当前位置:文档之家› 波谱解析 复习 名词解释

波谱解析 复习 名词解释

波谱解析 复习 名词解释
波谱解析 复习 名词解释

氢谱

屏蔽效应:氢核周围不断运动的电子影响,在外场的作用下,运动着的电子产生相对于外磁场方向的感应磁场,起到屏蔽作用,使氢核实际受到的外磁场作用减小。

化学键的磁各向异性:如果由电子组成的化学键在空间形成小的磁场,与化学键不对称,则产生了磁各向异性,与外场相反,消弱了外场,屏蔽作用“+”,化学位移变小。与外场相同,去屏蔽作用。。。

去偶法:用第一个振荡器扫描Ha时,用第二个振荡器扫描Hb使他发生共振,hb在两种自旋之间迅速变化,Hb对Ha的两种影响被抵消掉,这样Ha就等于没有受到影响,这就是去偶。

核的NOE效应:当两个人(组)不同类型的质子位于相近的空间距离时,照射其中的一个会使另一个质子的信号增强。碳谱

碳谱的特点:耦合常数大:1H-1H耦合常数0-20Hz.碳原子常与氢原子连接,它们可以互相耦合,这种13C-1H 一键耦合常数的数值很大,一般在125-250 Hz。因为13C 天然丰度很低,这种耦合并不影响1H 谱,但在碳谱中是主要的。弛豫时间长:13C 的弛豫时间比1H 慢得多,有的化合物中的一些碳原子的弛豫时间长达几分钟,这使得测定T1、T2等比较方便。另外,不同种类的碳原子弛豫时间也相差较大,这样,可以通过测定弛豫时间来得到更多的结构信息。共振方法多:13C NMR 除质子噪声去耦谱外,还有多种其它的共振方法,可获得不同的信息。如偏共振去耦谱,可获得13C-1H 耦合信息;门控去耦谱,可获得定量信息等。因此,碳谱比氢谱的信息更丰富,解析结论更清楚。

空间效应:13C化学位移还易受分子内几何因素的影响。相隔几个键的碳由于空间上的接近可能产生强烈的相互影响。通常的解释是空间上接近的碳上H 之间的斥力作用使相连碳上的电子密度有所增加,从而增大屏蔽效应,化学位移则移向高场。

羰基碳200 酯基碳170苯环连氧碳155苯环碳110-140缩酮(醛)105连氧碳60-80甲氧基55甲基碳10-20 OCH3:一般位于55-60 CH2OH:一般位于62左右CHOH:一般位于60-80 C-OH:一般大于80 炔烃:C=65-90烯烃: C=100-150

质子宽带去偶:C原子与直接相连的H或邻近C原子上的H 都有偶合---谱线复杂。采用双照射:去偶射频H2覆盖所有类型质子共振频率---去除所有质子的偶合---每个C原子呈线状单峰。

质子偏共振去偶:将去偶射频(H2)调在稍偏离1H核共振吸收位置n x 102--103Hz处,可去除不直接相连的H核的偶合—避免谱线交叉重叠,保留( 但减弱)直接相连的1H核的偶合---可区分1o、2o 、3o 、4o C原子---用于识别各类C原子信号。

选择去偶:选择去偶射频(H2)只覆盖一类质子的共振频率,使与之相连的C原子消除偶合裂分----识别出与该类质子相连的C原子的信号。

DEPT:无畸变极化转移增强技术:采用脉冲序列,将高灵敏度的1H的信号强度转移到13C核上并测定其13C-NMR谱,改变照射1H的第三脉冲宽度 ,使作45°(+++)90°(+xx)135°(+-+)变化。(CH-CH3)

二维谱:

1H-1H COSY谱:应用1H-1H COSY谱解析化合物的结构就是基于分子中相互偶合的氢之间在谱中会出现相关峰,出现相关峰的质子之间可以是间隔3个键的邻偶,也可以是间隔4个键以上的远程偶合,特别是偶合常数较小的远程偶合,在一维氢谱中有时很难观察到,因而成为1H-1H COSY谱的一个优势。

HMQC谱和HSQC谱:在二维图谱的一侧设定为1H的化学位移,而另一侧设定为13C的化学位移,则所得二维谱称作13C-1H 相关谱,由于对偶合常数范围做了设定,图谱上表现出来的只是1JCH范围内的偶合关系。常规的13C-1H直接相关谱样品的用量较大,测定时间较长。HMQC技术很好地克服了上述缺点,HMQC是通过多量子相干间接检测低磁旋比核13C的新技术。HMQC 的F1维(δC)分辨率差是其较大的缺点。此外,在HMQC谱的F1方向还会显示1H,1H之间的偶合裂分,它进一步降低F1维的分辨率,也使灵敏度下降。由于这个原因,近年来,HSQC常用来代替HMQC,它不会显示F1方向1H,1H之间的偶合裂分。HMQC和HSQC,尤其是HSQC由于测试要求的样品量相应减少,特别适用于中药和天然药物有效成分的结构测定,是目前国内外获得碳氢直接连接信息最主要的手段。

HMBC谱:碳氢远程相关谱,HMBC为1H检测的异核多键相关谱,是通过多量子相干间接检测低磁旋比核13C的新技术。其目的是突出表现相隔2个键(2JCH)和相隔3个键(3JCH)的碳氢之间的偶合。但由于技术上的原因,尚不能完全去掉直接相连的碳氢之间的偶合(1JCH)解析图谱时要注意区别。HMBC谱特别方便地应用于结构中存在较多角甲基的三萜和甾体等类化合物的结构研究和确定苷分子中糖和糖以及糖和苷元之间的连接位置。

2D-INADEQUATE技术是利用双量子跃迁现象,直接测定自然丰度条件下13C-13C偶合的方法。该技术具有两种不同的脉冲序列:一种脉冲序列得到的图谱中相互偶合的两个碳原子作为一对双峰排列在同一水平上。另一种脉冲序列得到的图谱,与前面介绍的同核相关谱中的相关峰一样,相互偶合的两个碳原子各自作为一对双峰出现在对角线两侧对称的位置上。优点:对某些结构复杂而用普通光谱方法和化学手段难以确定结构的有机化合物,在无法制成单晶,因而不能应用X射线单晶衍射技术确定结构时,采用2D-INADEQUATE技术常可得到满意的结果。缺点:灵敏度很低,故测定时需要大量,样品(几十甚至几百毫克),

测定时间太长(两天以上),为了消除邻位没有13C存在的孤立的13C强信号需将脉冲序列做复杂的位相旋转等。

NOESY谱:是为了在二维谱上观察NOE效应而开发出来的一种同核相关的二维新技术。在NOESY谱上,分子中所有在空间上相互靠近的质子间的NOE效应同时作为相关峰出现在图谱上,借此我们可以观察到整个分子中质子间在立体空间中的相互关系,推定分子的结构,特别是分子的立体结构。

在HOHAHA谱中,每一个自旋系统的质子间都会出现一组相关峰,这种技术对分子中含有多个质子自旋系统的化合物,如中药有效成分中常见的皂苷、环肽等类化合物的结构研究,具有非常重要的作用。所谓同一个质子自旋系统,是指不被季碳或杂原子分隔开来的结构片断。TOCSY谱所说明的问题和图谱的解析方法与HOHAHA谱基本一致。

质谱

电子轰击质谱(EI-MS):样品气化后,气态分子受一定能量的电子冲击,使分子电离和裂解而产生各种阳离子。优点:易于实现电离,重现性好,提供碎片信息多是最为常见的离子源。

缺点:当样品相对分子质量较大难以气化或对热稳定性差时,常常得不到分子离子峰,因而不能测定这些样品的相对分子质量。

化学电离质谱(CI-MS):通过引入大量的试剂气体产生的反应离子与样品分子之间的离子-分子反应,使样品分子实现电离。因此,样品的离子是由分子离子反应产生的,这样产生的离子能量较小,故碎片较少。优点:即使是不稳定的化合物,也能得到较强的准分子离子峰,即M±1峰,从而有利于确定其分子量。缺点:碎片离子峰较少,可提供的有关结构方面信息少。

场致电离质谱(FI):两极之间加几千伏甚至上万伏稳定直流电压,在阳极尖端附近产生E=107v/cm2的强电场,可把阳极尖端不到1mm中的原子或者分子中的电子拉出来,形成正离子。优点:形成的离子束分散不大,所形成的离子主要是分子离子,因此较EI图简单,分子离子峰较强,碎片峰较弱。特别适合于混合物的定性,定量分析。缺点:碎片峰少,可提供结构信息少。

场解吸质谱(FD-MS):将样品吸附在作为离子发射体的金属丝上送入离子源,只要在细丝上通以微弱电流,提供样品从发射体上解吸的能量,解吸出来的样品即扩散到高场强的场发射区域进行离子化。FD-MS特别适用于难气化和热稳定性差的固体样品分析,如有机酸、甾体类、糖苷类、生物碱、氨基酸、肽和核苷酸等。特点:碎片离子峰相对减少。用于极性物质的测定,可得到明显的分子离子峰或[M+1]+峰,但碎片离子峰较少,对提供结构信息受到一些局限。为提高灵敏度可加入微量带阳离子K+、Na+ 等碱金属化合物于样品中,可产生明显的准分子离子峰、[M+Na]+、[M+K]+和碎片离子峰。缺点:测定技术难度较大,重现性不太理想。

快原子轰击质谱(FAB-MS):从离子枪射出的一次离子ArA+,经加速后在碰撞室与ArB碰撞,并交换电荷,产生高速中性粒子〈ArA〉。该高速中性粒子进一步撞击试样即可使之电离,得到分子离子及其进一步裂解的碎片。碎片类型与FD-MS基本相同。由于配备了阴离子捕获器,还可给出相应的阴离子质谱,与阳离子质谱互相补充,大大增加了信息来源及可信程度。FAB-MS在结构研究中应用比较普遍,适用范围较广,几乎各类天然成分都能利用它来测得分子量和获得主要碎片离子的信息。同FDMS一样,FAB-MS由于在电离过程中并末受到加热,常用于难气化、热不稳定、高极性化合物。特别是对于糖苷类化合物的研究,除得到分子离子峰外,还可得到糖甚至苷元的结构碎片峰,从而弥补了FD-MS。

电喷雾电离质谱(ESI-MS):样品溶液从具有雾化器套管的毛细管流出时在电场作用下形成高度荷电的雾状小液滴,在向质量分析器移动的过程中,液滴因溶剂的挥发逐渐缩小,其表面上的电荷密度不断增大。当电荷之间的排斥力足以克服表面张力时(瑞利极限),液滴发生裂分,经过这样反复的溶剂挥发一液滴裂分过程,最后产生单个多电荷离子。ESI-MS应用范围较广,既可分析大分子也可分析小分子。对于分子量在1000以下的小分子,会产生[M + H]+或[M-H]-离子,选择相应的正离子或负离子形式进行检测,就可得到化合物的分子量。而分子量高达20,000左右的大分子会生成一系列多电荷离子,通过数据处理也能得到样品的分子量。电喷雾电离是很软的电离方法,它通常很少或没有碎片离子峰,常与色谱技术联用。

激光解吸离子源(LD):激光解吸质谱是分析非挥发性化合物的最常用方法之一,激光可看作是光子枪,用光子轰击样品产生样品离子,用激光轰击样品常得到样品分子与Na+,K+的加成离子,碎片离子的产生与激光的功率及样品性质有关。

分子离子:有机化合物的分子受到外来电子撞击后,绝大多数是失去一个电子,分子中带有一个正电荷,这种带正电荷的粒子就叫做分子离子。

质谱新技术

二次离子质谱:是通过带能量的初次离子冲击样品表面而溅射出二次离子,经过检测器的分析而获得结构信息

质谱-质谱技术:近年来,可用来直接分析复杂混合物的一种新方法-质谱-质谱技术(ms/ms)正以惊人的速度发展。复杂的混合物不易分离和处理,用这种方法可以直接,快速地进行分析鉴定。

优点:不存在复杂的接口;是一个“干峰”系统,不受“化学杂音”的干扰;对样品的溶解度,挥发性和热稳定性没有严格要求;不需要大量的样品准备工作,所需样品量少;分析时间缩短。不足:定量分析不如GC/MS法完善。

高分辨质谱:精密测量可以加以区别,HRMS不仅能确定分子式,而且还能确定碎片的组成式。

波谱分析练习题

波谱分析复习题 一、名词解释 1、化学位移; 2、屏蔽效应; 3、相对丰度; 4、氮律; 5、分子离子;6助色团;7、特征峰; 8、质荷比;9、磁等同氢核 10、发色团;11、磁等同H核;12、质谱;13、i-裂解;14、α-裂解; 15. 红移 16. 能级跃迁 17. 摩尔吸光系数 二、选择题 1、波长为670.7nm的辐射,其频率(MHz)数值为 A、4.47×108 B、4.47×107 C、1.49×106 D、1.49×1010 2、紫外光谱的产生是由电子能级跃迁所致,能级差的大小决定了 A、吸收峰的强度 B、吸收峰的数目 C、吸收峰的位置 D、吸收峰的形状 3、紫外光谱是带状光谱的原因是由于 A、紫外光能量大 B、波长短 C、电子能级跃迁的同时伴随有振动及转动能级跃迁的原因 D、电子能级差大 4、化合物中,下面哪一种跃迁所需的能量最高? A、σ→σ* B、π→π* C、 n→σ* D、 n→π* 5、n→π﹡跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大 A、水 B、甲醇 C、乙醇 D、正已烷 6、CH3-CH3的哪种振动形式是非红外活性的 A、νC-C B、νC-H C、δas CH D、δs CH 7、化合物中只有一个羰基,却在1773cm-1和1736cm-1处出现两个吸收峰这是因为: A、诱导效应 B、共轭效应 C、费米共振 D、空间位阻 8、一种能作为色散型红外光谱仪的色散元件材料为: A、玻璃 B、石英 C、红宝石 D、卤化物结体 9、预测H2S分子的基频峰数为: A、4 B、3 C、2 D、1 10、若外加磁场的强度H0逐渐加大时,则使原子核自旋能级的低能态跃迁到高能态所需的能量是如何变化的? A、不变 B、逐渐变大 C、逐渐变小 D、随原核而变

吉大2017《波谱分析》离线作业及答案

一、名词解释(每小题5分,共30分) 1、化学位移:由原于核与周围电子静电场之间的相互作用引起的Y发射与吸收能级间的相对移动。 2、屏蔽效应:由于其她电子对某一电子的排斥作用而抵消了一部分核电荷对该电子的吸引力,从而引起有效核电荷的降低,削弱了核电荷对该电子的吸引,这种作用称为屏蔽作用或屏蔽效应。 3、相对丰度:相对丰度又称同位素丰度比(isotopic abundance ratio),指气体中轻组分的丰度C与其余组分丰度之与的比值。 4、氮律: 分子中含偶数个氮原子或不含氮原子则它的分子量就一定就是偶数。如分子中含奇数个氮原子,则分子量就一定就是奇数。 5、分子离子:分子失去一个电子而生成带正电荷的自由基为分子离子。 6、助色团:含有非成键n电子的杂原子饱与基团,本身在紫外可见光范围内不产生吸收,但当与生色团相连时,可使其吸收峰向长波方向移动,并吸收强度增加的基团。 二、简答题(每小题8分,共40分) 1、色散型光谱仪主要有几部分组成及其作用; 答:由光源、分光系统、检测器3部分组成。光源产生的光分为两路:一路通过样品,另一路通过参比溶液。切光器控制使参比光束与样品光束交替进入单色器。检测器在样品吸收后破坏两束光的平衡下产生信号,该信号被放大后被记录。2、紫外光谱在有机化合物结构鉴定中的主要贡献; 答:在有机化合物结构鉴定中,紫外光谱在确定有机化合物的共轭体系、生色团与芳香性等方面有独到之处。 3、在质谱中亚稳离子就是如何产生的?以及在碎片离子解析过程中的作用就是什么 答:离子m1在离子源主缝至分离器电场边界之间发生裂解,丢失中性碎片,得到新的离子m2。这个m2与在电离室中产生的m2具有相同的质量,但受到同m1

有机化合物波谱解析复习指导(I_do)

第一章紫外光谱 一、名词解释 1、助色团:有n电子的基团,吸收峰向长波方向移动,强度增强. 2、发色团:分子中能吸收紫外或可见光的结构系统. 3、红移:吸收峰向长波方向移动,强度增加,增色作用. 4、蓝移:吸收峰向短波方向移动,减色作用. 5、增色作用:使吸收强度增加的作用. 6、减色作用:使吸收强度减低的作用. 7、吸收带:跃迁类型相同的吸收峰. 二、选择题 1、不是助色团的是:D A、-OH B、-Cl C、-SH D、CH3CH2- 2、所需电子能量最小的电子跃迁是:D A、ζ→ζ* B、n →ζ* C、π→π* D、n →π* 3、下列说法正确的是:A A、饱和烃类在远紫外区有吸收 B、UV吸收无加和性 C、π→π*跃迁的吸收强度比n →ζ*跃迁要强10-100倍 D、共轭双键数目越多,吸收峰越向蓝移 4、紫外光谱的峰强用εmax表示,当εmax=5000~10000时,表示峰带:B A、很强吸收 B、强吸收 C、中强吸收 D、弱吸收 5、近紫外区的波长为:C A、4-200nm B、200-300nm C、200-400nm D、300-400nm 6、紫外光谱中,苯通常有3个吸收带,其中λmax在230~270之间,中心为254nm 的吸收带是:B A、R带 B、B带 C、K带 D、E1带 7、紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了C A、吸收峰的强度 B、吸收峰的数目 C、吸收峰的位置 D、吸收峰的形状 8、紫外光谱是带状光谱的原因是由于:D A、紫外光能量大 B、波长短 C、电子能级差大 D、电子能级跃迁的同时伴随有振动及转动能级跃迁的原因 9、π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大:A A、水 B、乙醇 C、甲醇 D、正己烷 10、下列化合物中,在近紫外区(200~400nm)无吸收的是:A A、B、C、D、 11、下列化合物,紫外吸收λmax值最大的是:A(b) A、B、C、D、

波谱解析汇报考精彩试题库

实用文档 波谱解析考试题库 一、紫外部分 1. C H 3 H 2 S O 4 C -O H B C H 3 B C 9 H 1 4 ,λ m ax 24 2 n m , B. 其可能的结构为: 解:其基本结构为异环二烯烃,基值为 217nm:所以,左边: 母体:217 取代烷基:+3×5 λmax=217+3×5=232 右边:母 体:217 取代烷基:+4×5 环外双键:1×5 λmax=217+4×5+1×5=242 故右式即为 B。 2. 某化合物有两种异构体: CH3-C(CH3)=CH-CO-CH3 CH2=C(CH3)-CH-CO-CH3 一个在 235nm 有最大吸收,ε=1.2×104。另一个超过 220nm 没有明显的吸收。试鉴定这两种异构体。 解:CH3-C(CH3)=CH-CO-CH3 有共轭结构,CH2=C(CH3)-CH-CO-CH3 无共轭结构。前者在 235nm 有最大吸收,ε=1.2×104。后者超过 220nm 没有明显的吸收。1. 3. 紫外题

实用文档 1 标

解:(1)符合朗伯比尔定律 (2)ε==1.4*103 (3)A=cεl c= = =2.67*10-4mol/l C=2.67*10-4*100=1.67*10-2 mol/l 4. 从防风草中分离得一化合物,其紫外光谱λmax=241nm,根据文献及其它光谱测定显示可能为松香酸(A)或左旋海松酸(B)。试问分得的化合物为何? A、B结构式如下: COOH COOH (A)(B) 解: A:基值217nm B:基值217nm 烷基(5×4)+20nm 同环二烯+36nm 环外双键+5nm 烷基(5×4)+20nm λmax=242nm λmax=273nm 由以上计算可知:结构(A)松香酸的计算值(λ =242nm)与分得的化合 max =241nm)最相近,故分得的化合物可能为松香酸。 物实测值(λ max 5. 若分别在环己烷及水中测定丙酮的紫外吸收光谱,这两张紫外光谱的n→π*吸收带会有什么区别? 解析:丙酮在环己烷中测定的n→π*吸收带为λ =279nm(κ=22)。而在水 max 中测定时,吸收峰会向短波方向移动,跃迁概率也将减小。 2

波谱解析试题及答案

波普解析试题 一、名词解释(5*4分=20分) 1.波谱学 2.屏蔽效应 3.电池辐射区域 4.重排反应 5.驰骋过程 二、选择题。( 10*2分=20分) 1.化合物中只有一个羰基,却在1773cm-1和1736cm-1处出现两个吸收峰 这是因为:() A、诱导效应 B、共轭效应 C、费米共振 D、空间位阻 2. 一种能作为色散型红外光谱仪的色散元件材料为:() A、玻璃 B、石英 C、红宝石 D、卤化物晶体 3.预测H2S分子的基频峰数为:() A、4 B、3 C、2 D、1 4.若外加磁场的强度H0逐渐加大时,则使原子核自旋能级的低能态跃迁到高能态所需的能量是如何变化的:() A、不变 B、逐渐变大 C、逐渐变小 D、随原核而变 5.下列哪种核不适宜核磁共振测定:() A、12C B、15N C、19F D、31P 6.在丁酮质谱中,质荷比质为29的碎片离子是发生了() A、α-裂解 B、I-裂解 C、重排裂解 D、γ-H迁移 7.在四谱综合解析过程中,确定苯环取代基的位置,最有效的方法是() A、紫外和核磁 B、质谱和红外 C、红外和核磁 D、质谱和核磁 8.下列化合物按1H化学位移值从大到小排列 ( ) a.CH2=CH2 b.CH CH c.HCHO d. A、a、b、c、d B、a、c、b、d C、c、d、a、b D、d、c、b、a 9.在碱性条件下,苯酚的最大吸波长将发生何种变化? ( ) A.红移 B. 蓝移 C. 不变 D. 不能确定

10.芳烃(M=134), 质谱图上于m/e91处显一强峰,试问其可能的结构是:( ) A. B. C. D. 三、问答题(5*5分=25分) 1.红外光谱产生必须具备的两个条件是什么? 2.影响物质红外光谱中峰位的因素有哪些? 3. 色散型光谱仪主要有哪些部分组成? 4. 核磁共振谱是物质内部什么运动在外部的一种表现形式? 5. 紫外光谱在有机化合物结构鉴定中的主要贡献是什么? 四、计算和推断题(9+9+17=35分) 1.某化合物(不含N元素)分子离子区质谱数据为M(72),相对丰度100%; M+1(73),相对丰度3.5%;M+2(74),相对丰度0.5%。 (1)分子中是否含有Br Cl? 。 (2) 分子中是否含有S? 。 (3)试确定其分子式为。 2. 分子式为C8H8O的化合物,IR(cm-1):3050,2950,1695,1600,1590,1460,1370,1260,760,690等处有吸收, (1)分子中有没有羟基(—O H)?。 (2)有没有苯环。 (3)其结构为。 3. 某未知物的分子式为C3H6O,质谱数据和核磁共振谱如图1、2所示,试推断其结构。 图1 、C3H6O的质谱

波谱解析

光谱分析基本定律——Lambert-Beer定律: 电磁波的波粒二象性——Planck方程: 电磁辐射按波长顺序排列称为电磁波谱(光波谱)。分区依次(短→长)为: γ射线区→X射线区→紫外光区(UV)→可见光区→红外光区(IR)→微波区→射频区(NMR)Franck-Condon原理:①电子跃迁时认为核间距r不变,发生垂直跃迁;②电子能级跃迁时必然同时伴有多种振动能级和转动能级的变化,同理振动能级跃迁时必然同时伴有多种转动能级的变化。 有机波谱的三要素:谱峰的①位臵(定性指标)、②强度(定量指标)和③形状。 【提请注意】对《天然药物化学成分波谱解析》(以下简称“教材”)P.5图1-8不理解的同学,应注意到轨道其中的“+”“-”表示的是波函数的位相,而不是电性!

E总=E0+E平+E转+E振+E电 电子跃迁类型: ①σ→σ*、②n→σ*、③π→π*、④n→π*,其中,后两者对紫外光谱有意义。此外,还包括主要存在于无机物的⑤电荷迁移跃迁和⑥配位场跃迁。 分子和原子与电磁波相互作用,从一个能级跃迁到另一个能级要遵循一定的规律,这些规律称为光谱选律。紫外光谱所遵循的选律包括:①自选旋律和②对称性选律。 影响紫外光谱最大吸收波长(λmax)的主要因素: ①电子跃迁类型; ②发色团(生色团)和助色团; ③π-π共轭、p-π共轭和σ-π超共轭(弱); ④溶剂和介质; 〃规律:溶剂极性增大,n→π*跃迁发生篮移(紫移),π→π*跃迁发生红移。 〃总结:溶剂的选择原则即紫外透明、溶解度好、化学惰性。 〃例子:甲醇、95%乙醇、环己烷、1,4-二氧六环。 【相关概念】等色点:同一化合物在不同pH条件下测得的紫外光谱曲线相交于一点,此即~。 ⑤顺反异构、空间位阻和跨环效应。 影响紫外光谱吸收强度(εmax)的主要因素: εmax=0.87×1020×P(跃迁几率)×α(发色团的靶面积) 【提请注意】严格地说,跃迁的强度最好是用吸收峰下的面积来测量(如果是以ε对ν作图)! 吸收带:跃迁类型相同的吸收峰称为~。包括:①R带(基团型谱带)、②K带(共轭型谱带)、③B带(苯型谱带)、④乙烯型谱带(E1带、E2带)。 【学习交流】不同文献对苯的吸收带命名不甚一致,有时也把E1带、E2带和B带分别叫做180带、200带和256带。为什么? 紫外光谱中计算λmax的四大经验规则: 基 ①Woodward-Fieser规则Ⅰ(适用于共轭二烯、共轭三烯和共轭四烯); ②Fieser-Kuhns规则(适用于共轭多烯); λmax=114+5M+n(48-1.7n)-16.5R endo-10R exo ③Woodward-Fieser规则Ⅱ(适用于α , β不饱和羰基化合物);

波谱解析名词解释

紫外吸收光谱 1. 紫外吸收光谱系分子吸收紫外光能、发生价电子能级跃迁而产生的吸收光谱,亦称电子光谱。 2. 曲折或肩峰:当吸收曲线在下降或上长升处有停顿或吸收稍有增加的现象。这种现象常由主峰内藏有其它吸收峰造成。 3. 末端吸收:是指紫外吸收曲线的短波末端处吸收增强,但未成峰形。 4. 电子跃迁选律:P9 5. 紫外吸收光谱的有关术语:P12-13 6. Woodward-fieser规则: P21 7. Fieser-kuhns规则:P23 红外吸收光谱 1. 振动偶合:分子内有近似相同振动频率且位于相邻部位(两个振动共用一个原子,或振动基团间有一个公用键)的振动基团,常常彼此相互作用,产生二种以上基团参加的混合振动,称之为振动偶合。 2. 基频峰:本征跃迁产生的吸收带称为本征吸收带,又称基频峰。 3. 倍频峰:由于真实分子的振动公是近似的简谐振动,不严格遵守⊿V=±1的选律,也可产生⊿V=±2或±3等跃迁,在红外光谱中产生波数为基频峰二倍或三倍处的吸收峰(不严格等于基频峰的整数倍,略小)称为倍频峰。 4. 结合频峰:基频峰间的相互作用,形成频率等于两个基频峰之和或之差的峰,叫结合频峰。 5. 泛频峰:倍频峰和结合频峰统称为泛频峰。 6. 热峰:跃迁发生在激发态之间,这种跃迁产生的吸收峰称为热峰。 7. 红外非活性振动:不产生红外吸收的振动称红外非活性振动。 核磁共振光谱 1. 磁偶极子:任何带电物体的旋转运动都会产生磁场,因此可把自旋核看作一个小磁棒,称为磁偶极子。 2. 核磁距:核磁偶极的大小用核磁矩表示。核磁矩与核的自旋角动量(P)和e/2M的乘积成正比。 3. 进动:具有磁矩的原子核在外磁场中一方面自旋一方面以一定角度(θ)绕磁场做回旋运动,这种现象叫做进动。 4. 核磁共振:当射频磁场的能量()等于核自旋跃迁能时(),即旋转磁场角频率()与核磁矩进动角频率()相等时,自旋核将吸收射频场能量,由α自旋态(低能态)跃迁至β自旋态(高能态)。即,核磁矩对的取向发生倒转,这种现象称之为核磁共振。 5. 饱和:在外加磁场中,低能级核吸收射频能量被激发至高能级产生核磁共振信号,结果使低能级核起来越少,结果是低高能级的核数目相等,体系净能量吸收为0,共振信号消失。 6.弛豫:高能态的核须通过其它适当的途径将其获得的能量释放到周围环境中去,使其回到低能态,这一过程称为弛豫。 7. 纵向弛豫:是高能态核释放能量(平动能、转动能)转移给周围分子骨架中的其它核回到平衡状态的过程。(气体和低黏度的液体中) 8. 横向弛豫:高能级核与低能级核相互通过自旋状态的交换而实现能量转移,每种自旋状态的总数并未改变,但使某些高能级核的寿命减短。(固体和高黏度液中) 9. 核磁共振波谱仪的组成:磁铁磁场扫描发生器---平行安放的线圈,用于有一个小范围内

波谱分析习题库答案

波谱分析复习题库答案 一、名词解释 1、化学位移:将待测氢核共振峰所在位置与某基准氢核共振峰所在位置进行比较,求其相对距离,称之为化学位移。 2、屏蔽效应:核外电子在与外加磁场垂直的平面上绕核旋转同时将产生一个与外加磁场相对抗的第二磁场,对于氢核来讲,等于增加了一个免受外磁场影响的防御措施,这种作用叫做电子的屏蔽效应。 3、相对丰度:首先选择一个强度最大的离子峰,把它的强度作为100%,并把这个峰作为基峰。将其它离子峰的强度与基峰作比较,求出它们的相对强度,称为相对丰度。 4、氮律:分子中含偶数个氮原子,或不含氮原子,则它的分子量就一定是偶数。如分子中含奇数个氮原子,则分子量就一定是奇数。 5、分子离子:分子失去一个电子而生成带正电荷的自由基为分子离子。 6、助色团:含有非成键n电子的杂原子饱和基团,本身在紫外可见光范围内不产生吸收,但当与生色团相连时,可使其吸收峰向长波方向移动,并使吸收强度增加的基团。 7、特征峰:红外光谱中4000-1333cm-1区域为特征谱带区,该区的吸收峰为特征峰。 8、质荷比:质量与电荷的比值为质荷比。 9、磁等同氢核化学环境相同、化学位移相同、对组外氢核表现相同偶合作用强度的氢核。 10、发色团:分子结构中含有π电子的基团称为发色团。 11、磁等同H核:化学环境相同,化学位移相同,且对组外氢核表现出相同耦合作用强度,想互之间虽有自旋耦合却不裂分的氢核。 12、质谱:就是把化合物分子用一定方式裂解后生成的各种离子,按其质量大小排列而成的图谱。 13、i-裂解:正电荷引发的裂解过程,涉及两个电子的转移,从而导致正电荷位置的迁移。 14、α-裂解:自由基引发的裂解过程,由自由基重新组成新键而在α位断裂,正电荷保持在原位。 15、红移吸收峰向长波方向移动 16. 能级跃迁分子由较低的能级状态(基态)跃迁到较高的能级状态(激发态)称为能级跃迁。 17. 摩尔吸光系数浓度为1mol/L,光程为1cm时的吸光度 二、选择题 1、波长为670.7nm的辐射,其频率(MHz)数值为(A) A、4.47×108 B、4.47×107 C、1.49×106 D、1.49×1010 2、紫外光谱的产生是由电子能级跃迁所致,能级差的大小决定了(C) A、吸收峰的强度 B、吸收峰的数目 C、吸收峰的位置 D、吸收峰的形状 3、紫外光谱是带状光谱的原因是由于(C )

波谱分析知识全书总结剖析

波谱分析(spectra analysis) 波谱分析的内涵与外延: 定义:利用特定的仪器,测试化合物的多种特征波谱图,通过分析推断化合物的分子结构。特定的仪器:紫外,红外,核磁,质谱,(X-射线,圆二色谱等) 特征波谱图: 四大谱;X-射线单晶衍射,圆二色谱等 化合物:一般为纯的有机化合物 分子结构:分子中原子的连接顺序、位置;构象,空间结构 仪器分析(定量),波谱分析(定性) 综合性、交叉科学(化学、物理、数学、自动化、计算机) 作用:波谱解析理论原理是物理学,主要应用于化学领域(天然产物化学和中药化学、有机化学、药物化学等),在药物、化工,石油,食品及其它工业部门有着广泛的应用;分析的主要对象是有机化合物。 课程要求:本课将在学生学习有机化学、分析化学、物理化学等课程的基础上,系统讲授紫外光谱(UV)、红外光谱(IR)、核磁共振光谱(NMR)和质谱(MS)这四大光谱的基本原理、特征、规律及图谱解析技术,并且介绍这四大光谱解析技术的综合运用,培养学生掌握解析简单有机化合物波谱图的能力。为学习中药化学有效成分的结构鉴定打下基础。 第一章紫外光谱(ultraviolet spectra,UV) 一、电磁波的基本性质和分类 1、波粒二象性 光的三要素:波长(λ),速度(c),频率(v) 电磁波的波动性 光速c:c=3.0 x 1010 cm/s 波长λ :电磁波相邻波峰间的距离。用nm,μm,cm,m 等表示 频率v:v=c/ λ,用Hz 表示。 电磁波的粒子性 光子具有能量,其能量大小由下式决定: E = hν = hc/λ(式中E为光子的能量,h为普朗克常数,其值为6.624× 10-34j.s ) 电磁波的分类

波谱解析名词解释

《波谱解析名词解释》 1.助学团:某些饱和的原子团本身在近紫外区无吸收的,并不“发色”,但其与发色团相连或共轭时,能使发色团的吸收峰长波方向移动,强度增强,这些基团称为助色团。常用的助色团有—OH,—OR,—NR2,—SR,—Cl,—Br,—I等。 2.发色团:有机化合物分子结构中有能吸收紫外光或可见光的基团,此类基团称为发色团。 3红移:由于化学环境的变化而导致吸收峰长波方向移动的现象叫做红移。 4蓝移:导致吸收峰向短波方向移动的现象叫做蓝移。 5.增色效应:使紫外吸收强度增加的作用。 6.减色效应:使紫外吸收强度降低的作用。第二章红外光谱 1费米(Fermi)共振:由频率相近的倍频峰和基频峰相互作用产生,结果使倍频峰的强度增大或发生裂分。 2伸缩振动:沿键轴方向发生周期性变化的振动称为伸缩振动。 3弯曲振动:沿键角发生周期性变化的振动称为弯曲振动。 4基频峰:从基态跃迁到第一激发态时将产生一个强的吸收峰,即基频峰。 5倍频峰:从基态跃迁到第二激发态,第三激发时将产生相应弱的吸收峰,即倍频峰。6振动自由度:将多原子分子的复杂振动分解成若干个简单的基本振动,这些基本振动的数目称为分子的振动自由度。 7指纹区:在红外光谱中,波数在1330~667cm-1范围内称为指纹区 8振动偶合效应:当两个相同的基团在分子中靠得很近时,其相应的特征峰常发生分裂,形成两个峰,这种现象叫作振动偶合。 9诱导效应:在有机化合物分子中,由于电负性不同的取代基(原子或原子团)的影响,使整个分子中的成键电子云密度向某一方向偏移,这种效应叫诱导效应。 10共轭效应:共轭体系中电子离域现象称为共轭效应。 第三章 1化学位移:是指将待测氢核共振峰所在位置与某基准物质氢核所在的位置进行比较,

波谱分析复习题

《波普分析》复习题集 一、选择题 1.波长为670.7nm的辐射,其频率(MHz)数值为()A、4.47×108 B、4.47×107 C、 1.49×106 D、1.49×1010 2.紫外光谱的产生是由电子能级跃迁所致,能级差的大小决定了()A、吸收峰的强度B、 吸收峰的数目C、吸收峰的位置D、吸收峰的形状 3.紫外光谱是带状光谱的原因是由于()A、紫外光能量大B、波长短C、电子能级跃迁的 同时伴随有振动及转动能级跃迁的原因D、电子能级差大 4.化合物中,下面哪一种跃迁所需的能量最高?()A、σ→σ﹡B、π→π﹡ C、 n→σ﹡ D、n→π﹡ 5.n→π﹡跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大()A、水 B、甲 醇 C、乙醇 D、正已烷 6.CH3-CH3的哪种振动形式是非红外活性的()A、νC-C B、νC-H C、δasCH D、δsCH 7.能作为色散型红外光谱仪的色散元件材料为:()A、玻璃B、石英C、红宝石 D、 卤化物晶体 8.若外加磁场的强度H0逐渐加大时,则使原子核自旋能级的低能态跃迁到高能态所需的能量是如何 变化的?()A、不变 B、逐渐变大C、逐渐变小 D、随原核而变 9.下列哪种核不适宜核磁共振测定()A、12C B、15N C、19F D、31P 10.苯环上哪种取代基存在时,其芳环质子化学位值最大()A、–CH2CH3 B、–OCH3 C、 –CH=CH2 D、-CHO 11.质子的化学位移有如下顺序:苯(7.27)>乙烯(5.25) >乙炔(1.80) >乙烷(0.80),其原因为:()A、 诱导效应所致B、杂化效应所致C、各向异性效应所致D、杂化效应和各向异性效应协同作用的结果 12.含奇数个氮原子有机化合物,其分子离子的质荷比值为:()A、偶数B、奇数C、 不一定D、决定于电子数

有机波谱分析名词解释

红外“活性”振动:在振动过程中?μ≠0,其吸收带在红外光谱中可见。 红外“非活性”振动:偶极矩不发生改变(?μ=0)的振动,这种振动不吸收红外光,在IR谱中观测不到。 3.自由度:基本振动的数目称为振动自由度。 4.振动偶合效应:当两个或两个以上相同的基团连接在分子中同一个原子上时,其振动吸收带常发生裂分,形成双蜂,这种现象称振动偶合 5.特征频率或特征吸收谱带:某些官能团有比较固定的吸收频率,可以作为鉴定官能团的依据。 6.相关峰:每个官能团都有几种振动方式,能产生红外吸收光谱的每种振动一般产生一个相应的吸收峰。习惯上把这些相互依存又可相互佐证的吸收峰。

7.指纹区:<1333cm-1的频率区域,主要是各种单键(如C-C,C-N,C-O等)的伸缩振动与各 种弯曲振动吸收区。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。 简答题: ?1.红外光谱的原理:分子吸收红外光引起的振动能级和转动能级跃迁而产生的信号。 (记忆:振、转光谱——红外光谱) ?2.红外光谱的产生条件: 当红外光的频率恰好等于基团的振动频率时,分子能吸收该频率的红外光,即形成IR。 ①振动分为:伸缩振动(键长)、弯曲振动(键角) ②频率:化学键力常数k ③红外光被吸收条件:νIR = ν振动;Δμ振动≠0Δμ越大,吸收越强。 3.红外光谱表示方法: 用仪器按照波数(或波长)记录透射光强度(或吸收光强度)→红外光谱图 横坐标:波数(cm-1)或波长(μ m) 纵坐标:透光率(T/%)或吸光度(A) 7.理论上,每个振动自由度在红外光谱区均产生一个吸收峰,但实际的红外谱图中峰的数目比自由度少? 因为:(1)有偶极矩变化的振动才会产生红外吸收,无瞬间偶极矩变化的振动则不出现红外吸收。 (2)频率完全相同的振动导致峰重叠彼此发生简并。 (3)强宽峰往往要覆盖与它频率相近的弱而窄的吸收峰。 (4)某些振动的吸收强度太弱,以至无法清晰地予以记录。 (5)某些振动的吸收频率超出了记录范围(4000~650cm-1)。 ?8.决定峰强的因素 ①强度与分子振动的对称性:对称性↑→偶极矩变化↓→强度↓ ②强度与基团极性:极性↑→偶极矩变化↑→强度↑ ③强度与分子振动能级跃迁几率:跃迁几率↑→强度↑ ④强度与样品浓度:样品浓度↑→强度↑ 9.影响红外峰位、峰强的因素 1.内部因素: (1)电子效应: a.诱导效应:吸电子基团(-I 效应)使吸收峰向高频方向移动(兰移) b.共轭效应:(+C效应)吸收峰向低波数区移动 (2)空间效应: a.空间位阻:阻碍杂化或共轭 向高波数位移。 b.环张力:环张力的增大,ν C=C (3)场效应:原子或原子团的静电场通过空间相互作用 (4)氢键效应:氢键形成,低波数位移 (5)互变异构 (6)振动偶合效应。 2.外部因素:溶剂、浓度

吉大《波谱分析》离线作业及答案

一、名词解释(每小题5分,共30分) 1. 化学位移:由原于核和周围电子静电场之间的相互作用引起的Y发射和吸收能级间的相对移动。 2. 屏蔽效应:由于其他电子对某一电子的排斥作用而抵消了一部分核电荷对该电子的吸引力,从而引起有效核电荷的降低,削弱了核电荷对该电子的吸引,这种作用称为屏蔽作用或屏蔽效应。 3. 相对丰度:相对丰度又称同位素丰度比(isotopic abundance ratio),指气体中轻组分的丰度C与其余组分丰度之和的比值。 4. 氮律: 分子中含偶数个氮原子或不含氮原子则它的分子量就一定是偶数。如分子中含奇数个氮原子,则分子量就一定是奇数。? 5. 分子离子:分子失去一个电子而生成带正电荷的自由基为分子离子。 6. 助色团:含有非成键n电子的杂原子饱和基团,本身在紫外可见光范围内不产生吸收,但当与生色团相连时,可使其吸收峰向长波方向移动,并吸收强度增加的基团。 二、简答题(每小题8分,共40分) 1、色散型光谱仪主要有几部分组成及其作用; 答:由光源、分光系统、检测器3部分组成。光源产生的光分为两路:一路通过样品,另一路通过参比溶液。切光器控制使参比光束和样品光束交替进入单色器。检测器在样品吸收后破坏两束光的平衡下产生信号,该信号被放大后被记录。 2、紫外光谱在有机化合物结构鉴定中的主要贡献; 答:在有机化合物结构鉴定中,紫外光谱在确定有机化合物的共轭体系、生色团和芳香性等方面有独到之处。 3、在质谱中亚稳离子是如何产生的?以及在碎片离子解析过程中的作用是什么答:离子m1在离子源主缝至分离器电场边界之间发生裂解,丢失中性碎片,得到新的离子m2。这个m2与在电离室中产生的m2具有相同的质量,但受到同m1一样的加速电压,运动速度与m1相同,在分离器中按m2偏转,因而质谱中记录的位置在m*处,m*是亚稳离子的表观质量,这样就产生了亚稳离子。?

波谱解析》资料A(精品含答案)

《波谱解析》资料A 一、填空 1.偏离Beer 定律的两大因素是 与 。 2.在UV 光谱中,随着溶剂极性增加,n →π*跃迁产生的吸收峰向 方向移动。 3. K 带的跃迁类型为 ,波长范围为 ,吸收强度为 ,结构单元为 。 4. 红外光谱的产生条件是 和 。 5.在IR 光谱中,Δμ=0的振动,称之为红外 振动。 6. 特征区的波数范围是 ,在此区域内吸收峰主要来源于 的伸缩振动和 的弯曲振动。 7. 共轭效应使红外吸收峰向 方向移动,形成氢键使红外吸收峰向 方向移动。 8. 在IR 光谱中,化学键力常数K 越 ,折合质量越 ,则基频峰的波数值越大。 9.在NMR 波谱中,正屏蔽效应使质子共振吸收信号向 场位移,值 。 10. 由自旋偶合引起共振吸收峰分裂的现象称为 。 11.在NMR 波谱中, 有 组峰。 12. 在质谱中,当碎片离子不含氮时,如其质量数为偶数,所含电子数一定 为 数。 13. 在MS 中,确定物质分子式的方法有 和 。 二,单项选择 1. 某化合物,在正己烷中测定,其最大吸收峰波长λmax =329nm,在水中测定,则 λmax =305nm,那么该吸收峰的跃迁类型为( )。 A. n → σ* B. σ→ σ* C. n → π* D.π→ π* CH 3 C O CH 2 C CH 3CH 3 OH

2. 符合比尔定律的有色溶液稀释时,其最大吸收峰的波长位置和吸收强度将( )。 A.向长波移动,吸收度增加 B.向短波移动,吸收度增加 C.不移动,吸收度降低 D.向短波移动,吸收度降低 3、在可见分光光度法中,试样空白溶液的组成是( )。 A. 纯溶剂 B. 溶剂+各种试剂+显色剂 C. 溶剂+各种试剂 D.溶剂+各种试剂(显色剂除外)+等量的试样 4. 化合物其K 带最大吸收波长λmax 为( ) A. 353nm B. 348nm C. 323nm D. 314nm 5、四个羰基化合物,羰基的伸缩振动频率分别为1623cm -1,1715cm -1,1800cm -1, 请指出峰位为1623cm -1的化合物是( ) A. CH 3CH 23O B. CH CHCHO C. CH 2CH(CH 3)2 C Cl O D. CH 3CH 2CH 2CHO 6.在NMR 波谱中,化学位移产生的原因是( )。 A .共轭效应 B.诱导效应 C.磁各向异性效应 D. 屏蔽效应 7. 在NMR 中,当质子核外的电子云密度增加时,( )。 A. 屏蔽效应增强,吸收峰向高场移动,化学位移值增大; B. 屏蔽效应增强,吸收峰向高场移动,化学位移值减小; C. 屏蔽效应减弱,吸收峰向高场移动,化学位移值增大; D. 屏蔽效应减弱,吸收峰向低场移动,化学位移值减小。 8. 化合物CH 3CH 2CH 3的1HNMR 中,CH 2的质子受CH 3质子自旋耦合的影响,其共振吸收峰被裂分为( )。 A. 四重峰 B. 五重峰 C. 六重峰 D. 七重峰 9.关于磁等价和化学等价下列说法正确的是( )。 A .化学等价一定磁等价 B .磁等价一定化学等价

波谱解析1_4答案

波谱解析试题1 一、名词解释: 1.发色团 2. 化学位移 二、简答题: 1.红外光谱在结构研究中有何用途? 2.偏共振去偶碳谱在结构研究中具有什么样的意义? 三、化合物可能是A或B,它的紫外吸收λmax 为314nm (lgε=4.2),指出这个化合物是属于哪一种结构。 (A)(B) 四、下面为化合物A、B的红外光谱图,可根据哪些振动吸收峰推断化合物A、B中分别存在哪些官能团? A:

B: 五、归属下列化合物碳谱中的碳信号。(15)

六、某化合物的分子式为C14H14S,其氢谱如下图所示,试推断该化合物的结构式,并写出推导过程。(15分) 七、某化合物分子式为C3H7ON, 结合下面给出的图谱,试推断其结构,并写出简单的推导过程。

波谱解析试题1答案 一、名词解释: 1.发色团:从广义上讲, 分子中能吸收紫外光和(或)可见光的结构系统叫做发色团。因常用的紫外光谱仪的测定围是200~40Onm 的近紫外区, 故在紫外分析中,只有π-π* 和(或)n-π* 跃迁才有意义。故从狭义上讲,凡具有π键电子的基团称为发色团 2. 化学位移:不同类型氢核因所处化学环境不同, 共振峰将分别出现在磁场的不同区域。实际工作中多将待测氢核共振峰所在位置( 以磁场强度或相应的共振频率表示) 与某基准物氢核共振峰所在位置进行比较, 求其相对距离, 称之为化学位移。 二、简答题: 1.红外光谱在结构研究中有何用途? (1)鉴定是否为某已知成分 (2)鉴定未知结构的官能团 (3)其他方面的应用:几何构型的区别;立体构象的确定;分子互变异构与同分异构的确定。 2.偏共振去偶碳谱在结构研究中具有什么样的意义? 当照射1H 核用的电磁辐射偏离所有l H 核的共振频率一定距离时, 测得的13C-NMR(OFR) 谱中将不能完全消除直接相连的氢的偶合影响。此时,13C的信号将分别表现为q (CH3), t (CH2),d(CH),s(C)。据此,可以判断谈的类型。 三、 A: 217(基值)+30(共轭双烯)+5×2(环外双键)+5×4(烷基)=277(nm)

!波谱解析试题6

波谱解析试题库-试卷6 (天然药物化学教研室) 一、名词解释(10分) 1、f ermi 共振 2、R-带 3、偶合常数 4、c hemical shift 5、分子离子峰 二、选择题(20分) 1、下列化合物中,在近紫外区(200?400nm)无吸收的是: A、B、I C、」'D、 2、紫外光谱是由以下哪种跃迁所产生: A分子振动能级的跃迁B分子转动能级的跃迁 C价电子的跃迁D自旋核的跃迁 3、某化合物在250nm有紫外吸收,且lg c >4,该化合物是: A Q o t 廿D OT O CH3 4、比较下列化合物中Vc=o的大小,正确的是: A醛> 酯> 酰胺B酯> 醛> 酰胺 C酰胺> 酯〉醛D醛> 酰胺〉酯 5、下列哪个区域可以区分环戊烷和戊-2-烯? 11 1 A 1610~1680cm- B 2000~3300 cm- C 2070~2280cm- D 3230~3670 cm Array &根据下面的红外光谱,判断其结构可能是以下哪个化合物? A戊-1-醇B 丁-2-酮C 2- 甲基-辛-1-烯 D 环戊烷 7、下列说法错误的是:

A形成氢键缔合的-OH与游离-OH相比,峰形变宽,吸收峰向高波数方向位移; B CQ的对称伸缩振动不产生红外吸收; C化学键力常数k值与波数成正比; D基频峰的强度主要取决于振动过程中偶极矩的变化。 8、分子中质子受到的屏蔽效应的大小,取决于: A.电子密度 B ?外加磁场C ?测定溶剂 D . NMR仪器 9、在苯环上互为邻位的H质子间的J值为: A、0-1Hz B、1-3Hz C、6-10Hz D、12-18Hz

有机化合物波谱解析复习资料指导

有机化合物波谱解析 复习指导 广东药学院 天然药物化学教研室 200 5年 5 月

目录 第一章紫外光谱… … … … …… … … … … …… 2~4 第二章红外光谱… … … … … … …… ………… 5~11 第三章核磁共振… … … … … … … …… … ……… 12~34 第四章质谱… … … … …… … … … … … … …35~41 第五章综合解析… … … …… … … … … … … …… 42~70

第一章紫外光谱 一、名词解释 1、助色团 2、发色团 3、红移 4、蓝移 5、增色作用 6、减色作用 7、吸收带 二、选择题 1、不是助色团的是: A、-OH B、-Cl C、-SH D、CH3CH2- 2、所需电子能量最小的电子跃迁是: A、σ→σ* B、n →σ* C、π→π* D、n →π* 3、下列说法正确的是: A、饱和烃类在远紫外区有吸收 B、UV吸收无加和性 C、π→π*跃迁的吸收强度比n →σ*跃迁要强10-100倍 D、共轭双键数目越多,吸收峰越向蓝移 4、紫外光谱的峰强用εmax表示,当εmax=5000~10000时,表示峰带: A、很强吸收 B、强吸收 C、中强吸收 D、弱吸收 5、近紫外区的波长为: A、4-200nm B、200-300nm C、200-400nm D、300-400nm 6、紫外光谱中,苯通常有3个吸收带,其中λmax在230~270之间,中心为254nm 的吸收带是: A、R带 B、B带 C、K带 D、E1带 7、紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了: A、吸收峰的强度 B、吸收峰的数目 C、吸收峰的位置 D、吸收峰的形状 8、紫外光谱是带状光谱的原因是由于: A、紫外光能量大 B、波长短 C、电子能级差大 D、电子能级跃迁的同时伴随有振动及转动能级跃迁的原因 9、π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收波长最大: A、水 B、乙醇 C、甲醇 D、正己烷 10、下列化合物中,在近紫外区(200~400nm)无吸收的是:

波谱解析名词解释

1.强带:吸光系数大于10000的吸收峰 2.弱带:吸光系数小于1000的吸收峰 3.发色团:分子结构中含有π电子的基团 4.助色团:含有非成键n电子的杂原子饱和基团,其本身在紫外可见光吸收范围内不产生吸收,但当它们与生色团或饱和烃相连时,能使该生色团的吸收峰红移,并使吸收强度增加的基团。 5.红移:亦称长移。由于化合物结构的改变,如发生共轭作用,引入助色团以及溶剂改变等,使吸收峰向长波方向移动。 6.蓝移:亦称短移。当化合物结构改变时或受溶剂影响,吸收峰向短波方向移动。 7.增色效应:浓色效应。由于化合物结构改变或其他原因吸收强度增加。 8.减色效应:淡色效应。由于化合物结构改变或其他原因吸收强度减弱。 9.B带:苯环的π-π跃迁所产生的吸收带,是芳香族化合物的特征吸收。出现区域为230-270nm,吸光系数约为220,中心在258nm. 10.E带:苯环烯键π电子π-π跃迁所产生的吸收带。E1带吸收峰出现在184nm,强吸收,E2带为共轭烯键π-π跃迁所产生的吸收带,吸收峰出现在203nm.中等强度。 11.波长极限:紫外中使用溶剂时的最低波长限度,低于此波长,溶剂有吸收。

1.基频峰:从基态跃迁到第一激发态时所引起的吸收峰。 2.倍频峰:从基态直接跃迁到第二激发态时所引起的吸收峰。 3.红外光谱中峰数少于基本振动数目的原因: (1)振动过程不发生瞬间偶极矩变化; (2)频率相同,互相兼并; (3)强峰覆盖弱峰; (4)吸收峰落在中红外区外(4000-400); (5)峰强太弱,无法测定。 4.振动耦合:当两个相同的基团在分子中靠的很近,其相应的特征吸收峰常发生裂分,形成两个峰,这种现象叫做振动耦合。 5.费米共振:当倍频峰(或组频峰)位于某强的基频峰附近时,倍频峰的吸收强度常被大大强化(或发生峰带裂分),这种倍频与基频之间发生的振动耦合称为费米共振。 三、核磁共振 1.饱和:低能级核全部向高能级跃迁,不再吸收能量,核磁共振信号逐渐衰退,直至完全消失,这种状态叫做饱和。 2.驰豫:低能级核向高能级跃迁,高能态必须放出能量回到低能态,使低能态始终维持优势,非辐射到低能态的过程叫做驰豫。 3.扫频:固定磁场强度,改变电磁辐射频率获得共振信号叫扫频。 4.扫场:固定电磁辐射频率,改变磁场强度获得共振信号叫扫场。 5电子屏蔽效应:氢核外围的电子在与外磁场垂直的平面上绕核旋转

波谱分析四套试题附答案

波普解析试题A 二、选择题。( 10*2分=20分) 1.化合物中只有一个羰基,却在1773cm-1和1736cm-1处出现两个吸收峰 这是因为:() A、诱导效应 B、共轭效应 C、费米共振 D、空间位阻 2. 一种能作为色散型红外光谱仪的色散元件材料为:() A、玻璃 B、石英 C、红宝石 D、卤化物晶体 3.预测H2S分子的基频峰数为:() A、4 B、3 C、2 D、1 4.若外加磁场的强度H0逐渐加大时,则使原子核自旋能级的低能态跃迁到高能态所需的能量是如何变化的:() A、不变 B、逐渐变大 C、逐渐变小 D、随原核而变 5.下列哪种核不适宜核磁共振测定:() A、12C B、15N C、19F D、31P 6.在丁酮质谱中,质荷比质为29的碎片离子是发生了() A、α-裂解 B、I-裂解 C、重排裂解 D、γ-H迁移 7.在四谱综合解析过程中,确定苯环取代基的位置,最有效的方法是() A、紫外和核磁 B、质谱和红外 C、红外和核磁 D、质谱和核磁 8.下列化合物按1H化学位移值从大到小排列 ( ) a.CH2=CH2 b.CH CH c.HCHO d. A、a、b、c、d B、a、c、b、d C、c、d、a、b D、d、c、b、a 9.在碱性条件下,苯酚的最大吸波长将发生何种变化? ( ) A.红移 B. 蓝移 C. 不变 D. 不能确定 10.芳烃(M=134), 质谱图上于m/e91处显一强峰,试问其可能的结构是: ( ) A. B. C. D. 三、问答题(5*5分=25分) 1.红外光谱产生必须具备的两个条件是? 2.影响物质红外光谱峰位的因素有哪些? 3. 色散型光谱仪主要有哪些部分组成? 4. 核磁共振谱是物质内部什么运动在外部的一种表现形式? 5. 紫外光谱在有机化合物结构鉴定中的主要贡献是什么? 四、计算和推断题(9+9+17=35分) 1.某化合物(不含N元素)分子离子区质谱数据为M(72),相对丰度100%; M+1(73),相对丰度3.5%;M+2(74),相对丰度0.5%。 (1)分子中是否含有Br Cl? 。 (2) 分子中是否含有S? 。(3)试确定其分子式为。 2. 分子式为C8H8O的化合物,IR(cm-1):3050,2950,1695,1600,1590,1460,1370,1260,760,690等处有吸收, (1)分子中有没有羟基(—O H)?。(2)有没有苯环

波谱分析复习资料

波谱分析复习资料 绪论 【波谱分析的定义】物质在电磁波的照射下,引起分子内部某些运动,从而吸收或散射某种波长的光,将入射光强度变化或散射光的信号记录下来,得到的信号强度与光的波长(波数、频率)散射角度的关系图,用于物质的结构、组成及化学变化的分析,称为波普分析。 第一章紫外光谱 1、UV产生原理?电子跃迁类型、能级大小和相对应的吸收波段 【原理】分子吸收紫外光发生价电子能级跃迁而产生的吸收光谱。分子中电子的分布及相应的能级,决定了分子紫外吸收光谱特征。 【类型】σ→σ*跃迁是单键中的σ电子在σ成键和反键轨道间的跃迁。跃迁需要的能量最大,相应的激发光波长最短,在150~160nm范围内。 n →σ*跃迁是O、N、S和卤素等杂原子的未成键电子向σ反键轨道跃迁。跃迁 需要的能量较小,相应的吸收带的波长较长,一般出现在200nm附近。半径较大 的杂原子(如S、I),其n轨道的能级较高,此跃迁所需能量较低,故含S或I 的 饱和有机化合物在220~250nm附近可能产生这种跃迁。 π→π*跃迁是不饱和键中的π电子吸收能量跃迁到π*轨道。孤立双键π→π* 跃迁产生的吸收带位于160~180nm,但在共轭双键体系中,吸收带向长波方向移 动(红移)。共轭体系愈大,π→π*跃迁产生的吸收带波长愈大。 n→π*跃迁当不饱和键上连有杂原子(如C=O、—NO2)时,杂原子上的n电子 跃迁到π*轨道。n→π*跃迁所需要的能量最小,所对应的吸收带位于270~300nm 的近紫外区。 各电子跃迁的能级差ΔE存在以下次序:σ→σ*>n→σ*≥π→π*﹥n→π* 2、什么叫发色团(生色)和助色团?红移,长移,增色效应,短移,蓝移? 【发色团】分子中含有π电子的基团(如C=C、C=O、—N=N—、—C≡N、—NO2、—C6H5)成为发色团。他们能产生π→π*和(或)n→π*跃迁从而能在紫外—可见光范围能产生吸收。 【助色团】含有未成键n电子的杂原子饱和基团(如—OH、—NH2、—SR、—Cl、—Br、—I),他们本身在紫外—可见光范围内不产生吸收,但当他们与发色团相连时,能使该发色团的吸收峰向长波方向移动,并使吸收峰强度增加,被称为助色团。 【红移(长移)和蓝移(短移)】吸收峰向长波长方向移动称为红移(长移),想短波长方向移动称为蓝移(短移) 【增色效应】 3、电磁波分类?能量大小? 波长越大,能量越小。

相关主题
文本预览
相关文档 最新文档