当前位置:文档之家› 基于BP网络的电机故障诊断_周武.caj

基于BP网络的电机故障诊断_周武.caj

基于BP网络的电机故障诊断_周武.caj

摘要:介绍了BP神经网络以及电机故障诊断的发展和电动机故障诊断常见的技术方法,列举了电机故障征兆集。设计一个具有电机故障诊断功能的BP网络系统,给出了matlab关键程序和运行结果。

关键词:BP神经网络电机故障诊断

0引言

电机的正常工作对保证生产制造过程的正常进行意义非常重大。因此对电机故障的诊断要求十分迫切,通过对电机常见故障的诊断和分析,可以及早发现故障和预防故障的进一步恶化。随着芯片技术的发展及智能技术的应用,诊断技术已经进入了一个新的阶段,一种基于人工智能技术的诊断方法。该文用BP神经网络综合实现电机故障的诊断。

1BP神经网络

人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

BP(Back Propagation)网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

BP算法理论具有依据可靠、推导过程严谨、精度较高、通用性较好等优点,但标准BP算法存在以下缺点:收敛速度缓慢,容易陷入局部极小值,难以确定隐层数和隐层节点个数。在实际应用中,BP 算法很难胜任,因此出现了很多改进算法:①利用动量法改进BP算法;②自适应调整学习速率;③动量-自适应学习速率调整算法;④L-M学习规则。

2电机故障诊断

由于人为的因素,仅依靠日常的“听、摸、看”难免会造成一定的判断失误,一方面造成电机抱轴等严重事故的发生,另一方面又可能对状态较好的电机进行停车检修,如此不仅不能保证装置的平稳运行,同时还造成了检修费用的大量浪费。

故障诊断技术发展至今已经历了三个阶段:第一阶段由于机器设备比较简单,故障诊断主要依靠专家或维修人员的感觉器官、个人经验及简单仪表就能胜任故障的诊断与排除工作;传感器技术、动态测试技术及信号分析技术的发展使得诊断技术进入了第二个阶段,并且在维修工程和可靠性工程中得到了广泛的应用;80年代初期,由于机器设备日趋复杂化、智能化及光机电一体化,传统的诊断技术已经不能适应了,随着计算机技术、人工智能技术特别是专家系统的发展,诊断技术进入第三个发展阶段—智能化阶段。

电机故障诊断,尤其是多个故障特征信号相互交织叠加时,很难仅凭肉眼进行判断识别,而人工神经网络具有独特的非线性映射、联想记忆、自适应与自学习以及良好的容错性等优点,十分适用于复杂电机系统的故障诊断。

各种类型的电机具有相同的基本原理,电机内部都有电路、磁路、绝缘和机械等独立而相互关联的系统,一般用于电动机故障诊断的技术方法有:①电流分析法。通过对电机电流幅值、波形的检测和频谱分析,诊断电机故障的原因和程度。例如通过检测交流电动机的电流,进行频谱分析来诊断电机是否存在转子绕组断条、气隙偏心、定子绕组故障、转子不平衡等缺陷。②振动诊断法。通过对电动机的振动检测,对信号进行各种处理和分析,诊断电机产生故障的原因和部位,并制定处理方案。③绝缘诊断。利用各种电气试验和特殊诊断技术,对电机的绝缘结构、工作性能和是否存在缺陷作出结论,并对绝缘剩余寿命作出预测。④温度诊断。用各种温度检测方法和红外测温技术,对电机各部分温度进行监测和故障诊断。⑤振声诊断技术。振声诊断技术是对诊断的对象同时采集振动信号和噪声信号,分别进行信号处理,然后综合诊断,因而可以大大提高诊断的准确率。

3系统总体方案

表1为该系统列出了5

种常见的电机故障征兆集和,

在集合中,“1”表示有征兆存

在,“0”表示征兆不存在。

根据经验输出为电机的

故障等级,范围从0~1,表1

的样本输入对应的样本输出如表2。

4软件实现

BP网络在Matlab上的仿真程序设计主要包括:输入层、隐含层、输出层及各层之间的传输函数几个方面。输入和输出样本分别为表1和表2。利用Matlab在模式识别方面采用采用自适应学习率BP算法计算机进行仿真。这里用到matalab神经网络工具箱中的一个非常实用的函数newff。newff函数需要4个输入参数。第一个参数是一个Rx2的矩阵以定义R个输入向量的最小值和最大值。第二个参数是一个设定每层神经元个数的数组。第三个参数是包含每层用到的传递函数名称的细胞数组。最后一个参数是用到的训练函数的名称。

根据表1样本输入和表2样本输出,创建bp网络和定义训练函数,是为了方便而建立一个矩阵,用newff函数来训练BP网络。关键程序如下:net=newff([01;01;01;01;01],[51],{'logsig','pure-lin'},'trainlm');%这里要加入输出层的转移函数,一般是trainlm;net. trainParam.goal=0.001;net.trainParam.epochs=5000;[net,tr]=train (net,p,t);%训练神经网络iw1=net.IW{1};%输出训练后的权值和阈值:b1=net.b{1};lw2=net.LW{2};b2=net.b{2};save net51net。

5结束语

神经网络是智能控制技术的主要分支之一,在神经网络系统中,BP网络有着广泛的应用,但各种算法在实际问题中都存在着一些具体的问题,使得BP网络的应用受到一定的限制,因此对这些算法还应进一步改进。利用Matlab神经网络工具箱可实现BP网络的程序设计、训练和仿真,要利用先进技术解决传统控制问题。BP网络运用于电机故障诊断可以提高工作的可靠性及其系统的灵活性。

基于BP网络的电机故障诊断

周武(抚州金安铀业有限公司)

表1电机故障征兆表(样本输入)

故障类型01234567

1.电机温度10110000

2.电机噪声01011000

3.电机振动00100111

4.绝缘性能00101100

5.换向性能11000101

表2电机故障(样本输出)

电机故障0.530.560.410.090.310.880.130.63

设计来消除机械抖动。

7显示管的输入信号电路

本设计使用的输

入信号电路主要是

74LS48,八段数码显

示管的输入信号是八

位数,而CPU提供的

信号是三位的,通过

74LS48把三位的信号

转化为八位的信号。

8报警电路

该报警电路的作用是在参赛人员按键时进行报警。当主持人发出抢答信号,而有人员抢答就有报警。此时报警灯闪烁一次,蜂鸣器发出报警声,提示主持人有人要答题。

参考文献:

[1]余发山.单片机原理及应用技术.徐州:中国矿业大学出版社,2003.21-209.

[2]赫建国,郑燕,薛延侠.单片机在设计电路中的应用.北京:清华大学出版社.2006.35-52.

[3]李华.MCS-51系列单片机实用接口技术.北京:北京航空航天大学出版社.1993.36-58.

(上接第249页)

实用科技

250

数学建模神经网络预测模型及程序

年份 (年) 1(1988) 2(1989) 3(1990) 4(1991) 5(1992) 6(1993) 7(1994) 8(1995) 实际值 (ERI) 年份 (年) 9(1996) 10(1997) 11(1998) 12(1999) 13(2000) 14(2001) 15(2002) 16(2003) 实际值 (ERI) BP 神经网络的训练过程为: 先用1988 年到2002 年的指标历史数据作为网络的输入,用1989 年到2003 年的指标历史数据作为网络的输出,组成训练集对网络进行训练,使之误差达到满意的程度,用这样训练好的网络进行预测. 采用滚动预测方法进行预测:滚动预测方法是通过一组历史数据预测未来某一时刻的值,然后把这一预测数据再视为历史数据继续预测下去,依次循环进行,逐步预测未来一段时期的值. 用1989 年到2003 年数据作为网络的输入,2004 年的预测值作为网络的输出. 接着用1990 年到2004 年的数据作为网络的输入,2005 年的预测值作为网络的输出.依次类推,这样就得到2010 年的预测值。 目前在BP 网络的应用中,多采用三层结构. 根据人工神经网络定理可知,只要用三层的BP 网络就可实现任意函数的逼近. 所以训练结果采用三层BP模型进行模拟预测. 模型训练误差为,隐层单元数选取8个,学习速率为,动态参数,Sigmoid参数,最大迭代次数3000.运行3000次后,样本拟合误差等于。 P=[。。。];输入T=[。。。];输出 % 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights={1,1} inputbias={1} % 当前网络层权值和阈值 layerWeights={2,1} layerbias={2} % 设置训练参数 = 50; = ; = ; = 10000; = 1e-3;

数学建模_BP神经网络算法模板

1.1 BP 神经网络原理简介 BP 神经网络是一种多层前馈神经网络,由输入、输出、隐藏层组成。该网络的主要特点是信号前向传递,误差反向传播。在前向传递中,输入信号从输入层经隐藏层逐层处理,直至输出层。每一层的神经元状态只影响下一层神经元状态。如果输出层得不到期望输出则转入反向传播,根据预测误差调整网络权值和阈值,从而使BP 神经网络预测输出不断逼近期望输出。结构图如下: 隐藏层传输函数选择Sigmoid 函数(也可以选择值域在(-1,1)的双曲正切函数,函数‘tansig ’),其数学表达式如下: x e 11)x ( f α-+=,其中α为常数 输出层传输函数选择线性函数:x )x (f = 1.隐藏层节点的选择 隐藏层神经元个数对BP 神经网络预测精度有显著的影响,如果隐藏层节点数目太少,则网络从样本中获取信息的能力不足,网络容易陷入局部极小值,有时可能训练不出来;如果隐藏层节点数目太多,则学习样本的非规律性信息会出现“过度吻合”的现象,从而导致学习时间延长,误差也不一定最佳,为此我们参照以下经验公式: 12+=I H ]10,1[ ,∈++=a a O I H I H 2log = 其中H 为隐含层节点数,I 为输入层节点数,O 为输出层节点数,a 为常数。 输入层和输出层节点的确定: 2.输入层节点和输出层节点的选择 输入层是外界信号与BP 神经网络衔接的纽带。其节点数取决于数据源的维数和输入特征向量的维数。选择特征向量时,要考虑是否能完全描述事物的本质特征,如果特征向量不能有效地表达这些特征,网络经训练后的输出可能与实际有较大的差异。因此在网络训练前,应全面收集被仿真系统的样本特性数据,并在数据处理时进行必要的相关性分析,剔除那些边沿和不可靠的数据,最终确定出数据源特征向量的维度。对于输出层节点的数目,往往需要根据实际应用情况灵活地制定。当BP 神经网络用于模式识别时,模式的自身特性就决定了输出的结果数。当网络作为一个分类器时,输出层节点数等于所需信息类别数。(可有可无) 训练好的BP 神经网络还只能输出归一化后的浓度数据,为了得到真实的数据

最新数学建模bp神经网络.docx

BP神经网络 算法原理: 输入信号 x i通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输 出信号 y k,网络训练的每个样本包括输入向量x 和期望输出量d,网络输出值y 与期望输出值 d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值w ij和隐层节点与输出节点之间的联接强度T jk以及阈值,使误差沿梯度方向下降,经过反复学习训练, 确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 变量定义: 设输入层有 n 个神经元,隐含层有p 个神经元 , 输出层有 q 个神经元 输入向量: x x1 , x2 ,L , x n 隐含层输入向量:hi hi1, hi2 ,L , hi p 隐含层输出向量:ho ho1 , ho2 ,L ,ho p 输出层输入向量:yi yi1, yi2 ,L , yi q 输出层输出向量:yo yo1, yo2 ,L , yo q 期望输出向量 : do d1, d2 ,L , d q 输入层与中间层的连接权值:w ih 隐含层与输出层的连接权值:w ho 隐含层各神经元的阈值: b h 输出层各神经元的阈值:b o 样本数据个数 :k1,2,L m 激活函数 : f 误差函数: e 1 q(d o (k )yo o (k )) 2 2 o1

算法步骤: Step1. 网络初始化 。给各连接权值分别赋一个区间( -1 , 1)内的随机数,设定 误差函数 e ,给定计算精度值 和最大学习次数 M 。 Step2. 随机选取第 k 个输入样本 x( k) x 1( k ), x 2 (k),L , x n (k ) 及对应期望输出 d o ( k) d 1 (k ), d 2 ( k),L , d q (k) Step3. 计算隐含层各神经元的输入 n hi h ( k) w ih x i (k ) b h h 1,2,L , p 和输出 i 1 ho h (k) f (hi h (k )) h 1,2, L , p 及 输 出 层 各 神 经 元 的 输 入 p yi o (k ) w ho ho h (k) b o o 1,2,L q 和输出 yo o ( k) f ( yi o (k )) o 1,2, L , p h 1 Step4. 利用网络期望输出和实际输出, 计算误差函数对输出层的各神经元的偏导 数 o (k ) 。 e e yi o w ho yi o w ho p yi o ( k) ( h w ho ho h (k ) b o ) ho h (k ) w ho w ho e ( 1 q (d o ( k) yo o (k))) 2 2 o 1 ( d o (k ) yi o yi o (d o (k) yo o (k ))f ( yi o (k )) @ o (k ) Step5. 利用隐含层到输出层的连接权值、输出层的 差函数对隐含层各神经元的偏导数 h (k ) 。 e e yi o o ( k) ho h (k ) w ho yi o w ho e e hi h (k) w ih hi h ( k) w ih n hi h (k ) ( w ih x i (k ) b h ) i 1 x i ( k) w ih w ih yo o (k )) yo o (k ) o ( k) 和隐含层的输出计算误

基于BP神经网络的预测模型

基于BP神经网络的国际黄金价格预测模型 公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。 [关键词] MATLAB BP神经网络预测模型数据归一化 一、引言 自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20 世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。 二、影响因素 刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。 三、模型构建

数学建模BP神经网络论文-参考模板

BP 神经网络 算法原理: 输入信号i x 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号k y ,网络训练的每个样本包括输入向量x 和期望输出量d ,网络输出值y 与期望输出值d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值ij w 和隐层节点与输出节点之间的联接强度jk T 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 变量定义: 设输入层有n 个神经元,隐含层有p 个神经元,输出层有q 个神经元 输入向量:()12,, ,n x x x x = 隐含层输入向量:()12,,,p hi hi hi hi = 隐含层输出向量:()12,,,p ho ho ho ho = 输出层输入向量:()12,,,q yi yi yi yi = 输出层输出向量:()12,,,q yo yo yo yo = 期望输出向量: ()12,, ,q do d d d = 输入层与中间层的连接权值: ih w 隐含层与输出层的连接权值: ho w 隐含层各神经元的阈值:h b 输出层各神经元的阈值: o b 样本数据个数: 1,2,k m = 激活函数: ()f ? 误差函数:2 1 1(()())2q o o o e d k yo k ==-∑

算法步骤: Step1.网络初始化 。给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e ,给定计算精度值ε和最大学习次数M 。 Step2.随机选取第k 个输入样本()12()(),(), ,()n x k x k x k x k =及对应期望输出 ()12()(),(),,()q d k d k d k d k =o Step3.计算隐含层各神经元的输入()1 ()()1,2, ,n h ih i h i hi k w x k b h p ==-=∑和输出 () ()(())1,2, ,h h ho k f hi k h p ==及 输出层各神经元的输入 ()1 ()()1,2, p o ho h o h yi k w ho k b o q ==-=∑和输出()()(())1,2, ,o o yo k f yi k o p == Step4.利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k δ。 o ho o ho yi e e w yi w ???=??? (()) () ()p ho h o o h h ho ho w ho k b yi k ho k w w ?-?==??∑ 2 1 1((()()))2(()())()(()())f (()) () q o o o o o o o o o o o o d k yo k e d k yo k yo k yi yi d k yo k yi k k δ=?-?'==--??'=---∑ Step5.利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ。 ()()o o h ho o ho yi e e k ho k w yi w δ???==-??? 1() ()(()) () () h ih h ih n ih i h h i i ih ih hi k e e w hi k w w x k b hi k x k w w =???= ????-?==??∑

数学建模bp神经网络讲解学习

数学建模B P神经网 络论文

BP 神经网络 算法原理: 输入信号i x 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号k y ,网络训练的每个样本包括输入向量x 和期望输出量d ,网络输出值y 与期望输出值d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值ij w 和隐层节点与输出节点之间的联接强度jk T 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 变量定义: 设输入层有n 个神经元,隐含层有p 个神经元,输出层有q 个神经元 输入向量:()12,, ,n x x x x = 隐含层输入向量:()12,,,p hi hi hi hi = 隐含层输出向量:()12,,,p ho ho ho ho = 输出层输入向量:()12,,,q yi yi yi yi = 输出层输出向量:()12,,,q yo yo yo yo = 期望输出向量: ()12,, ,q do d d d = 输入层与中间层的连接权值: ih w 隐含层与输出层的连接权值: ho w 隐含层各神经元的阈值:h b 输出层各神经元的阈值: o b 样本数据个数: 1,2, k m =

激活函数: ()f ? 误差函数:21 1(()())2q o o o e d k yo k ==-∑ 算法步骤: Step1.网络初始化 。给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e ,给定计算精度值ε和最大学习次数M 。 Step2.随机选取第k 个输入样本()12()(),(), ,()n x k x k x k x k =及对应期望输出 ()12()(),(),,()q d k d k d k d k =o Step3.计算隐含层各神经元的输入()1 ()()1,2, ,n h ih i h i hi k w x k b h p ==-=∑和输出 ()()(())1,2, ,h h ho k f hi k h p ==及输出层各神经元的输入 ()1 ()()1,2, p o ho h o h yi k w ho k b o q ==-=∑和输出()()(())1,2, ,o o yo k f yi k o p == Step4.利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k δ。 o ho o ho yi e e w yi w ???=??? (()) () ()p ho h o o h h ho ho w ho k b yi k ho k w w ?-?==??∑ 2 1 1((()()))2(()())()(()())f (()) () q o o o o o o o o o o o o d k yo k e d k yo k yo k yi yi d k yo k yi k k δ=?-?'==--??'=---∑ Step5.利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ。

数学建模之神经网络

神经网络 神经网络不需要做许多假设和和复杂的数学表达式,只用通过学习样本进行训练。 一、BP 神经网络 1.1简介 BP 神经网络由输入层、隐层和输出层三层构成。对于BP 神经网络,网络的性能受局部不准确试验数据的影响很小。所以BP 神经网络有很强的容错性。 缺点:训练时间较长,求得的解可能是局部极小解。 若R 是输入量的个数,il W 是隐层第i 个神经元与输出层第K 个神经元的连接权值,i b 是阈值。则通用神经元模型如下: ... ∑f 将多个神经元模型串起来会得到n 个神经元输出,第i 个神经元输出为 1R i ik k i k n x b ω==+∑ 第i 个神经元经过任意传递函数后得到输出为 ()log ()|tan ()|()i i i i i y f n sig n sig n purelin n == BP 神经网络的应用 ①沼泽草炭土结构特性及模型研究(下载文档) 2.1步骤 ①构造建模方案 根据输入与输出关系写出表达式,如三输入,一输出的非线性函数表达式为 (,,)f d q σε= 相对应的BP 神经网络结构为

设j x ,i y ,l o 分别表示BP 网络三层节点的输入节点,隐节点,输出节点。ij ω表示输入节点和隐节点之间的网络权值,li T 表示隐节点和输出节点之间的网络权值,我们用梯度法对BP 网络的权值进行修正,采用sigmoid 函数。若输出节点期望输出l t ,则有 输入节点至隐节点的公式为: 阈值修正:(1)()i i i j k k θθηδγ''+=+ 误差:(1)i i i l li l y y T δδ'=-∑ 权值修正:(1)()ij ij i j k k ωωηδγ''+=+ 隐节点至输出节点的公式为: 若有p 个样本数,n 个输出节点数,则一个样本的误差为()(k)1||,n k k l l l e t o ==-∑控 制误差范围是1,p k k E e ζ==<∑ 阈值修正:(1)()l l l k k θθηδ''+=+ 权值修正:(1)(),(li li l i T k T k y k ηδ+=+为迭代次数) 误差:()(1)l l l l l t o o o δ=-??- 输出节点的计算公式为:

相关主题
文本预览
相关文档 最新文档