当前位置:文档之家› 大学运筹学课程知识点总结

大学运筹学课程知识点总结

大学运筹学课程知识点总结
大学运筹学课程知识点总结

1.用图解法求解下列线性规划问题,并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。

??

???≤≤≤≤≤++=8

3105120106max 21212

1x x x x x x z

2.将下述线性规划问题化成标准形式。

(1)??????

?≥≥-++-≤+-+-=-+-+-+-=无约束

4,03,2,12321422245243min 43214

32143214

321x x x x x x x x x x x x x x x x x x x x z

解:令z z -=','

'4'44x x x -=

???????≥=-+-++-=+-+-+=-+-+-+-+-=0,,,,,,23214

2222455243'max 6

5''4'43216'

'4'43215'

'4'4321''4'4321'

'4'4321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x z 3.分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解对应

图解法中的可行域的哪个顶点。

???

??≥≤+≤++=0,825943510max 2

121212

1x x x x x x x x z

解:①图解法:

②单纯形法:将原问题标准化:

???

??≥=++=+++=0,,,825943510max 4

3214213

212

1x x x x x x x x x x x x z C j

10 5 0 0 θ 对应图解法中的点

C B B b x 1 x 2 x 3 x 4 0 x 3 9 3 4 1 0 3 O 点 0

x 4

8 [5] 2 0 1 8/5 σj 0 10 5 0 0 0 x 3 21/5 0 [14/5] 1 -3/5 3/2 C 点 10

x 1 8/5 1 2/5 0 1/5 4 σj -16 0 1 0 -2 5 x 2 3/2 0 1 5/14 -3/14 B 点 10

x 1 1 1 0 -1/7 2/7 σj

35/2

-5/14

-25/14

最优解为(1,3/2,0,0),最优值Z=35/2。

单纯型法步骤:转化为标准线性规划问题;找到一个初始可行解,列出初始单纯型表;最优性检验,求cj-zj ,若所有的值都小于0,则表中的解便是最优解,否则,找出最大的值的那一列,求出bi/aij ,选取最小的相对应的xij ,作为换入基进行初等行变换,重复此步骤。

4.写出下列线性规划问题的对偶问题。

(1)()()()??

????

?????==≥=====

∑∑∑∑====n j m i x n j b x m i a x t s x c

z ij j

m i ij i

n

j ij m i n

j ij

ij

,,1;,,10

,,1,,1..min 11

11

()?????==≤++=+=+=∑∑无约束

j i ij

j m i n

i m

j j m i i i y x n j m i c y y t s y b y a w ,,,1;,,1..max 1

1

(2)()()()()??

?????????+=<=≥++==<=≤=∑∑∑===n n j x n n j x m m m i b x a m m i b x a t s x c z j j i n j j ij i

n

j j ij n

j j

j ,,1,10,,2,1,1..max 11111

11

1 无约束

()()()()?

????????+=<=≥+==<=≥=∑∑∑===m m i y m m i y n n j c y a n n j c y a t s y b w i i j

m

i i ij j

m

i i ij m

i i

i ,,1,2,10,,1,2,1..min 1111

11

1

无约束

5. 给出线性规划问题

()

?????

??

??=≥≤++≤++≤+≤+++++=4,10966283..42max 3214322

14214321 j x x x x x x x x x x x x t s x x x x z j 要求:(1)写出其对偶问题;(2)已知原问题最优解为()T

X 0,4,2,2*=,试根据对偶理论,直接求出对偶问题的最优解。 解:

(1)()

?????

??

??=≥≥+≥+≥+++≥+++++=4,10114

322..9668min 314343214214

321 j y y y y y y y y y y y y t s y y y y w j (2)因为0,,321>x x x ,第四个约束取等号,根据互补松弛定理得:

??

?

???

?=+=+=+++=++0143224434

32142

1y y y y y y y y y y 求得对偶问题的最优解为:??

? ??=0,1,53

,54*

Y ,最优值min w=16。

例已知原问题

Max z =x 1 +2x 2 +3x 3 +4x 4

x 1 +2x 2 +2x 3 +3x 4≤202x 1 +x 2 +3x 3 +2x 4′≤20x 1、x 2、x 3、x 4≥ 0

和对偶问题

Min w =20y 1 +20y 2

y 1 +2y 2≥12y 1 +y 2≥22y 1 +3y 2≥33y 1 +2y 2≥4y 1、y 2≥ 0

已知对偶问题的最优解y 1 =1.2、y 2 =0.2,最优值min w=28,求原问题的最优解及最优值。

可用如下方法求解:

引入将原问题和对偶问题化为标准形式。

Max z =x 1 +2x 2 +3x 3 +4x 4

x 1 +2x 2 +2x 3 +3x 4 +x 5 = 202x 1 +x 2 +3x 3 +2x 4 +x 6 =20x 1、x 2、x 3、x 4 、x 5 、x 6 ≥ 0Min w =20y 1 +20y 2

y 1 +2y 2 -y 3 = 12y 1 +y 2 -y 4 = 22y 1 +3y 2 -y 5 = 33y 1 +2y 2 -y 6 = 4y 1、y 2 、y 3 、y 4 、y 5 、y 6 ≥ 0

(1)y 1=1.2>0,而y 1与x 5中至少有一个为零,故x 5=0。

(2)同理,y 2=0.2>0,所以x 6=0。

(3)对偶问题的第一个约束条件在取最优值时

y 1+2y 2=1.2+2×0.2=1.6>1

这就表示该约束条件的松弛变量:y 3=1.6-1=0.6>0

y 3与x 1中至少有一个为零,故x 1=0。

(4)同理,对于第2个约束条件在取得最优值时

2y 1+y 2= 2×1.2+0.2=2.6>2y 4=2.6-2=0.6>0

y 4与x 2中至少有一个为零,故x 2=0。

(5)同理,对于第3个约束条件在取得最优值时

2y 1+3y 2= 2×1.2+ 3×0.2=3y 5=3-3=0

y 5与x 3中至少有一个为零,故x 3>0或者x 3=0 。

(6)对于第4个约束条件的分析也可得到x 4>0或者x 4=0 。对于(5)和(6)的分析,对于确定原问题的最优解没有任何帮助。但从(1)到(4)的分析中得知,原问题取得最优解时:

x 5=0,x 6=0,x 1=0,x 2=0

代入原问题的约束方程组得:

2x 3+3x 4= 203x 3+2x 4= 20

解此方程组,可求得原问题的最优解为:

x 1=0,x 2=0 ,x 3=4 ,x 4=4 ,x 5=0,x 6=0

弱对偶性的推论:

(1) 原问题任一可行解的目标函数值是其对偶问题目标函数值的下界;反之对偶问题任一可行解的目标函数值是其原问题目标函数值的上界

(2) 如原问题有可行解且目标函数值无界(具有无界解),则其对偶问题无可行解;反之对偶问题有可行解且目标函数值无界,则其原问题无可行解。

注意:本点性质的逆不成立,当对偶问题无可行解时,其原问题或具有无界解或无可行解,反之亦然。

(3) 若原问题有可行解而其对偶问题无可行解,则原问题目标函数值无界;反之对偶问题有可行解而其原问题无可行解,则对偶问题的目标函数值无界。 强对偶性(或称对偶定理)

若原问题及其对偶问题均具有可行解,则两者均具有最优解,且它们最优解的目标函数值相等。 互补松弛性

在线性规划问题的最优解中,如果对应某一约束条件的对偶变量值为非零,则该约束条件取严格等式;反之如果约束条件取严格不等式,则其对应的对偶变量一定为零。

影子价格

资源的市场价格是其价值的客观体现,相对比较稳定,而它的影子价格则有赖于资 源的利用情况,是未知数。因企业生产任务、产品结构等情况发生变化,资源的影 子价格也随之改变。

影子价格是一种边际价格。

资源的影子价格实际上又是一种机会成本。随着资源的买进卖出,其影子价格也将 随之发生变化,一直到影子价格与市场价格保持同等水平时,才处于平衡状态。 生产过程中如果某种资源未得到充分利用时,该种资源的影子价格为零;又当资源

的影子价格不为零时,表明该种资源在生产中已耗费完毕。

影子价格反映单纯形表中各个检验数的经济意义。

一般说对线性规划问题的求解是确定资源的最优分配方案,而对于对偶问题的求解则是确定对资源的恰当估价,这种估价直接涉及资源的最有效利用

对偶单纯型法:转化成标准的线性规划问题;确定换入基变量,bi小于0中的最小的那一排,再求(cj-zj)/aij,且aij<0,找出最小值,这对应的xi便是换入基,若所有的bi都大于0,则找到了最优解

7 下列表分别给出了各产地和各销地的产量和销量,以及各产地至各销地的单位运价,试用表上作业法求最优解。

注意要基可行解的个数一定是行列变量数减一

销地

产地

B1B2B3B4产量A1 4 1 4 6 8

A2 1 2 5 0 8

A3 3 7 5 1 4

销量 6 5 6 3 20

解:

(1)确定初始方案

西北角法:

销地

产地

B1B2B3B4产量A1 6 2 8

A2 3 5 8

A3 1 3 4

销量 6 5 6 3 20

最小元素法:

销地

产地

B1B2B3B4产量A1 5 3 8

A2 5 3 8

A3 1 3 4

销量 6 5 6 3 20

沃格尔法:

销地

产地B1B2B3B4产量

行罚数

1 2 3 4

A14 1 4 6

8 ○30 2 2

5 3

A2

1 2 5 0

8 1 1 ○5 6 2

A33 7 5 1

4 1 2 4 4

3 1

销量 6 5 6 3 20

列罚数1 2 1 1 1

2 ○2 1 1

3 1 1

4 1 ○5

8.下表给出一个运输问题及它的一个解,试问:

(1)表中给出的解是否为最优解?请用位势法进行检验。

(2)若价值系数C24由1变为3,所给的解是否仍为最优解?若不是,请求出最优解。(3)若所有价值系数均增加1,最优解是否改变?为什么?

(4)若所有价值系数均乘以2,最优解是否改变?为什么?

销地

产地B1B2B3B4产量

A14 1 4 6

8

5 3

A2

1 2 6 1

10 8 2

A33 7 5 1

4

3 1

销量8 5 6 3 22 解:(1)

销地

产地B1B2B3B4产量u i

A 14 1 4 6

8 0

5 3

A2

1 2 6 1

10 1 8 2

A33 7 5 1

4 1

3 1

销量8 5 6 3 22 v j0 1 4 0

空格检验数为:

4 6

0 1

2 5

所有检验数均大于等于零,该方案为最优方案。

(2)若价值系数C24由1变为3,

6 6

-2 -1

4 5

由于有检验数小于零,所以此方案不是最优方案。

5(-2)3(+2)

8 (+2)2(-2)

3(-2)1(+2)

调整为:

3 5

8 2

1 3

空格检验数为:

4 6 1 2 2 5

所有检验数均小于等于零,该方案为最优方案。 43135122184513min =?+?+?+?+?+?=z 。

(3)不改变,不影响检验数的大小。 (4)不改变,不影响检验数的符号。

解的最优性检验:

1.闭回路法:找各个非基变量的闭合回路,依次加减求检验数,是先减再加,若所有的检验数的值都全非负,那么此可行解是最优解。

2.位势法(对偶变量法):增加位势列ui 和位势行vj ;计算位势,ui+vj=基可行解的对应的运费,指定其中某一值为0,算出其他几位的值,填入表中;计算检验数,某非基变量对应的运费减对应的位势行和位势列,若检验数全为非负,则为最优解。

(检验数都是非基变量经过处理后的值,处理过程中应用的是基变量)

解的改进:1.以检验数小于0的xi 为换入基(取最小的那个)

2.找此xi 的闭合回路,以xi 为始沿顺逆时针方向把定点依次编号

3.在所有偶数顶点中,找出运输量最少的顶点作为xi 的换出变量

4.将基数顶点的运输量增加xj ,偶数顶点的运输量减少xj ,重新得到一组新的方案

5.进行解的最优性检验

9.公司决定使用1000万元新产品开发基金开发A ,B ,C 三种新产品。经预测估计,开发A ,B ,C 三种新产品的投资利润分别为5%、7%、10%。由于新产品开发有一定风险,公司研究后确定了下列优先顺序目标:

第一,A 产品至少投资300万元;

第二,为分散投资风险,任何一种新产品的开发投资不超过开发基金总额的35%; 第三,应至少留有10%的开发基金,以备急用; 第四,使总的投资利润最大。

试建立投资分配方案的目标规划模型。

解,设A ,B ,C 三种新产品的开发投资额分别为321,,x x x 万元,目标规划模型为:

(){}

()

??

??

?????????=≥?=-+++?=-+---?=-+?=-+?=-+=-++++

-+-+-+

-+-+

-+--

-+

++-6,,10,,,,%

101000%10%7%5%1010001000%351000%

351000%351000300..,,,min 3216

632155321443332

2211116453432211 i d d x x x d d x x x d d x x x d d x d d x d d x d d x t s d P d P d d d P d P i i Pl 是优先因子,关系为l 越小,则有绝对的优先性,还有一种是相对的优先性,用权系数来表示

目标规划的一般格式;min{pld+或d-}(要明白为什么是写d+或d-,min 里的d 是要取值为零的,即若不等式要大于零时,则写d-);必须要满足的绝对约束,还有目标约束;xj>0,d+,d->0

目标规划的图解法:先画绝对约束的可行域,然后按照优先性优先考虑某个目标约束,随着min 系数中d+或者d-的增大移动曲线,画出最合适的那条,直到最后

10.用割平面法解下列整数规划:

(1)???

??≥≤+≤++=且为整数,0,20

546

2..max 2

121212

1x x x x x x t s x x z 解:引进松弛变量43,x x ,将问题化为标准形式,用单纯形法解其松弛问题。

c j 1 1 0 0

θ C B X B b x 1 x 2 x 3 x 4 0 x 3 6 【2】 1 1 0 3

0 x 4 20 4 5 0 1

5 σj

1 1 0 0 1 x 1 3 1 1/

2 1/2 0 6 0 x 4 8 0 【3】

-2 1 8/3 σj

0 1/2 -1/2 0 1 x 1 5/3 1 0 5/6 -1/6 1 x 2 8/3 0 1 -2/3 1/3

σj

0 0 -1/6 -1/6

找出非整数解变量中分数部分最大的一个基变量(x2),并写下这一行的约束:

3

223132432=+-

x x x

将上式中的所有常数分写成整数与一个正的分数值之和得:

??? ?

?

+=??? ??++??? ??+-+322310311432x x x

将上式中的分数项移到等式右端,整数项移到等式左端得:

43323

1

31322x x x x --=

-- 得到割平面约束为:

3

2

313143-≤--x x 引入松弛变量5x ,得割平面方程为:

3

23131543-=+--x x x c j 1 1 0 0 0 C B

X B b x 1 x 2 x 3 x 4 x 5 1 x 1 5/3 1 0 5/6 -1/6 0 1 x 2 8/3 0 1 -2/3 1/3 0 0

x 5 -2/3

0 0 【-1/3】 -1/3 1 σj 0 0 -1/6 -1/6 0 σj /a rj 1/2 1/2 1 x 1 0 1 0 0 -1 5/2 1 x 2 4 0 1 0 1 -2 0 x 3 2

0 0 1 1 -3 σj

-1/2

最优解为()T

X 0,0,2,4,0*=,最优值为4max =z σ4=0,最优解不唯一?

11.用分支定界法解下列整数规划

(1)?????

?

?≥≤+≤+-≤++=且为整数

,0,2126052max 212121212

1x x x x x x x x x x z

解:

最优解(3,1),最优值z=7。

12.匈牙利解法:见课本145页

13.如图,0v 是一仓库,9v 是商店,求一条从0v 到9v 的最短路。

解: 0v

1v 2v 3v 4v 5v 6v 7v 8v 9v

P=T=0 T=∞ T=∞ T=∞ T=∞ T=∞ T=∞ T=∞ T=∞ T=∞ P=T=2 T=∞ T=11 T=∞ T=7 T=∞ T=4 T=∞ T=∞ T=13 T=11 T=∞ T=7 T=∞ P=T=4 T=∞ T=∞ T=13 T=11 T=∞ P=T=7 T=11 T=13 T=∞ T=13 P=T=11 T=∞ T=11 T=13 T=∞ T=13 T=16 P=T=11 T=13 T=∞ P=T=13 T=16 T=13 T=20 T=16 P=T=13 T=19 P=T=16 T=19 P=19

最短路长为19。最短路为:0129,0329,0349,01249,0789。

14.如图,发点1s ,2s 分别可供应10和15个单位,收点1t ,2t 可以接收10和25个单位,求最大流,边上数为ij c 。

最大流为21

15.如图所示网络中,有向边旁数字为()

ij ij d c ,,ij c 表示容量,ij d 表示单位流量费用,试求s v 到

t v 流值为六的最小费用流。

解:d(f)=37

16.图的生成树: (一)避圈法

在图中任取一条边e1,找一条与e1不构成圈的边e2,再找一条与{e1,e2}不构成圈的边e3。一般设已有{e1,e2,…,ek},找一条与{e1,e2,…,ek}中任何一些边不构成圈的边ek+1,重复这个过程,直到不能进行为止。

(二)破圈法

精心整理的运筹学重点11.决策论

第十一章 决策论  1.决策过程:1)确定目标;2)建立可行方案;3)方案的评价和选择;4)方案实施  由于决策信息不足,决策者无法知道各自然状态发生的任何信息,因此决策的结果往往取决于决策者的主观态度。不同的心理、不同的冒险精神的人可以选用不同的方法。 1)乐观法决策(最大最大准则):从每个策略行取最大值,再从列中再取最大。Max---max策略。  2)悲观法决策(华尔德准则,最大最小准则):从每个策略行取最小值,再从列中再取最大。Min---max策略。  3)折中法决策(郝威茨准则,乐观系数法):用折中系数α算出每个策略的折中值,再选最大的。max策略  max min max{|(1)}i i ij ij h h a a αα=+?  4)等可能性决策(拉普拉斯准则):以全部状态的期望损益值作为决策依据,比折中法更好。缺点是认为各种状态的概率相等,不大现实。  12111 max{ ...}j j mj j j j a a a n n n +++∑∑∑ 5)最小后悔值法:后悔值矩阵中采用Max---min策略  从每个状态(列)找出最大值;用这个最大值减去该列每个策略的效益值,得到后悔值表;在后悔值表中选择每一行中的最大值加入右列;从所有最大后悔值中选择最小的。 3.风险型决策  1)最大期望收益准则:根据各事件发生的概率,计算每一个策略的期望收益值,并从中选择最大的期望收益值。  2)最小期望损失准则(后悔值):首先构造后悔值矩阵,然后分别计算不同策略的期望机会损失,从中选择最小的一个。  3)全情报价值EVPI(Expected value of perfect information):计算出如果获得这项情报而使决策者的期望收益提高的数额,这个数额称为完全情报的期望值,如果它大于采集情报所花的费用,则采集这一情报是有价值的,否则就得不偿失,因此把EVPI作为采集情报费用的上限。  2)按最大期望收益准则公司应该选择方案1a ,期望收益为32万元。

运筹学第一部分 规划论学习总结

运筹学第一部分规划论学习总结 一、线性规划(LP) 1.1线性规划的基本概念 线性规划;目标函数,约束条件;可行解,可行域;最优解,最优值; 1.2 用图解法解两个变量的LP 知识要点: 1)图解法解LP的目的是理解LP的几何性质,不是为了求解,因为它只适用于简单的LP。 2)图解法最适合两个决策变量的LP(约束可以是等式或不等式)。对于一个变量的LP,图形在一维直线上,过分简单;对于三个变量的LP,图形在三维空间,过于复杂。 3)图解法的基本步骤: (1)依次画出适合各约束的区域。重点是会画直线方程的图像。对不等式约束,再判断是直线划分的哪一个半平面。 (2)找出适应各个约束的公共区域,即LP的可行域。 (3)对于目标函数,画出几条等值线,并判断等值线的值上升的方向。 (4)平移目标函数等值线,找出使目标函数最优的点,即LP的最优解。 若找不到最优点,为无界解。 重点或难点:画对应直线方程的直线,注意斜率的符号。 1.3线性规划的图解法的灵敏性分析,对偶价格(影子价格)。 1.4有关LP的基本定理: 线性规划问题的可行域非空时(除无可行解时),其可行域是凸集。(它是有界或无界的凸多边形) 如果线性规划问题有最优解,则一定有一个可行域的顶点对应一个最优解;(一定可以在其顶点达到,但不一定只在其顶点达到,有时在两顶点的连线上得到,包括顶点) 1.5 可行域与最优解及相互之间的关系: 可行域:空集非空(有界、无界) 最优解:无解唯一最优解无穷多最优解无界解 1.6线性规划的标准化

1)松弛量:对一个“≤” 约束条件中,没有使用完的资源或能力的大小称为松弛量(松弛或空闲能力);加上一个松弛量 2)约束方程左边为“≥”不等式时,则可在左边减去一个非负剩余变量,变成等式约束条件。 3)右边的常量Bj ≤0时,两边都要乘以-1。 4)当变量XK <0时,可令XK= - XK, , XK, >0 5)当变量XK为无约束时,可令XK= XK,- XK,,,其中,XK, , XK,, ≥0。 6)令z,=-z,把求min z问题改求为max z, ,即可得到该问题的标准型。 1.7线性规划的计算机解法 (1)Excel求解线性规划问题 规划求解的主要步骤: 设置目标单元格-目标函数,需要最大化(或最小化)的单元格; 设置可变单元格-自变量,需要决定的数目; 约束-约束条件,可通过添加、修改、删除来灵活修改; 要注意,使用线性规划模型,需要修改选项,选中采用线性模型和假 定非负。 (2)Lindo_w 注意事项: 1) 基本程序架构lindo是这样的: MAX 目标函数表达 ST 变量约束1 变量约束2 变量约束3 END 求解一个问题,送入的程序必须以MIN或MAX开头,以END 结束;然后按Ctrl + S(或按工具栏中的执行快捷键)进行求解; 2)低版本的LINDO要求变量一律用大写字母表示; 3) 目标函数及各约束条件之间一定要有"Subject to (ST) "分开.其中字母全部大写; 4) 变量名不能超过8个字符. 在LINDO命令中,约束条件的右边只能是常数,不能有变量; 5) 变量与其系数间可以有空格,不能有任何运算符号(如乘号"*"等). 6) 要输入<=或>=约束,相应以<或>代替即可. 7) 一般LINDO 中不能接受括号"()"和逗号",", 例:400(X1+X2) 需写成400X1+400X2;10,000 需写成10000. 8) 表达式应当已经过简化。不能出现 2X1+3X2-4X1,而应写成-2X1+3X2. LINDO 对目标函数的要求,每项都要有变量,例如,LINDO不认识MIN 2000-X+Y,要改为MIN –X+Y; 9)在LINDO中使用!构造注释语句

大学运筹学课程知识点总结

1. 用图解法求解下列线性规划问题,并指出问题具有惟一最优解、无穷多最优解、无界解还 是 无可行解。 max Z = X i + X 2 6x i +10x 2 "20 * 5兰x 1兰10 【3乞X 2乞8 惟一最优解 最优点(10, 6)最优值Z 二16 戸 5 si = 10 / 2. 将下述线性规划问题化成标准形式。 min Z = -3x ^ 4X 2 - 2x ^ 5x 4 M x 1 - x 2 + 2x 3 - X 4 = -2 为中 X 2 — X3 + 2x 4 兰 14 (1) j - 2x 1 + 3x 2 + X 3 - X 4 A 2 1x1, x2, x3 H 0,x4无约束 解:令 z' = —Z ,X 4 =X 4 — x ; max z^ 3X ] - 4x ^ 2X 3 - 5x 4 5x 4 [—4X ] + X 2 - 2X 3 + x 4 - x ; = 2 j X ] + X 2 - X 3 + 2x 4 - 2x 4 十 X 5 = 14 |- 2x 1 + 3x 2 + X 3 - X 4 + x 4 - X e = 2 _X 1,X 2,X 3,X 4,X 4,X 5,X 6 k 0 3. 分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解对应 、 、 1 、 1 ^2=? 0X|+1O Z 2-12O 护 ____________ 寸 v/ max Li 10

图解法中的可行域的哪个顶点。 max =10x0 解:①图解法: ②单纯形 法: max Z =10x i +5x2 :3捲+4x2 +x3 =9 {5x i +2x2 +x4 =8 I [X i,X2,X3,X4 >0 C j 10 5 0 0 0对应图解法中的 点 C B B b X1 X2 X3 X4 0 X3 9 3 4 1 0 3 0 X4 8 [5] 2 0 1 8/5 0点 O j 0 10 5 0 0 0 X3 21/5 0 [14/5] 1 -3/5 3/2 10 X1 8/5 1 2/5 0 1/5 4 C点 宵-16 0 1 0 -2 5 X2 3/2 0 1 5/14 -3/14 10 X1 1 1 0 -1/7 2/7 B点 35/2 0 0 -5/14 -25/14 1,3/2,0,0Z=35/2

运筹学实验报告1

运筹学实验报告(一) 实验要求:学会在Excel 软件中求解。 实验目的:通过小型线性规划模型的计算机求解方法。 熟练掌握并理解所学方法。 实验内容: 题目: 某昼夜服务的公交线路每天各时间区段内所需司机和乘务人员数如下; 设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线 路至少配备多少名司机和乘 务人员。列出这个问题的线 性规划模型。 解:设Xj 表示在第j 时间区段开始上班的司机和乘务人员数 班次 时间 所需人数 1 6:00-10:00 60 2 10:00-14:00 70 3 14:00-18:00 60 4 18:00-22:00 50 5 22:00-2:00 20 6 2:00-6:00 30

。 6-10 10-14 14-18 18-22 22-2 2-6 1 X1--- X1 2 X2--- X2 3 X3--- X3 4 X4--- X4 5 X5--- X5 6 X6 X6--- 60 70 60 50 20 30 所需人 数 Min z=x1+x2+x3+x4+x5+x6 St: x1+x6>=60 X1+x2>=70 X2+x3>=60 X3+x4>=50 X4+x5>=20 X5+x6>=30 Xj>=0,xj为整数, j=1,2,3,4,5,6

过程: 工作表[Book1]Sheet1 报告的建立: 2011-9-28 19:45:01 目标单元格(最小值) 单元格名字初值终值 $B$1 min 0 150 可变单元格 单元格名字初值终值 $B$3 x 0 45 $C$3 x 0 25 $D$3 x 0 35 $E$3 x 0 15 $F$3 x 0 15 $G$3 x 0 15 结果:最优解X=(45,25,35,15,15,15)T 目标函数值z=150 小结:1.计算机计算给规划问题的解答带来方便,让解答变得简洁;

《运筹学》复习参考资料知识点及习题

第一部分线性规划问题的求解 一、两个变量的线性规划问题的图解法: ㈠概念准备:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。 定义:达到目标的可行解为最优解。 ㈡图解法: 图解法采用直角坐标求解:x1——横轴;x2——竖轴。1、将约束条件(取等号)用直线绘出; 2、确定可行解域; 3、绘出目标函数的图形(等值线),确定它向最优解的移动方向; 注:求极大值沿价值系数向量的正向移动;求极小值沿价值系数向量的反向移动。 4、确定最优解及目标函数值。 ㈢参考例题:(只要求下面这些有唯一最优解的类型) 例1:某厂生产甲、乙两种产品,这两种产品均需在A、B、C三种不同的设备上加工,每种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工设备因各种条件限制所能使用的有效加工总时数如下表所示: 问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大? (此题也可用“单纯形法”或化“对偶问题”用大M法求解)

解:设x 1、x 2为生产甲、乙产品的数量。 max z = 70x 1+30x 2 s.t. ???????≥≤+≤+≤+0 72039450555409321212121x x x x x x x x , 可行解域为oabcd0,最优解为b 点。 由方程组 ???=+=+72039450 5521 21x x x x 解出x 1=75,x 2=15 ∴X * =??? ? ??21x x =(75,15) T ∴max z =Z *= 70×75+30×15=5700 ⑴ ⑵ ⑶ ⑷ ⑸、⑹

max z = 6x 1+4x 2 s.t. ???????≥≤≤+≤+0781022122121x x x x x x x , 解: 可行解域为oabcd0,最优解为b 点。 由方程组 ???=+=+810 22 121x x x x 解出x 1=2,x 2=6 ∴X * =? ?? ? ??21x x =(2,6)T ∴max z = 6×2+4×6=36 ⑴ ⑵ ⑶ ⑷ ⑸、⑹

运筹学学习心得体会

运筹学学习心得体会 运筹学学习心得体会 学习体会运筹学学习心得体会心得体会学习运筹 古人作战讲夫运筹帷幄当中,决胜千里之外。在现代贸易社会中,更加讲求运筹学的利用。作为一位物流管理的学生,更应当能够熟练地把握、应用运筹学的精华,用运筹学的思惟思考题目。即:利用分析、试验、量化的方法,对实际生活中人、财、物等有限资源进行兼顾安排。本着这样的心态,在本学期运筹学行将结课之时,我得出以下关于运筹学的知识。是虽上机考试没有通过,感到不安,但是我明白要将理论联系实际,才能更好的发挥。 线性规划解决的是: 在资源有限的条件下,为到达预期目标最优,而寻觅资源消耗最少的方案。其数学模型有目标函数和束缚条件组成。一个题目要满足一下条件时才能归结为线性规划的模型: ⑴要求解的题目的目标能用效益指标度量大小,并能用线性函数描写目标的要求; ⑵为到达这个目标存在很多种方案; ⑶要到达的目标是在一定束缚条件下实现的,这些条件可以用线性等式或不等式描写。解决线性规划题目的关键是找出他的目标函数和束缚方程,并将它们转化为标准情势。简单的设计2个变量的线性规划题目可以直接应用图解法得到。但是经常在现实生活中,线性规划题目触及到的变量很多,很难用作图法实现,但是应用单纯形法记比较方便。单纯形法的发展很成熟利用也很广泛,在应用单纯形法

时,需要先将题目化为标准情势,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。将所得的量的值代入目标函数,得出最优值。 碰到评价同类型的组织的工作绩效相对有效性的题目时,可以用数据包络进行分析,应用数据包络分析的的决策单元要有相同的投入和相投的产出。 对偶理论: 其基本思想是每个线性规划题目都触及一个与其对偶的题目,在求一个解的时候,也同时给出另外一题目的解。对偶题目有:对称情势下的对偶题目和非对称情势下的对偶题目。非对称情势下的对偶题目需要将原题目变形为标准情势,然后找出标标准情势的对偶题目。由于对偶题目存在特殊的基本性质,所以我们在解决实际题目比较困难时可以将其转化成其对偶题目进行求解。 灵敏度分析: 分析在线性规划题目中,一个或几个参数的变化对最优解的影响题目。可以分析目标函数中变量系数、束缚条件的右端项、增加一个束缚变量、增加一个束缚条件、束缚条件的系数矩阵中的参数值等的变化。假如将题目转化为研究参数值在保持最优解或最优基不变时的答应范围或改变到某一值时对题目最优解的影响时,就属于参数线性规划的内容。 运输题目是解决多个产地和多个销地之间的同品种物品的规划题目。根据运输题目的独特性,一般采用一种简单而有效的方法:表上作业法。表上作业法先找出运输题目的基可行解,方法有:

(完整版)学习运筹学的体会与心得

学习运筹学的总结与心得体会古人云“夫运筹帷幄之中,决胜千里之外”,怀着对运筹学的憧憬与崇拜之情,这学期我选择了运筹学这门课程。通过学习,我知道了运筹学是一门具有多科学交叉特点的边缘科学,是一门以数学为主要工具,寻求各种问题最优方案的优化学科。 经过一个学期的学习,我们应该熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题,即:应用分析、试验、量化的方法,对实际生活中的人力、财力、物力等有限资源进行合理的统筹安排。本着这样的心态,在本学期运筹学课程将结束之际,我对本学期所学知识作出如下总结。 一、线性规划 线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。而线性规划问题指的是在一组线性等式或不等式的约束下,求解一个线性函数的最大或最小值的问题。其数学模型有目标函数和约束条件组成。 解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。解决线性规划问题的主要方法有:图解法、单纯型法、两阶段法、对偶单纯型法、计算机软件求解等方法。简单的设计2个变量的线性规划问题可以直接运用图解法得到。但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。将所得的量的值代入目标函数,得出最优值。 利用单纯形表我们可以(1)直接找出基本可行解与对应的目标函数值;(2)通过检验数判断原问题解的性质以及是否为最优解。 每一个线性规划问题都有和它伴随的另一个问题,若一个问题称为原问题,则另一个称为其对偶问题,原问题和对偶问题有着非常密切的关系,以至于可以根据一个问题的最优解,得出另一个问题的最优解的全部信息。 对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标准形式的对偶问题。因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。 在解决线性规划问题时,我们往往会在求出最优解后,对问题进行灵敏度分

运筹学例题解析

(一)线性规划建模与求解 B.样题:活力公司准备在5小时内生产甲、乙两种产品。甲、乙两种产品每生产1 单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量的3倍。已知甲、乙两种产品每销售1单位的利润分别为3百元和1百元。请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大 要求:1、建立该问题的线性规划模型。 2、用图解法求出最优解和最大销售利润值,并写出解的判断依据。如果不存在最优解,也请说明理由。 解:1、(1)设定决策变量: 设甲、乙两种产品分别生产x 1 、x 2 单位 。 (2)目标函数: max z=2 x 1+x 2 (3)约束条件如下:1221 12 25..3,0+≤??≥??≥?x x s t x x x x 2、该问题中约束条件、目标函数、可行域和顶点见图1所示,其中可行域用阴影部分标记,不等式约束条件及变量约束要标出成立的方向,目标函数只须画出其中一条等值线, 结论:本题解的情形是: 无穷多最优解 ,理由: 目标函数等值线 z=2 x 1+x 2与约 束条件2 x 1+x 2≤5的边界平行 。甲、乙两种产品的最优产量分别为 (5,0)或(1,3)单位;最大销售利润值等于 5 百元。 (二)图论问题的建模与求解样题 A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例 13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。但是变卖旧设备可以获得残值收入,连续使用1年、2年、3年、4年以上卖掉的设备残值分别为8万元、6万元、3万元和0万元。试制定一个5年的更新计划,使总支出最少。已知设备在各年的购买费与维修费如表2所示。要求:(1)建立某种图论模型;(2)求出最少总支出金额。

运筹学学习心得

运筹学学习心得 运筹学学习心得 古人作战讲“夫运筹帷幄之中,决胜千里之外”。在现代商业社会中,更加讲求运筹学的应用。作为一名企业管理的学生,更应该能够熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题。即:应用分析、试验、量化的方法,对实际生活中人、财、物等有限资源进行统筹安排。本着这样的心态,在本学期运筹学即将结课之时,我得出以下关于运筹学的知识。 线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。其数学模型有目标函数和约束条件组成。一个问题要满足一下条件时才能归结为线性规划的模型:⑴要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;⑵为达到这个目标存在很多种方案;⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。简单的设计2个变量的线性规划问题可以直接运用图解法得到。但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。将所得的量的值代入目标函数,得出最优值。 遇到评价同类型的组织的工作绩效相对有效性的问题时,可以用数据包络进行分析,运用数据包络分析的的决策单元要有相同的投入和相投的产出。 对偶理论:其基本思想是每一个线性规划问题都涉及一个与其对偶的问题,在求一个解的时候,也同时给出另一问题的解。对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标标准形式的对偶问题。因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。 灵敏度分析:分析在线性规划问题中,一个或几个参数的变化对最优解的影响问题。可以分析目标函数中变量系数、约束条件的右端项、增加一个约束变量、增加一个约束条件、约束条件的系数矩阵中的参数值等的变化。如果将问题转化为研究参数值在保持最优解或最优基不变时的允许范围或改变到某一值时对问题最优解的影响时,就属于参数线性规划的内容。 运输问题是解决多个产地和多个销地之间的同品种物品的规划问题。根据运输问题的独特性,一般采用一种简单而有效的方法:表上作业法。表上作业法先找出运输问题的基可行解,方法有:最小元素法、西北角法、沃格尔法。其中沃格尔法得出的解最接近最优解。然后利用闭回路法或对偶变量法对得到解进行最优性判别。当检验的结果为非最优解时,进行解的改进,然后再进行最优性判别,直到所有的非基变量检验数全非负,得到最优解。在解决运输问题时会遇到产销不平衡的情况,在该情况下,要将该问题转化为产销平衡问题,只需增加一个假象的产地或销地,并将表示该地的变量在目标函数中的系数设为零即可。 整数规划是解决决策变量只能取整数的规划问题,整数规划的解法有割平面法和分支定解法。整数规划中的0-1规划整数问题是一个非常有用的方法。在实际问题中,该方法能够解决很多问题。0-1整数规划的解决方法有枚举法和隐枚

运筹学课程总结

运筹学课程总结 总结内容: 一、运筹学简述 (一)运筹学定义 (二)运筹学工作步骤 (三)运筹学的应用 二、运筹学相关理论与方法 (一)线性规划 (二)运输问题 (三)目标规划 (四)整数规划 (五)动态规划 三、运筹学应用案例分析(用matlab求解)

一、运筹学简述 (一)运筹学的定义 运筹学是一门应用科学,至今还没有统一且确切的定义。莫斯和金博尔曾对运筹学的定义是:“为决策机构在对其控制下业务活动进行决策时,提供以数量化为基础的科学方法。”它强调科学方法,以量化为基础。 另一定义是:“运筹学是一门应用科学,它广泛应用现有的科学技术知识和数学方法,解决实际中提出的专门问题,为决策者选择最优决策提供定量依据。” 中国百科全书给出的定义是:“运筹学是用数学方法研究经济、民政和国防等部门在内外环境约束的条件下合理分配人力、物力、财力等资源,使实际系统有效运行的技术科学,它可以用来预测发展趋势,制定行动规划或优选可行方案。” 如论如何定义,都表明着,运筹学是为提供最优化方法、最佳解决方案的科学。 (二)运筹学的工作步骤 1、建立数学模型:认清目标和约束; 2、寻求可行方案:求解; 3、评估各个方案:解的检验、灵敏度分析等; 4、选择最优方案:决策; 5、方案实施:回到实践中; 6、后评估:考察问题是否得到完满解决。 (三)运筹学的应用 运筹学在各个领域的应用非常广泛,主要有以下几个方面: 1、生产计划:生产作业的计划、日程表的编排、合理下料、配料问题、物料管理等; 2、库存管理:多种物资库存量的管理,库存方式、库存量等; 3、运输问题:确定最小成本的运输线路、物资的调拨、运输、工具的调度

运筹学知识点总结

运筹学 考试时间: 2009-1-4 10:00-12:00 考试地点: 金融1、2:(二)201,会计1、2:(二)106 人资1、2:(二)203,工商1、2:(二)205 林经1、2:(二)306 答疑时间: 17周周二周四上午8:00-11:00 18周周一周三上午8:00-11:00 地点:基础楼201

线性规划 如何建立线性规划的数学模型; 线性规划的标准形有哪些要求?如何把一般的线性规划化为标准形式? 如何用图解法求解两个变量的线性规划问题?由图解法总结出线性规划问题的解有哪些性质? 如何用单纯形方法求解线性规划问题? 如何确定初始可行基或如何求初始基本可行解?(两阶段方法)如何写出一个线性规划问题的对偶问题?如果已知原问题的最优解如何求解对偶问题的最优解?(对偶的性质,互补松紧条件)对偶单纯形方法适合解决什么样的问题?如何求解? 对于已经求解的一个线性规划问题如果改变价值向量和右端向量原最优解/基是否仍是最优解/基?如果不是,如何进一步求解?

1、建立线性规划的数学模型: 特点: (1)每个行动方案可用一组变量(x 1,…,x n )的值表示,这些变量一般取非负值; (2)变量的变化要受某些限制,这些限制条件用一些线性等式或不等式表示; (3)有一个需要优化的目标,它也是变量的线性函数。 2、线性规划的标准形有哪些限制?如何把一般的线性规划化为 标准形式? 目标求极小;约束为等式;变量为非负。 min b 0 T z C X AX X ==?? ≥? 例:把下列线性规划化为标准形式: 12 1212112 max 2328 1 20,0z x x x x x x x x x =++≤?? -+≥?? ≤??≤<>? 解:令13245,,x x x x x =-=-标准型为: ,3453456345738min 23()2()8 () x 1 +x 20,3,4,5,6,7,8i z x x x x x x x x x x x x i =-+--+-+=?? ++--=?? -=??≥=?

大学运筹学课程知识点总结

1. 2. 3.用图解法求解下列线性规划问题,并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。 ?? ???≤≤≤≤≤++=8 3105120106max 21212 1x x x x x x z 2.将下述线性规划问题化成标准形式。 (1)?????? ?≥≥-++-≤+-+-=-+-+-+-=无约束 4,03,2,12321422245243min 43214 32143214 321x x x x x x x x x x x x x x x x x x x x z 解:令z z -=',' '4' 44x x x -=

???????≥=-+-++-=+-+-+=-+-+-+-+-=0,,,,,,23214 2222455243'max 6 5''4'43216' '4'43215''4'4321''4'4321' '4'4321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x z 3.分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解对应图解法中的可行域的哪个顶点。 ??? ??≥≤+≤++=0,825943510max 2 121212 1x x x x x x x x z 解:①图解法: ②单纯形法:将原问题标准化: ??? ??≥=++=+++=0,,,825943510max 4213 212 1x x x x x x x x x x x x z C j 10 5 θ 对应图解法

单纯型法步骤:转化为标准线性规划问题;找到一个初始可行解,列出初始单纯型表;最优性检验,求cj-zj ,若所有的值都小于0,则表中的解便是最优解,否则,找出最大的值的那一列,求出bi/aij ,选取最小的相对应的xij ,作为换入基进行初等行变换,重复此步骤。 4.写出下列线性规划问题的对偶问题。 (1)()()()?? ???? ?????==≥===== ∑∑∑∑====n j m i x n j b x m i a x t s x c z ij j m i ij i n j ij m i n j ij ij ,,1;,,10 ,,1,,1..min 11 11 ()?????==≤++=+=+=∑∑无约束 j i ij j m i n i m j j m i i i y x n j m i c y y t s y b y a w ,,,1;,,1..max 1 1

最新《运筹学》复习参考资料知识点及习题

第一部分线性规划问题的求解 1 一、两个变量的线性规划问题的图解法: 2 ㈠概念准备:定义:满足所有约束条件的解为可行解;可行解的全体称为可行(解)域。3 定义:达到目标的可行解为最优解。 4 ㈡图解法: 5 图解法采用直角坐标求解:x 1——横轴;x 2 ——竖轴。1、将约束条件(取等号)用直线 6 绘出; 7 2、确定可行解域; 8 3、绘出目标函数的图形(等值线),确定它向最优解的移动方向; 9 注:求极大值沿价值系数向量的正向移动;求极小值沿价值系数向量的反向移动。 10 4、确定最优解及目标函数值。 11 ㈢参考例题:(只要求下面这些有唯一最优解的类型) 12 例1:某厂生产甲、乙两种产品,这两种产品均需在A、B、C三种不同的设备上加工,13 每种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工14 设备因各种条件限制所能使用的有效加工总时数如下表所示: 15

16 问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大? 17 (此题也可用“单纯形法”或化“对偶问题”用大M法求解) 18

解:设x 1、x 2为生产甲、乙产品的数量。 19 max z = 70x 1+30x 2 20 s.t. 21 ???????≥≤+≤+≤+072039450555409321212121x x x x x x x x , 22 23 可行解域为oabcd0,最优解为b 点。 24 由方程组 25 ???=+=+720394505521 21x x x x 解出x 1=75,x 2=15 26 ∴X *=???? ??21x x =(75,15)T 27 ⑴ ⑵ ⑶ ⑷ ⑸、⑹

大学运筹学课程知识点总结

1.用图解法求解下列线性规划问题,并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。 ?? ???≤≤≤≤≤++=8 3105120106max 21212 1x x x x x x z 2.将下述线性规划问题化成标准形式。 (1)?????? ?≥≥-++-≤+-+-=-+-+-+-=无约束 4,03,2,12321422245243min 43214 32143214 321x x x x x x x x x x x x x x x x x x x x z 解:令z z -=',' '4'44x x x -= ???????≥=-+-++-=+-+-+=-+-+-+-+-=0,,,,,,23214 2222455243'max 6 5''4'43216' '4'43215' '4'4321''4'4321' '4'4321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x z 3.分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解对应

图解法中的可行域的哪个顶点。 ??? ??≥≤+≤++=0,825943510max 2 121212 1x x x x x x x x z 解:①图解法: ②单纯形法:将原问题标准化: ??? ??≥=++=+++=0,,,825943510max 4 3214213 212 1x x x x x x x x x x x x z C j 10 5 0 0 θ 对应图解法中的点 C B B b x 1 x 2 x 3 x 4 0 x 3 9 3 4 1 0 3 O 点 0 x 4 8 [5] 2 0 1 8/5 σj 0 10 5 0 0 0 x 3 21/5 0 [14/5] 1 -3/5 3/2 C 点 10 x 1 8/5 1 2/5 0 1/5 4 σj -16 0 1 0 -2 5 x 2 3/2 0 1 5/14 -3/14 B 点 10 x 1 1 1 0 -1/7 2/7 σj 35/2 -5/14 -25/14 最优解为(1,3/2,0,0),最优值Z=35/2。

运筹学知识点总结

运筹学知识点总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运筹学 考试时间: 2009-1-4 10:00-12:00 考试地点: 金融1、2:(二)201,会计1、2: (二)106 人资1、2:(二)203,工商1、2: (二)205 林经1、2:(二)306 答疑时间: 17周周二周四上午8:00-11:00 18周周一周三上午8:00-11:00地点:基础楼201

线性规划 如何建立线性规划的数学模型; 线性规划的标准形有哪些要求如何把一般的线性规划化为标准形式 如何用图解法求解两个变量的线性规划问题?由图解法总结出线性规划问题的解有哪些性质? 如何用单纯形方法求解线性规划问题? 如何确定初始可行基或如何求初始基本可行解(两阶段方法)如何写出一个线性规划问题的对偶问题如果已知原问题的最优解如何求解对偶问题的最优解(对偶的性质,互补松紧条件)对偶单纯形方法适合解决什么样的问题如何求解 对于已经求解的一个线性规划问题如果改变价值向量和右端向量原最优解/基是否仍是最优解/基如果不是,如何进一步求解

1、建立线性规划的数学模型: 特点: (1)每个行动方案可用一组变量(x 1,…,x n )的值表示,这些变量一般取非负值; (2)变量的变化要受某些限制,这些限制条件用一些线性等式或不等式表示; (3)有一个需要优化的目标,它也是变量的线性函数。 2、线性规划的标准形有哪些限制如何把一般的线性规划化为标 准形式 目标求极小;约束为等式;变量为非负。 min b 0 T z C X AX X ==?? ≥? 例:把下列线性规划化为标准形式: 12 1212112 max 2328 1 20,0z x x x x x x x x x =++≤?? -+≥?? ≤??≤<>? 解:令13245,,x x x x x =-=-标准型为:

浅谈管理运筹学学习心得体会

浅谈管理运筹学学习心得体会 简单的来说,运筹学就是通过数学模型来安排物资,它是一门研究如何有效的组织和管理人机系统的科学,它对于我们逻辑思维能力要求是很高的。从提出问题,分析建摸到求解到方案对逻辑思维的严密性也是一种考验,但它与我们经济管理类专业的学生以后走上工作岗位是息息相关的。 运筹学应用分析,试验,量化的方法,对经济管理系统中人财物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。对经济问题的研究,在运筹学中,就是建立这个问题的数学和模拟的模型。建立模型是运筹学方法的精髓。通常的建模可以分为两大步:分析与表述问题,建立并求解模型。通过本学期数次的实验操作,我们也可以看到正是对这两大步骤的诠释和演绎。 运筹学模型的建立与求解,是对实际问题的概括与提炼,是对实际问题的数学解答。而通过本次的实验,我也深刻的体会到了这一点。将错综复杂的实例问题抽象概括成数学数字,再将其按要求进行求解得出结果,当然还有对结果的检验与分析也是不可少的。在这一系列的操作过程中,不仅可以体会到数学问题求解的严谨和规范,同时也有对运筹学解决问题的喜悦。 通过一个学期的实验学习,我对有关运筹学建模问题有了更深刻的认识和把握;对运筹学的有关知识点也有了进一步的学习和掌握,下面是我的一些实验心得和体会。 对于这种比较难偏理的学科来说确实是的,而且往往老师也很难把这么复杂的又与实际生活联系的我们又没亲身经历过的问题分析的比较透彻,所以很多同学从一开始听不懂就放弃了。但对于上课认真听讲,课后认真复习并且做相应习题的同学来说,学好它也不是一件难事,应该比较有把握的,毕竟题目是百变不离其中的,这也是这门课的好处。 对我而言学习运筹学,并没有把它当作是一件难事,以平常心对待。它更多的是联系实际,对一步步的推论推理过程,我个人认为是比较有挑战性的,所以我也用心学好它。其实学习这门课时,大家压力还是比较大的,老担心期末会挂,至少我身边有很多同学是这样的,因为一打开书就可以看到很多复杂的图形,一个个步骤也更是吓人,有的题目甚至要解好几页。就因为这样,我课上就比较注重听讲,尽量把每道题目的关键都听懂,有的不是很清楚的及时向人问完并记下要点,这样也方便自己课后仔细想这道题的解法。因为这门不象其他课上课不听还可以蒙混过关,对于一连串的解题思路只有经过分析才会明白,因为一点不明白有可能导致整个题目前功尽弃。在平时做作业时我会认真分析老师提供给我们的答案的解题思路,在不懂的地方记一下,抽时间问老师问同学,以便在能掌握好所学内容。因为考试的时候还是要求我们把自己的思路、步骤写清楚。毕竟这门课程学习并不是只为了考试,它与以后生活也是息息相关的。

管理运筹学复习要点

管理运筹学复习 (1)某工厂在计划期内要安排Ⅰ,Ⅱ两种产品的生产.生产单位产品所需的设备台时及A,B 两种原材料的消耗以及资源的限制如下表所示: 生产多少单位产品Ⅰ和产品Ⅱ才能使获利最多? 解:max z=50X1+100X2 ; 满足约束条件:X1+X2≤300, 2X1+X2≤400, X2≤250, X1≥0,X2≥0。 (2):某锅炉制造厂,要制造一种新型锅炉10台,需要原材料为∮63.5×4mm的锅炉钢管,每台锅炉需要不同长度的锅炉钢管数量如下表所示: 多少根原材料? 设按14 种方案下料的原材料的根数分别为X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14, 可列出下面的数学模型: min f=X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11+X12+X13+X14 满足约束条件:2X1+X2+X3+X4≥ 80 X2+3X5+2X6+2X7+X8+X9+X10≥420 X3+X6+2X8+X9+3X11+X12+X13≥ 350 X4+X7+X9+2X10+X12+2X13+3X14≥ 10 X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13,X14≥ 0

(3)某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的产量、 应如何调运,使得总运输费最小? 解:此运输问题的线性规划的模型如下 min f =6X11+4X12+6X13+6X21+5X22+5X23 约束条件:X11+X12+X13=200 X21+X22+X23=300 X11+X21=150 X12+X22=150 X13+X23=200 X ij≥0(i=1,2;j=1,2,3) (4) 某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的产量、 (5)某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的

运筹学学习心得

学习心得 姓名:陈相宇班级:石油七班学号: 3120540714经过上了十几次运筹学的课,我觉得运筹学这门课程内容真的很丰富,涉及的内容有很多,例如数学,决策学等。当然,在这短短的时间了,我不可能完全掌握老师所说的内容,只能说了解什么是运筹学?如何运用运筹学?运筹学是一个应用数学和形式科学的跨领域研究,利用数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答,所以说好运筹学对我们以后的生活是很有的帮助的 自古以来,运筹学就无处不在,小到菜市场买菜,大到处理国家事务,都会用到运筹学,“运筹帷幄之中,决胜千里之外”这句话就很好的形容了运筹学的重要性。中国古代有一个著名例子“田忌赛马”,就是对运筹学中博弈论的运用,通过巧妙的安排部署马匹的出场顺序,利用了现有马匹资源的最大效用,设计出了一个最佳方案,取得了一个最好的效果。从中我们不难发现,在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。可见,筹划安排是十分重要的。 在现在社会中,运筹学是一门重要的课程知识,它在现实生活中无处不在,经常用于解决复杂问题,特别是改善或优化现有系统的效率。经济、金融、工程、管理等都与运筹学的发展密切相关。随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用,运筹学本身也在不断发展,线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、博弈论、搜索论、模拟等等,因此运筹学有广阔的应用领域,它已渗透到诸如服务、经济、库存、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性等各个方面。 现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。对所研究的问题求出最

运筹学课程设计实验报告

运筹学课程设计实验报告

目录 ①线性规划(一) (3) 线性规划(二) (5) ②整数规划(一) (8) 整数规划(二) (9) ③目标规划 (11) ④运输问题(一) (20) 运输问题(二) (22) ⑤指派问题 (24) ⑥图与网络分析 最短路径 (26) 最大流量(一) (28) 最大流量(二) (31) ⑦网络计划(一) (33) 网络计划(二) (34)

(一)线性规划问题: 1.用EXCEL 表求解下面各题,并从求解结果中读出下面要求的各项,明确写出结果。例如:原问题最优解为X*=(4,2)T ① 原问题的最优解(包括决策变量和松弛变量)、最优值; ② 对偶问题的最优解; ③ 目标函数价值系数的变化范围; ④ 右端常数的变化范围。 解: 50 10521≤+x x 1 21≥+x x 42≤x 0 ,21≥x x 2 13max x x z + =

由报告可知,①原问题最优解为产品甲生产2台,产品乙生产4台,原问题有最优值,即总利润最大为14元。 ②对偶问题的最优解为影子价格由灵敏度表可知y*=(0.2,0,1) ③目标函数价值系数的变化范围是灵敏度分析表中的允许的增量和减量,0≤X 甲≤1.5, 2 ≤X乙≤1E+33。

④右端常数的变化范围为40≤bA ≤1E+80, -1E-29≤bB ≤6,0≤bC ≤5 2. ????? ? ?≥≤++≤++≤++++=0 ,,42010132400851030010289.223max 3213213213213 21x x x x x x x x x x x x x x x z (1)求解:① 原问题的最优解(包括决策变量和松弛变量)、最优值; ② 对偶问题的最优解; ③ 目标函数价值系数的变化范围; ④ 右端常数的变化范围。 解:

相关主题
文本预览
相关文档 最新文档