下开采是将露天开采和地下开采两种方式结合到一起的一种综合型的开采技术,不论对于人员开采的技术,还是对于开采设备的要求,都是一个考验。在本文的研究中,主要是以石人沟为案例,来研究由露天转向地下开采的方法,根据现有的采矿方法及原理,选择比较合理的开采方案,既要保证金属矿业资源的可持续开采,同时还要保证开采的安全性。 标签:露天开采地下开采方法研究 近些年,随着经济的快速发展,对于各种金属矿山的过渡开采,已经造成了我国国内现有的资源逐渐的枯竭,尤其浅层资源已经没有了可以开采的地方。我们对金属矿业的开采已经逐步转向地下开采时期,但是如何度过这个过度时期,对于我们选择的开采方式是非常严峻的考验。由露天转向地下开采是将露天开采和地下开采两种方式结合到一起的一种综合型的开采技术,不论对于人员开采的技术,还是对于开采设备的要求,都是一个考验。在本文的研究中,主要是以石人沟为案例,来研究由露天转向地下开采的方法,根据现有的采矿方法及原理,利用层次分析和模糊数学模型结合的方法,进行综合性评价比较,选择比较合理的开采方案,既要保证金属矿业资源的可持续开采,同时还要保证开采的安全性。 1综合评价方法 由以往的数据显示,露天转地下的开采方法要考虑到多种因素、指标、目标及层次,这是一个综合性的过程,也是一个比较复杂的工程,如果地质资料出现误差或者其他的指标具有不确定性,那么对于开采的过程会带来很多的安全隐患。目前有很多的系统中都有数学的应用,在本次研究中主要以石人沟为例,来研究露天转地下开采方式。本次研究所选择的方法为层次分析和模糊数学模型结合,应用到开采方法中,建立相关的综合评价模型,客观的对各因素进行层次分析,然后利用模糊数学理论进行综合型的评价,最终选择合适的开采方法。 露天转地下的开采主要的方法有崩落法、充填法以及空场法,在石人沟铁矿中主要选择的方法有四种,分别是分段凿岩法、分段崩落法、分段充填法及水平分层充填法。现按照综合评定指标对每种方法进行综合评价,具体数据见表1。 由以上表格中的数据,进行综合型的比较分析,可以看到,最佳方案为分段充填法,在四种方案中,崩落法比空场法及充填法具有的劣势要多,四种方法从优到劣依次为分段充填法、分段岩凿法、水平分层充填法、分段崩落法。所以选用分段充填法是最优的采矿方法。

千枚岩隧道大变形原因分析及施工对策

千枚岩隧道大变形原因分析及施工对策 摘要:柳树垭隧道地处千枚岩地段,施工初期由于围岩变形较大,导致初期支护开裂等问题,严重影响了施工安全和施工进度。通过对围岩变形原因的分析,在施工过程中,针对不同围岩采取不同的、有效的施工方法,对抑制围岩变形取得了较好的效果。 关键词:千枚岩;大变形;分析;施工对策 Abstract: the same tunnel is located in thousand pieces willow rock location, construction because of surrounding rock deformation is early, leading to the primary support the problem such as craze, serious impact on the construction safety and construction schedule. Through the analysis of the reason of surrounding rock deformation, in construction process, according to different rock mass take different, effective construction method, to control the deformation of the surrounding rock has a good effect. Keywords: thousand pieces rock; Large deformation; Analysis; Construction strategies 引言 近年来,国家对基础建设的投入越来越大,铁路、公路、城市地下工程、资源开采等工程项目随处可见,工程很多都是在软弱围岩中进行的。如作者参与修建的西汉高速公路大(河坝)两(河)连接线工程中的柳树垭隧道。在软岩工程越来越频繁的情况下,对软岩工程中的围岩变形问题进行总结研究具有重要的工程实用价值和现实意义。文中作者通过施工过程的实际方法,总结了千枚岩隧道变形的基本特征,分析了变形原因及采取的施工对策。 1、千枚岩隧道变形的主要原因 千枚岩隧道的变形有很多形式,其中以仰拱起鼓、隧道两侧挤压、初期支护开裂、拱顶下沉等类型发生较多。引起变形发生的主要原因如下:(1)围岩自身因素。

相关主题
相关文档 最新文档