当前位置:文档之家› 数学九年级上册 圆 几何综合单元培优测试卷

数学九年级上册 圆 几何综合单元培优测试卷

数学九年级上册 圆 几何综合单元培优测试卷
数学九年级上册 圆 几何综合单元培优测试卷

数学九年级上册 圆 几何综合单元培优测试卷

一、初三数学 圆易错题压轴题(难)

1.如图,在直角体系中,直线AB 交x 轴于点A(5,0),交y 轴于点B,AO 是⊙M 的直径,其半圆交AB 于点C,且AC=3.取BO 的中点D,连接CD 、MD 和OC . (1)求证:CD 是⊙M 的切线;

(2)二次函数的图象经过点D 、M 、A,其对称轴上有一动点P,连接PD 、PM,求△PDM 的周长最小时点P 的坐标;

(3)在(2)的条件下,当△PDM 的周长最小时,抛物线上是否存在点Q ,使S △PDM =6S △QAM ?若存在,求出点Q 的坐标;若不存在,请说明理由.

【答案】解:(1)证明:连接CM ,

∵OA 为⊙M 直径,∴∠OCA=90°.∴∠OCB=90°. ∵D 为OB 中点,∴DC=DO .∴∠DCO=∠DOC . ∵MO=MC ,∴∠MCO=∠MOC . ∴

又∵点C 在⊙M 上,∴DC 是⊙M 的切线. (2)∵A 点坐标(5,0),AC=3 ∴在Rt △ACO 中,.

∴545(x )x 5)12152-

=--(,∴,解得10

OD 3

=

. 又∵D 为OB 中点,∴

1552

4

+∴D 点坐标为(0,154).

连接AD ,设直线AD 的解析式为y=kx+b ,则有

解得.

∴直线AD 为

∵二次函数的图象过M (5

6

,0)、A(5,0), ∴抛物线对称轴x=

154

. ∵点M 、A 关于直线x=154对称,设直线AD 与直线x=15

4

交于点P , ∴PD+PM 为最小.

又∵DM 为定长,∴满足条件的点P 为直线AD 与直线x=15

4

的交点. 当x=

15

4时,45y (x )x 5)152

=

--(. ∴P 点的坐标为(15

4,56

). (3)存在. ∵

,5

y a(x )x 5)2

=--(

又由(2)知D (0,154),P (15

4,56

), ∴由

,得

,解得y Q =±

103

∵二次函数的图像过M(0,5

6

)、A(5,0), ∴设二次函数解析式为,

又∵该图象过点D (0,15

4

),∴,解得a=

512

. ∴二次函数解析式为

又∵Q 点在抛物线上,且y Q =±103

. ∴当y Q =103

时,,解得x=

1552-或x=1552

+;

当y Q =5

12

-

时,,解得x=

15

4

∴点Q 的坐标为(15524

-,103),或(15524+,10

3),或(154,512-).

【解析】

试题分析:(1)连接CM ,可以得出CM=OM ,就有∠MOC=∠MCO ,由OA 为直径,就有∠ACO=90°,D 为OB 的中点,就有CD=OD ,∠DOC=∠DCO ,由∠DOC+∠MOC=90°就可以得出∠DCO+∠MCO=90°而得出结论.

(2)根据条件可以得出2222OC OA AC 534=-=-=和OC OB

tan OAC AC OA

∠=

=,从而求出OB 的值,根据D 是OB 的中点就可以求出D 的坐标,由待定系数法就可以求出抛物线的解析式,求出对称轴,根据轴对称的性质连接AD 交对称轴于P ,先求出AD 的解析式就可以求出P 的坐标. (3)根据PDM DAM PAM S S S ???=-,求出Q 的纵坐标,求出二次函数解析

式即可求得横坐标.

2.已知:四边形ABCD 内接于⊙O ,∠ADC =90°,DE ⊥AB ,垂足为点E ,DE 的锯长线交⊙O 于点F ,DC 的延长线与FB 的延长线交于点G . (1)如图1,求证:GD =GF ;

(2)如图2,过点B 作BH ⊥AD ,垂足为点M ,B 交DF 于点P ,连接OG ,若点P 在线段OG 上,且PB =PH ,求∠ADF 的大小;

(3)如图3,在(2)的条件下,点M 是PH 的中点,点K 在BC 上,连接DK ,PC ,D 交PC 点N ,连接MN ,若AB =122,HM +CN =MN ,求DK 的长.

【答案】(1)见解析;(2)∠ADF =45°;(3)1810

. 【解析】 【分析】

(1)利用“同圆中,同弧所对的圆周角相等”可得∠A =∠GFD ,由“等角的余角相等”可得∠A =∠GDF ,等量代换得∠GDF =∠GFD ,根据“三角形中,等角对等边”得GD =GF ; (2)连接OD 、OF ,由△DPH ≌△FPB 可得:∠GBH =90°,由四边形内角和为360°可得:∠G =90°,即可得:∠ADF =45°;

(3)由等腰直角三角形可得AH =BH =12,DF =AB =12

,由四边形ABCD 内接于⊙O ,

可得:∠BCG =45°=∠CBG ,GC =GB ,可证四边形CDHP 是矩形,令CN =m ,利用勾股定理可求得m =2,过点N 作NS ⊥DP 于S ,连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R ,通过构造直角三角形,应用解直角三角形方法球得DK . 【详解】

解:(1)证明:∵DE ⊥AB ∴∠BED =90° ∴∠A +∠ADE =90° ∵∠ADC =90° ∴∠GDF +∠ADE =90° ∴∠A =∠GDF ∵BD BD = ∴∠A =∠GFD ∴∠GDF =∠GFD ∴GD =GF (2)连接OD 、OF ∵OD =OF ,GD =GF ∴OG ⊥DF ,PD =PF 在△DPH 和△FPB 中

PD PF DPH FPB PH PB =??

∠=∠??=?

∴△DPH ≌△FPB (SAS ) ∴∠FBP =∠DHP =90° ∴∠GBH =90°

∴∠DGF =360°﹣90°﹣90°﹣90°=90° ∴∠GDF =∠DFG =45° ∴∠ADF =45°

(3)在Rt △ABH 中,∵∠BAH =45°,AB =

∴AH =BH =12 ∴PH =PB =6 ∵∠HDP =∠HPD =45° ∴DH =PH =6

∴AD =12+6=18,PN =HM =1

2

PH =3,PD =

∵∠BFE =∠EBF =45° ∴EF =BE

∵∠DAE =∠ADE =45° ∴DE =AE

∴DF =AB =∵四边形ABCD 内接于⊙O ∴∠DAB +∠BCD =180° ∴∠BCD =135° ∴∠BCG =45°=∠CBG ∴GC =GB

又∵∠CGP =∠BGP =45°,GP =GP ∴△GCP ≌△GBP (SAS ) ∴∠PCG =∠PBG =90° ∴∠PCD =∠CDH =∠DHP =90° ∴四边形CDHP 是矩形

∴CD =HP =6,PC =DH =6,∠CPH =90° 令CN =m ,则PN =6﹣m ,MN =m +3 在Rt △PMN 中,∵PM 2+PN 2=MN 2 ∴32+(6﹣m )2=(m +3)2,解得m =2 ∴PN =4

过点N 作NS ⊥DP 于S ,

在Rt △PSN 中,PS =SN =

DS =﹣=

SN 1

tan

DS 2

SDN ∠=

== 连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R 在Rt △DFQ 中,FQ =DQ =12 ∴AQ =18﹣12=6 ∴tan 12

26

FQ FAQ AQ ∠=

== ∵四边形AFKD 内接于⊙O , ∴∠DAF +∠DKF =180° ∴∠DAF =180°﹣∠DKF =∠FKR

在Rt △DFR 中,∵DF =1tan 2

FDR ∠=

∴FR DR =

=

在Rt △FKR 中,∵FR tan ∠FKR =2

∴KR =

5

∴DK =DR ﹣KR =24106101810

555

=

-=

【点睛】

本题是一道有关圆的几何综合题,难度较大,主要考查了圆内接四边形的性质,圆周角定理,全等三角形性质及判定,等腰直角三角形性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形.

3.如图①,已知Rt △ABC 中,∠ACB =90°,AC =8,AB =10,点D 是AC 边上一点(不与C 重合),以AD 为直径作⊙O ,过C 作CE 切⊙O 于E ,交AB 于F . (1)若⊙O 半径为2,求线段CE 的长; (2)若AF =BF ,求⊙O 的半径;

(3)如图②,若CE =CB ,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.

【答案】(1)CE =2;(2)⊙O 的半径为3;(3)G 、E 两点之间的距离为9.6 【解析】 【分析】

(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得; (2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE OC BC BA =,即8610

r r

-= 解得即可;

(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,

GB GE

AB AC

=,即12108

GE =,解得即可.

【详解】

解:(1)如图①,连接OE,

∵CE切⊙O于E,

∴∠OEC=90°,

∵AC=8,⊙O的半径为2,

∴OC=6,OE=2,

∴CE=2242

OC OE

-=;

(2)设⊙O的半径为r,

在Rt△ABC中,∠ACB=90°,AB=10,AC=8,∴BC22

AB A C

-=6,

∵AF=BF,

∴AF=CF=BF,

∴∠ACF=∠CAF,

∵CE切⊙O于E,

∴∠OEC=90°,

∴∠OEC=∠ACB,

∴△OEC∽△BCA,

∴OE OC

BC BA

=,即

8

610

r r

-

=

解得r=3,

∴⊙O的半径为3;

(3)如图②,连接BG,OE,设EG交AC于点M,

由对称性可知,CB=CG,

∵CE=CG,

∴∠EGC=∠GEC,

∵CE切⊙O于E,

∴∠GEC+∠OEG=90°,

∵∠EGC+∠GMC=90°,

∴∠OEG=∠GMC,

∵∠GMC=∠OME,

∴∠OEG=∠OME,

∴OM=OE,

∴点M和点D重合,

∴G、D、E三点在同一直线上,

连接AE、BE,

∵AD是直径,

∴∠AED=90°,即∠AEG=90°,

又CE=CB=CG,

∴∠BEG=90°,

∴∠AEB=∠AEG+∠BEG=180°,

∴A、E、B三点在同一条直线上,∴E、F两点重合,

∵∠GEB=∠ACB=90°,∠B=∠B,∴△GBE∽△ABC,

∴GB GE

AB AC

=,即

12

108

GE

=

∴GE=9.6,

故G、E两点之间的距离为9.6.

【点睛】

本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关

4.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作

MN∥BC交AC于点N.

(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.

i.若点P正好在边BC上,求x的值;

ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.

(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.

【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,

当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<

时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.

【解析】

试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;

ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2

②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.

(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.

试题解析:(1)i.如图1,

由轴对称性质知:AM=PM,∠AMN=∠PMN,

又MN∥BC,

∴∠PMN=∠BPM,∠AMN=∠B,

∴∠B=∠BPM,

∴AM=PM=BM,

∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:

①当0<x≤2时,

∵MN∥BC,

∴△AMN∽△ABC,

∴,

∴,

∴AN=,

△MNP与梯形BCNM重合的面积为△MNP的面积,

∴,

②当2<x<4时,如图2,

设PM,PN分别交BC于E,F,

由(2)知ME=MB=4-x,

∴PE=PM-ME=x-(4-x)=2x-4,

由题意知△PEF∽△ABC,

∴,

∴S△PEF=(x-2)2,

∴y=S△PMN-S△PEF=,

∵当0<x≤2时,y=x2,

∴易知y最大=,

又∵当2<x<4时,y=,

∴当x=时(符合2<x<4),y最大=2,

综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,

设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.

在Rt△ABC中,BC==5;

由(1)知△AMN∽△ABC,

∴,即,

∴MN=x

∴OD=x,

过M点作MQ⊥BC于Q,则MQ=OD=x,

在Rt△BMQ与Rt△BCA中,∠B是公共角,

∴△BMQ∽△BCA,

∴,

∴BM=,AB=BM+MA=x+x=4

∴x=,

∴当x=时,⊙O与直线BC相切;

当x<时,⊙O与直线BC相离;

x>时,⊙O与直线BC相交.

考点:圆的综合题.

5.四边形ABCD内接于⊙O,连接AC、BD,2∠BDC+∠ADB=180°.

(1)如图1,求证:AC=BC;

(2)如图2,E为⊙O上一点,AE=BE,F为AC上一点,DE与BF相交于点T,连接

AT,若∠BFC=∠BDC+1

2

∠ABD,求证:AT平分∠DAB;

(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.

【答案】(1)见解析;(2)见解析;(3)82

【解析】

【分析】

(1)只要证明∠CAB=∠CBA即可.

(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.

(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明

Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,

由S△ADB=1

2

?BD?AQ=

1

2

?AD?h+

1

2

?AB?h+

1

2

?DB?h,可得AQ=

5

2

h,再根据

sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】

解:(1)如图1中,

∵四边形ABCD内接于⊙O,

∴∠ADC+∠ABC=180°,

即∠ADB+∠BDC+∠ABC=180°,

∵2∠BDC+∠ADB=180°,

∴∠ABC=∠BDC,

∵∠BAC=∠BDC,

∴∠BAC=∠ABC,

∴AC=BC.

(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.

∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,∴∠BFC=∠BDC+∠ABF,

∵∠BFC=∠BDC+1

2

∠ABD,

∴∠ABF=1

2

∠ABD,

∴BT平分∠ABD,

∵AE=BE

∴∠ADE=∠BDE,

∴DT平分∠ADB,

∵TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.

∴TR=TL,TR=TH,

∴TL=TH,

∴AT平分∠DAB.

(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.

∵AE=BE

∴∠EAB=∠EDB=∠EDA,AE=BE,

∵∠TAE=∠EAB+∠TAB,∠ATE=∠EDA+∠DAT,

∴∠TAE=∠ATE,

∴AE=TE,

∵DT=TE,

∴AE=DT,

∵∠AGE=∠DHT=90°,

∴△EAG≌△TDH(AAS),

∴AG=DH,

∵AE=EB,EG⊥AB,

∴AG=BG,

∴2DH=AB,

∵Rt△TDR≌Rt△TDH(HL),

∴DH=DR,同理可得AL=AH,BR=BL,

设DH=x,则AB=2x,

∵AD=8,DB=12,

∴AL=AH=8﹣x,BR=12﹣x,AB=2x=8﹣x+12﹣x,∴x=5,

∴DH=5,AB=10,

设TR=TL=TH=h,DT=m,

∵S△ADB=1

2

?BD?AQ=

1

2

?AD?h+

1

2

?AB?h+

1

2

?DB?h,

∴12AQ=(8+12+10)h,

∴AQ=5

2 h,

∵sin∠BDE=sin∠ADE,可得h

m

AP

AD

AP

8

sin∠AED=sin∠ABD,可得AP

m

AQ

AB

AQ

10

5

2

10

h

∴AP

m

5

28

10

mAP

解得m=

或﹣

(舍弃),

∴DE=2m=

【点睛】

本题属于圆综合题,考查了圆内接四边形的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考压轴题.

6.如图1,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接

FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=1

3

,BC=8.

(1)求证:CF是⊙O的切线;

(2)求⊙O的半径OC;

(3)如图2,⊙O的弦AH经过半径OC的中点F,连结BH交弦CD于点M,连结FM,试

求出FM的长和△AOF的面积.

【答案】(1)见解析;(2)3233

2

2

32

【解析】【分析】

(1)由DF=2OD,得到OF=3OD=3OC,求得

1

3

OE OC

OC OF

==,推出△COE∽△FOE,根据相

似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF是⊙O的切线;

(2)利用三角函数值,设OE=x,OC=3x,得到CE=3,根据勾股定理即可得到答案;(3)连接BD,根据圆周角定理得到角相等,然后证明△AOF∽△BDM,由相似三角形的性质,得到FM为中位线,即可求出FM的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积.

【详解】

解:(1)∵DF=2OD,

∴OF=3OD=3OC,

1

3 OE OC

OC OF

==,

∵∠COE=∠FOC,

∴△COE∽△FOE,

∴∠OCF=∠DEC=90°,∴CF是⊙O的切线;(2)∵∠COD=∠BAC,

∴cos∠BAC=cos∠COE=

1

3 OE

OC

=,

∴设OE=x,OC=3x,

∵BC=8,

∴CE=4,

∵CE⊥AD,

∴OE2+CE2=OC2,

∴x2+42=9x2,

∴x2(负值已舍去),

∴OC =3x =32, ∴⊙O 的半径OC 为32; (3)如图,连结BD ,

由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠, ∵BC ⊥AD , ∴AC AB =, ∴∠ADC=∠ADB ,

∴2AOF ADC BDM ∠=∠=∠, ∴△AOF ∽△BDM ; ∵点F 是OC 的中点, ∴AO :OF=BD :DM=2, 又∵BD=DC , ∴DM=CM , ∴FM 为中位线, ∴3

22

, ∴S △AOF : S △BDM =(326 2 34

=; ∵11111

8(322)4222222BDM BCD S S BC DE ??=

=??=???= ∴S △AOF =3

424

=32 【点睛】

本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.

7.在平面直角坐标系xOy 中,⊙C 的半径为r (r >1),点P 是圆内与圆心C 不重合的点,⊙C 的“完美点”的定义如下:过圆心C 的任意直线CP 与⊙C 交于点A ,B ,若满足|PA ﹣PB |=2,则称点P 为⊙C 的“完美点”,如图点P 为⊙C 的一个“完美点”. (1)当⊙O 的半径为2时

①点M(3

2

,0)⊙O的“完美点”,点(﹣

3

2

,﹣

1

2

)⊙O的“完美点”;(填

“是”或者“不是”)

②若⊙O的“完美点”P在直线y=3

4

x上,求PO的长及点P的坐标;

(2)设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.

【答案】(1)①不是,是;②PO的长为1,点P的坐标为(4

5

3

5

)或(﹣

4

5

,﹣

3

5

);(2)t的

取值范围为﹣1≤t≤3.

【解析】

【分析】

(1)①利用圆的“完美点”的定义直接判断即可得出结论.②先确定出满足圆的“完美点”的OP的长度,然后分情况讨论计算即可得出结论;(2)先判断出圆的“完美点”的轨迹,然后确定出取极值时OC与y轴的位置关系即可得出结论.

【详解】

解:(1)①∵点M(3

2

,0),

∴设⊙O与x轴的交点为A,B,∵⊙O的半径为2,

∴取A(﹣2,0),B(2,0),

∴|MA﹣MB|=|(3

2

+2)﹣(2﹣

3

2

)|=3≠2,

∴点M不是⊙O的“完美点”,

同理:点(31

2

)是⊙O的“完美点”.

故答案为不是,是.②如图1,

根据题意,|PA﹣PB|=2,

∴|OP+2﹣(2﹣OP)|=2,

∴OP=1.

若点P在第一象限内,作PQ⊥x轴于点Q,

∵点P在直线y=3

4

x上,OP=1,

43

,

55 OQ PQ

==.

∴P(43

,

55

).

若点P在第三象限内,根据对称性可知其坐标为(﹣4

5

,﹣

3

5

).

综上所述,PO的长为1,点P的坐标为(43

,

55

)或(

43

,

55

--)).

(2)对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,

∴|CP+r﹣(r﹣CP)|=2.

∴CP=1.

∴对于任意的点P,满足CP=1,都有|CP+r﹣(r﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.

因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线y=﹣2x+1与y轴交于点D,如图2,

当⊙C移动到与y轴相切且切点在点D的上方时,t的值最大.设切点为E,连接CE,

∵⊙C的圆心在直线y=﹣2x+1上,

∴此直线和y轴,x轴的交点D(0,1),F(1

2

,0),

∴OF=1

2

,OD=1,

∵CE∥OF,

∴△DOF∽△DEC,

∴OD OF DE CE

=,

11

2 DE

=,

∴DE=2,

∴OE=3,

t的最大值为3,

当⊙C移动到与y轴相切且切点在点D的下方时,t的值最小.

同理可得t的最小值为﹣1.

综上所述,t的取值范围为﹣1≤t≤3.

【点睛】

此题是圆的综合题,主要考查了新定义,相似三角形的性质和判定,直线和圆的位置关系,解本题的关键是理解新定义的基础上,会用新定义,是一道比中等难度的中考常考题.

8.四边形ABCD内接于⊙O,AC为对角线,∠ACB=∠ACD

(1)如图1,求证:AB=AD;

(2)如图2,点E在AB弧上,DE交AC于点F,连接BE,BE=DF,求证:DF=DC;(3)如图3,在(2)的条件下,点G在BC弧上,连接DG,交CE于点H,连接GE,GF,若DE=BC,EG=GH=5,S△DFG=9,求BC边的长.

【答案】(1)见解析;(2)见解析;(370

【解析】

【分析】

(1)如图1,连接OA,OB,OD,由∠ACB=∠ACD,可得AD AB,可得AB=AD;(2)连接AE,由“SAS”可证△ABE≌△ADF,可得∠BAE=∠DAC,可证BE=CD=DF;(3)如图3,过点F作FN⊥GD于N,过点C作CM⊥GD于M,连接GC,通过证明

△FDN≌△DCM,可得FN=DM,CM=DN,由面积公式可求FN=2,DM=2,DH=4,通

过证明△EGC∽△DMC,△GEH∽△CHD,可得EC=5

2

CD,CD2=

40

3

,由勾股定理可求

解.

【详解】

证明:(1)如图1,连接OA,OB,OD,

∵∠ACB=∠ACD,∠AOD=2∠ACD,∠AOB=2∠ACB ∴∠AOD=∠AOB

∴AD AB

∴AD=AB;

(2)如图2,连接AE,

∵AE AE

∴∠ABE=∠ADE

在△ABE和△ADF中

AB AD

ABE ADF

BE DF

相关主题
文本预览
相关文档 最新文档