当前位置:文档之家› 交流电动机变频调速系统的主电路设计

交流电动机变频调速系统的主电路设计

交流电动机变频调速系统的主电路设计
交流电动机变频调速系统的主电路设计

课题名称交流电动机变频调速系统的主电路设计

摘要

最近几年,随着新型电力电子器件的不断涌现和计算机技术的飞速发展,高性能的交流电动机变频调速系统得到了广泛的应用,他的显著的节能效果和灵活的运行方式,给人们留下了深刻的印象。

本论文首先论述了变频调速的基础技术,简述了它在我国的发展和应用以及今后在这方面应做的工作;其次对系统的主电路进行了系统地分析,并对调速系统的实施方案进行了论证。在此基础上,调速系统主电路采用了交-直-交型电路形式,并采用IGBT作为主电路的功率开关器件;根据PWM波形的生成原理,采用VHDL语言,从硬件和软件上探讨了基于CPLD,用于IGBT控制的数字化PWM 波形产生器的实现方法;根据系统的设计要求,选择了转速负反馈控制,提高了系统的精度和稳定度;最后完成了相应的电气控制电路和直流电源的设计。

经相关的实验及仿真波形分析,表明该系统满足预期的设计要求。

关键词:交流调速变频调速 IGBT CPLD PWM

目录

1前言 (1)

1.1交流变频调速技术的发展与研究现状 (1)

1.2相关技术分析 (2)

2系统主电路设计 (4)

2.1 主电路工作原理 (4)

2.2 系统主电路参数设计与选择 (7)

3 结论 (12)

参考文献 (13)

致谢 (14)

第一章前言

1.1 交流变频调速技术的发展与研究现状

在过去的几十年里,世界范围的工业进步的一个重要因素是工厂自动化程度的不断提高。工厂里的生产线一般包括一个或多个可变速的电机传动装置,用于大功率传送带、机械手、桥式吊车、钢材扎制生产线以及塑料和合成纤维生产线等。50年代以前,所有这些应用都需要使用直流电机传动,交流电机由于其固有的以同步或几乎同步于电源的频率运行,所以难以真正的调节或平滑的改变速度。然而,直流传动存在的诸如运行中产生火花、对环境要求较高、电刷易于磨损、维护麻烦等等的自身结构上的问题促使人们不断寻求更好的解决问题的方法。一般来说,交流传动与相当的直流传动相比通常有价格方面的优势,而且具有较少维护、较小的电机尺寸和更高的可靠性。然而对这些传动系统可利用的控制灵活性是非常有限的,而且它们的应用主要局限在风机、泵和压风机等应用方面,其速度只需要粗略调节而对暂态响应和低速特性没有严格要求。用于机床、高速电梯、测功器、矿井提升机等的传动装置,有更加复杂的要求,而且必须提供允许调节多个变量的灵活性,例如速度、位置、加速度和转矩等。这样的高性能应用,一般在速度闭环下要求高速段保持高于0.5%的调速精度和至少20:1的宽调速范围,以及高于50rad/s的快速暂态响应。以前,这样的传动装置几乎全部是直流电机的应用领域,并根据具体应用的需要配置各种结构的AC-DC变换器。然而,采用适当控制的感应电动机传动在高性能应用上已胜过直流传动,并且交流传动更加广泛的应用于计算机外围设备的传动、机床和电动工具、机器人和自动装置的传动、电动汽车和电器火车传动等等。

经过近三十年的发展,交流调速电气传动已上升为电气调速的主流,正在越来越广泛的领域取代传统的直流调速传动。其中变频调速是交流电机调速中发展最快、最活跃的一支。它以其优异的调速和起、制动性能,高效率、高功率因数和节电效果及其它许多优点而被国内外公认为最有发展前途的调速方式,成为现代调速传动的主流。在冶金、交通、机械、电子、石油化工、纺织、制药、造纸、家用电器、电力牵引等工业领域得到了广泛的应用,产生了巨大的经济效益。同时变频调速传动系统无论在性能、装置体积、设备维护还是在节能乃至环保等方面也都体现了巨大的优势。

交流传动得以飞速发展,得益于以下几个方面:

1、电力电子功率器件的发展

2、控制理论的发展

3、PWM技术的发展

4、微处理器和专用集成电路(ASIC)的发展

我国变频调速技术的应用,是一个由试验到实用,由辅助系统到生产装置,由考虑节能到全面改善工艺水平,由开环手动控制到闭环自动控制,由低压中小容量到高压大容量的过程。多年来,国家有关部门一直致力于变频调速技术的开发及推广应用,并给予重点扶持,并将推广应用变频调速技术作为风机、水泵节能技改专项的重点投资方向。国家成立了风机水泵节能中心,开展信息咨询和培训。在国家经贸委“九五”资源节能综合利用工作纲要中,变频调速己被列入重点组织实施的10项资源节约综合利用技术改造示范工程之一。变频调速技术的应用范围已发展到新阶段。在石油、石化、机械、冶金等行业都得到了大量使用和整套装置系统使用,取得了节能、增产的显著效果。变频调速技术己成为节约能源及提高产品质量的有效措施。实践的结果证明,节电率一般在10%~30%,有的高达40%,更重要的是生产中一些技术难点也得到解决。

1.2 相关技术分析

1.2.1 PWM技术

PWM技术是变频调速技术的核心技术之一。它是利用半导体器件的开通与关断,把直流电压变成电压脉冲序列,并通过控制电压脉冲宽度和周期以达到变压的目的或者控制电压脉冲宽度和脉冲列的周期以达到变压变频目的的一种控制技术。目前PWM技术被广泛应用于电气传动、不间断电源、有源滤波器等中。已经不限于逆变技术,也覆盖了整流技术。如在整流电路中,采用自关断器件进行PWM控制,可使电网侧的输入电流接近正弦波,并且功率因数达到1,可望彻底解决对电网的污染问题。特别值得一提的是,由于PWM整流器和PWM逆变器组成的电压型变频器(也称双PWM变流器)无须增加任何附加电路,就可以允许能量双向传送,实现四象限运行。至于PWM控制技术又有许多中,并且还在不断发展中。但从控制思想上分,它有以下四类:

(1)等脉宽PWM法它是为克服PWM方式中逆变器部分只能输出频率可调的方波电压而不能调压的缺点而发展来的,该法是从是PWM法中最简单的一种。其缺点是输出电压中除基波外,还含有较大的谐波分量。

(2)SPWM法它是为克服(1)法的缺点而发展来的,该法是从电动机供电电源角度出发,着眼于如何产生一个可调频调压的三相对称正弦波电源。

(3)磁链追踪型PWM法它是从电动机角度出发,着眼点是如何使电动机获得圆磁场。它是以三相对称正弦波电压供电时交流电机的理想磁链为基准,用逆变器不同开关模式所产生的实际磁链矢量来追踪基准磁链圆,由追踪的结果决定出逆变器的开关模式,以形成PWM波。

(4)电流跟踪型PWM法

1.2.2 电力电子技术

变频技术是建立在电力电子技术基础之上的。电力电子时代是从50年代

末晶闸管(SCR)的出现开始的,后来陆续推出了其它种类的器件,诸如控制极可关断晶闸管(GTO),双极型大功率晶体管(BJT或BPT),功率MOS场效应晶体管(MOSFET),绝缘门极双极型晶体管(IGBT),静态感应晶体管(SIT),静态感应晶闸管(SITH),MOS控制的晶闸管(MCT)等。在这个不断发展的过程中,器件的电压、电流额定以及其他电气特性均得到了很大的改善。从最初的晶体管到第二代的GTR、MOSFET再到第三代的IGBT,大功率半导体器件的性能不断提高,使得变频装置发生了根本性的变化。目前,大功率半导体器件又向集成化智能化方向发展。智能功率模块IPM是向第四代功率集成电路PIC的过渡产品。IPM包含了IGBT芯片及外围的驱动和保护电路,有的把光耦也集成于一体,因此是更为好用的集成功率器件。目前,在模块额定电流10-600A范围内的变频器均有采用IPM的趋势。它具有开关速度快,驱动电流小,控制驱动更为简单,保护功能更为丰富等优势。

其中IGBT作为第三代的电力电子器件,它的应用是变频器的性能有了很大的提高,主要表现为:

1.发热减小,将曾占主回路发热50%-70%的器件发热降低了30%;

2.高载波控制,使输出电流波形有明显的改善;

3.提高开关频率,实现了电机运行的静音化;

4.驱动功率减小,体积趋于更小。

第二章 系统主电路设计

2.1 主电路工作原理

主电路由整流和逆变电路构成。三相交流电源经过三相全波整流、滤波、稳压,为逆变器提供一个稳定可靠的大容量直流电源,然后由大功率开关元件按脉宽调制(PWM )方式,将直流逆变成可变频率和电压的交流,供交流电动机变速之用。主电路中大功率开关元件选择IGBT 模块( IGBT 即绝缘门极双极晶体管),它集VMOS 管和大功率达林顿晶体管特性优点于一身,而无两者的缺点,具有高电压、大电流、低导通电阻、高速、高可靠、低开关损耗、低脉冲拖尾电流、对温度不敏感等特性。本课题选用的是交-直-交电压型PWM 变频主电路,它包括不可控整流电路、滤波电路和三相桥式逆变电路以及能耗制动电路。其结构如图4所示。

2.1.1 交-直变换电路

该变换电路的任务是将电源的三相交流电变换为平稳的直流电。 1. 整流电路 整流电路因变频电路输入功率大小不同而异。对于小功率的,输入电源多用单相220V ,整流电路用单相全波整流桥;对于大功率的,一般用三相380V 电源,整流电路为三相桥式全波整流电路。本毕业设计中选用的是11KW 的三相交流电动机,其额定电流为22.6A ,额定电压为380V ,额定频率为50HZ ,额定转速为1460转/分,属于中小功率范围。整流器件采用不可控的整流二极管或二极管模块。如图4所示。

2. 整流器件的一般选择原则 1)最大反向电压RM U

m RM U U 2=,式中m U 是电源线电压的振幅值 (3―1)

2) 最大整流电流VDM I

N VDM I I 2=,式中N I 为变频器的额定电流 (3―2)

3) 整流输出的平均直流电压d U 如果电源的线电压为L U ,则三相全波整流后平均直流电压的大小d U =235.1U 。 (3―3)

交流电动机变频调速系统的主电路设计

B

C

D

D

C

B

D 1D 3D 6

F U S E 1

F U S E 2

F U S E 3

L 1

L 2

L 3

C 0C 1

C 3

C 1C 2

R 1R 2R H

H L R e V d e R 3D 7C 3R 41K D 8

C 4

R 5D 9

C 5

R 7D 11

C 7

R 8D 12

C 8

R 61K

D 10C 6M O T O R

R

S

T

F U 1

R S V T

3p h a s e Q I G B T I G B T I G B T I G B T

I G B T I G B T

I G B T

G N D G N D G N D

P N

V 1V 3V 4V 6V 5V 2

D 4

V e D 2D 5F U 2

图4 系统主电路原理图

2.1.2 中间直流电路

它包括吸收由整流器、逆变器回路产生的电压脉动的滤波电路(也称储能回路)以及限流电路。

1、滤波电路 由于整流电路输出的整流电压中含有6倍电源频率的脉动直流电压,而逆变器采用PWM 控制方式(由逆变器同时完成VVVF ),要求中间直流电路是电压源型, 所以一般采用电容器滤波。中间直流电路除起滤波作用外,还必须在整流器与逆变器之间起耦合作用,以消除相互干扰,这就要求给作为感性负载的电动机提供必要的无功功率。可见,中间直流电路的电容除起滤波作用外,还起储能作用,因而它的电容量必须较大,所以,又称储能电容器。本课题中使用两个大电容器1C 、2C ;又由于电解电容的电容量有较大的离散性,

故电容器1C 、2C 电容量不能完全相等,这将使它们承受的电压1d U 和2d U 不相等,

为了使1d U 和2d U 相等,在1C 和2C 旁各并一个阻值相等的均压电阻1R 和2R 。 2. 限流电路 图4中,串接在整流桥和滤波电容器之间,由限流电阻s R 和可控硅VT 组成的并联电路。

1) 限流电阻s R 变频电路在接入电源之前,由于储能电容较大,滤波电容上电压d U =0,故接入电源瞬间势必产生很大的冲击电流经整流桥流向滤波电容,此时dt

di 很大,可能使整流桥受到损坏;也可能使电源瞬间电压下降,形成

干扰。为限制该冲击电流,有必要在整流桥的输出端和滤波电容器之间串入一个限流电阻s R 。

2)可控硅VT 当电路正常工作是,如将此限流电阻长时间接在电路中,会引起附加损耗和整流输出直流电压以及逆变器输出电压的不稳定。所以,当电容两端的电压增加到额定电压的70%时,触发可控硅,将电阻s R 切除电路,并使一直处于导通状态。触发可控硅VT 的电路可设计如图5所示。

图5 可控硅触发电路

图中,通过调节1P 来设定基准电压。并同主回路P 点电压相比较,当P 点

电压高于基准电压时,比较器LM331输出高电平,在通过光耦TLP741进行隔离放大,使VT 导通。 2.1.3 直交变换电路

1. 逆变器 其功能是把直流电压逆变成频率可调的交流电压。在图4中,有开关器件1V ~6V 构成的电路。1V ~6V 的器件接受控制电路中的PWM 调制信号的控制,将直流电压逆变成三相交流电压。本设计中,采用了由开关元件IGBT 构成的三相桥式逆变电路,由于IGBT 具有GTR 的大容量和MOSFET 的开关动作快、驱动功率小等优点,发展很快,备受青睐,在电机控制和开关电源领域中有着广泛的前景。

2. 续流电路 由图4中的61~D D 构成。其功能为 1)为电动机绕组的无功电流返回直流回路时提供通路;

2)频率下降,从而同步频率下降时,为电动机的再生电能反馈至直流电路提供通路。

3)为电路中的寄生电感在逆变过程中释放能量提供通路。 2.1.4 能耗制动电路

在变频调速系统中,电动机的降速和停机,是通过逐渐减下频率来实现的。这时,从电动机的角度来看,电动机处于再生制动的工作状态;从变频调速系统的角度来看,拖动系统在转速下降时减少的动能,由电动机“再生”电能后,在变频主电路的直流环节中被消耗掉了。归根结底,是通过消耗能量而获得制动转矩的,属于能耗制动状态。为此,在系统电路中设计了由V E 、R E 、V DE 组成的放电回路,以免过高的直流电压使各部分器件损坏。 2.1.5 指示电路

电源指示灯HL ,除了表示电源是否接通以外,还有一十分重要的功能,

即在变频电路切断电源后,指示滤波电容是否放电完毕。由于1C 和2C 的容量较大,而切断电压又必须在逆变电路停止工作的状态下进行,所以,电容没有快速放电的回路,其放电时间长达数分钟。由于C 上的电压较高,如不放完,对人身安全将构成威胁。

2.2系统主电路参数设计与选择

由图4可知,主电路由整流电路和IGBT 逆变电路构成,它是本系统的功率驱动单元,由不可控整流环节、中间直流环节、和逆变环节构成。系统所用参数如下:

电动机参数:电动机型号:YGF160M-4,2P=4,KW P N 11=,A I N 6.22=,

%88=N η,84.0cos =?,

min

1460r

n N =,()3.2=过载能力倍数m λ, ()2.2=启动转矩倍数Q K , ()0.7=启动电流倍数f K

电源电压:380V ,频率: 50HZ 逆变部分采用IGBT PWM 型逆变器,F

V 控制方式,过载倍数5.1=λ/分钟。

2.2.1 整流二极管模块选择

1.参数计算

1)通过二极管的峰值电流 A I I N m 326.2222≈?== (3―4) 2)流过二极管电流有效值 ()

m m D I t d I I 3

1

36010

1200

20

==

?

ω (3―5) 式中,m I 为电机最大负载电流峰值,其值一般取为()6~5N I 。

3)二极管电流定额

A I I I m D

DN 1.1427

.257.1≈==

(3―6) 4)二极管的电压定额 ()3~2=D U ()l m U U 223~2=

=()V 8.107438023~2≈?? (3―7) 根据电网电压,考虑到其峰值、波动、闪电、雷击等因素,实取V U D 1200=。

2. 元件选取

根据上式确定的电压、电流定额,选择二极管模块MOD1、MOD2, 型号为:6RI30G-120,即(60A,1200V )。 2.2.2滤波电容的选择

1. 参数计算

1) 当没有滤波电容时,三相整流输出直流电压为

V U U l DC 51338035.12

3≈?==

π

(3―8)

2) 加上滤波电容后,DC U 的最大线电压可达到交流线电压的峰值

V U U l DCP 53738022≈?== (3―9)

2. 元件选取

滤波电容理论上越大越好,考虑到价格和体积,电容也不能选得太大;事实上,中间直流滤波电容的容量是从限制电压波动的角度来选择的,因此,选用

两个V F 400/2200μ电解电容器相串联,总耐压值为V 800,电容量为F μ1100。电容器的均压电阻取W K 2/100Ω。 2.2.3开启电源限流电路的参数选择

图4中s R 为变频电路启动时的限流电阻,由于变频电路通电瞬间,滤波电容相当于短路,因而,冲击电流很大,故需加电阻s R 来限流,实际上当电容充电时, s R 和1C 、2C 构成的回路是一个典型的一阶惯性环节,其时间常数RC T =;故在零初始状态下,电容上电压的相应方程式为 ()T t DC C e U U --=1 (3―10)

当t=4T 时,DC C U U %8.92=,故可选取充电时间为t c =4T=RC 4。 假若要求充电时间s t c 30=,那么

Ω≈??=

=

-K c

t R c

s 5.310

2200430

46

(3―11) 故s R 上消耗的功率为:

W R U R U P L DC R 40.98)35.1(852

52

≈== (3―12)

实际上,假若不是经常性的冲放电时,s R 的瓦数可选小一些,以减小设备的体积。实选开启限流电阻s R 为:W K 9/5.3Ω。 2.2.4直流回路短路过电流保护

1) 输出直流电压 V U U l dc 6501.11.138021.12≈???==α (3―13) 式中,α为安全系数,一般取1.1;1.1为波动系数。

2) 额定状态下,直流侧的功率DN P ,不计逆变器的损耗和电机的谐波损耗,有

DN P KW P N

N

5.12%

8810113≈?==η (3―14)

3) 直流电流平均值dN I

A U P I D DN dN

23.19650

105.123=?== (3―15)

4) 整流器交流侧输入的电流有效值2I 可近似为

816.02=I A I dN 69.1523.19816.0≈?= (3―16)

5) 熔断器的额定电流2FF I 为

2FF I ()()A I dN 38.31~54.2369.150.2~5.10.2~5.1≈?== (3―17) 所以,实选熔断器熔体额定电流为A 25。

2.2.5交流电源侧保护元件参数选择

1. 交流侧过流保护快速熔断器1FF

1FF 熔体的额定电流为 211I K I F FF = (3―18)

其中,1F K 是与负载的过载倍数以及整流模块的安全裕量有关的系数,考虑到

5.1=λ,3.2=m λ,取1F K =1.9,所以有 211

I K I F FF ==A 81.2969.159.1=?,

故实选熔断器额定电流为30A 。

2. 静电感应过压抑制电容0C

取0C 为V F 1000/22.0μ(经验选取)。

3. 进线电抗L i 的电感量i L

i L 按下面的经验公式计算 ()mH U I f U L K i %22

12

?=

π (3―19) 式中,%K U ——与变频器容量相当的整流变压器的短路比,100KVA 以下的一般取%K U 为5,将V U 2202=,A I 352=,HZ f 501=代入上式得 ()mH U I f U L K i %2212?=

πmH 22.0535

502220

=???=π 故实选进线电感量220F μ,额定电流为30A(交流)或饱和电流为50A(饱和电流考虑了1.5倍在要求)。

2.2.6 逆变器功率器件IGBT 选择

IGBT 是场控大功率器件,具有自关断能力,开关速度高,所以,使用IGBT 可使逆变器结构小巧。但它的时间常数小,承受过载能力差;因此,在实际的应

用时,应从负载最严重的情形来选择功率器件。本系统中,最严重的情况是异步电动机的启动电流为额定电流的1.2~2.0倍,且要考虑电流峰值。

1. IGBT 集电极电流c I

计算公式为 ()()N m C I I I 20.2~2.10.2~2.1==m λ (3―20)

式中,m λ——电机过载倍数,一般小于2.7。

N I ——电机额定电流

所以,()()N m C I I I 20.2~2.10.2~2.1==m λ=()1476.223.220.2~2.1≈?? 考虑安全裕量,实取200A 。

2. IGBT 的耐压值CES U IGBT 关断时的峰值电压为:

V dt

Ldi U U dc CESP 25.9871.1)15015.1650()15.1(=?+?=?+?=α (3—21)

式中,1.15为过压保护系数,α为安全系数,一般取1.1,150由dt

Ldi 引起的尖

峰电压。

令CES U CESP U ≥,并向上靠拢,IGBT 的实际电压等级应取1200V 。

第三章结论

在本次毕业设计中,通过对交流电动机变频调速系统主电路(包括整流器、滤波电路、逆变器)的设计以及对电路元件参数的计算与选择,了解了交流调速系统设计的全过程,巩固和加强了本专业的专业理论知识;同时设计也满足了现代工程设计的要求,达到了预期的目标。

在设计过程中,调速控制系统中的触发控制电路的设计是本设计的重点和难点。设计触发电路的目的是通过驱动、放大电路控制系统主电路中功率开关元件的通断,使系统装置可靠工作。由于在系统主电路中,选择的是IGBT功率开关元件,它具有通态压降低、导通速度快、开关频率高等特性,这就要求设计的触发控制电路必须满足IGBT的工作特性,为此,系统触发电路设计为数字化电路,利用复杂可编程逻辑器件(CPLD),通过脉宽调制(PWM)方式,产生SPWM 触发脉冲,驱动IGBT工作;该电路具有灵活简便、控制精确、现场可编程等优点,使系统设计具有较高的实用价值。

另外,由于设计时间仓促和知识的有限,在系统设计中也存在着和一些需要解决的问题:比如,在触发控制电路设计中,三相正弦数据的ROM固化,CPLD 与外围电路的接口设计,只是简述其工作原理,并没有进行具体的设计工作;对于由于电网的波动和外界的干扰,使变频主电路的抗干扰能力差,使用功率开关器件引起的高次谐波等问题,可以采取相应的无功功率补偿、高次谐波抑制等措施来弥补出现的问题;在控制电路中由于采用了转速负反馈闭环控制系统,所以安装一台检测转速的测速发电机,这不仅增加了设备成本,增添了维护上的困难,还会由于附带产生的电压、电流干扰等问题给系统调试和运行带来麻烦;还有过热检测保护电路环节的压敏电阻持续的平均功率小(数瓦),如正常工作电压超过它的电压定额,短时间内可能会被烧坏。所有这些都需要以后在工作实践中不断学习、摸索和积累经验加以解决。

总之,本毕业设计在理论上是可行的,但在具体应用时还需要不断改进设计思路,提高设计方法,解决实际中遇到的新问题。

参考文献

[1] 黄俊,王兆安编. 电力电子变流技术[M].北京:机械工业出版社,1999.12

[2]姜立东等编注. VHDL语言程序设计及应用[M]. 北京:邮电大学出版社,

2001.8

[3]北京理工大学ASIC研究所. VHDL语言100例详解. 北京:清华大学出版社,

2001.3

[4] 王占奎等编. 交流变频调速应用例集[M].北京:科学出版社,1995,1~11

[5] 李爱云,张承慧编著. 现代逆变技术及应用[M].北京:科学出版社,2000,

62~64

[6] 陈国呈编著. PWM变频调速及软开关电力变换技术[M].北京:机械工业出

版社,2000.3

[7]张燕宾编著. SPWM变频调速应用技术[M].北京:机械工业出版社,1997.12

[8] 毛明.一种新型通用变频调速器的设计[D].四川:四川大学,2001

[9]张金柱.新型全数字化SPWM变频器的研制[D].广西:广西大学,2001.5

[10] 许振茂编著. 变频调速装置及其调试、运行与维护[M]. 北京:兵器工业出

版社,1994.2

[11]梁彤. 低成本通用变频器的研究与开发[D].太原:华北工学院,2001

[12]吴守箴,臧英杰编. 电气传动的脉宽调制技术[M].北京:机械工业出版社,

1998,

[13] 胡崇岳编. 现代交流调速技术[M],第二版. 北京:机械工业出版社,1998,

34~45

[14] 杨亚玲. 基于DSP的变频调速系统及其可视化的研究[D]. 广西:广西大

学,2002.5

[15] 黄俊,王兆安主编. 电力电子技术[M],第四版. 北京:机械工业出版社,

2000,

[16] 任志远,王琪. 逆变焊机中IGBT散热及过热保护技术的研究[J]. 矿业研

究与开发,Jun.2000, Vol.20,No.3:27~28

致谢

交流异步电动机变频调速原理

在异步电动机调速系统中,调速性能最好、应用最广的系统是变压变频调速系统。在这种系统中,要调节电动机的转速,须同时调节定子供电电源的电压和频率,可以使机械特性平滑地上下移动,并获得很高的运行效率。但是,这种系统需要一台专用的变压变频电源,增加了系统的成本。近来,由于交流调速日益普及,对变压变频器的需求量不断增长,加上市场竞争的因素,其售价逐渐走低,使得变压变频调速系统的应用与日俱增。下面首先叙述异步电动机的变压变频调速原理。 交流异步电动机变频调速原理: 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 交-直部分 整流电路:由VD1-VD6六个整流二极管组成不可控全波整流桥。对于380V的额定电源,一般二极管反向耐压值应选1200V,二极管的正向电流为电机额定电流的1.414-2倍。(二)变频器元件作用 电容C1: 是吸收电容,整流电路输出是脉动的直流电压,必须加以滤波, 变压器是一种常见的电气设备,可用来把某种数值的交变电压变换为同频率的另一数值的交变电压,也可以改变交流电的数值及变换阻抗或改变相位。 压敏电阻: 有三个作用,一过电压保护,二耐雷击要求,三安规测试需要. 热敏电阻:过热保护 霍尔: 安装在UVW的其中二相,用于检测输出电流值。选用时额定电流约为电机额定电流的2倍左右。 充电电阻: 作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二端的电压为0V;所以在上电(开机)的瞬间电容对地为短路状态。如果不加充电电阻在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大的电流导致整流桥炸掉。一般而言变频器的功率越大,充电电阻越小。充电电阻的选择范围一般为:10-300Ω。 储能电容: 又叫电解电容,在充电电路中主要作用为储能和滤波。PN端的电压电压工作范围一般在430VDC~700VDC 之间,而一般的高压电容都在400VDC左右,为了满足耐压需要就必须是二个400VDC的电容串起来作800VDC。容量选择≥60uf/A 均压电阻:防止由于储能电容电压的不均烧坏储能电容;因为二个电解电容不可能做成完全一致,这样每个电容上所承受的电压就可能不同,承受电压高的发热严重(电容里面有等效串联电阻)或超过耐压值而损坏。

变频调速系统设计可以分为两个重要部分

变频调速系统设计可以分为两个重要部分,软件设计与硬件设计。本设计首先简要阐述?了变频调速的基础技术,SPWM理论及常用的设计方法等。然后对变频调速的硬件做了系 统电路地描述。对整个系统的主电路、控制电路、各种保护电路及控制实现的软件都进行了?系统的分析。主电路部分给出了整流、滤波、逆变器等器件各个环节的参数的计算。控制电?路采用TMS320F2812、显示电路、输入电路、检测电路等,并配备了系统保护电路。在硬?件电路的基础上,用MATLAB工具对系统进行了开环和闭环系统的SPWM仿真。仿真实 验结果表明,这些设计使系统能够可靠工作,运行状态良好,达到了设计目的。最后给出了 各个软件设计的系统流程图。?关键词:变频调速,正弦波脉宽调制,IPM,智能功率模块,SPwM,TMS320F2812 4一 Summary -?Thevariable speed Call?bedivided into two?important parts:soft design?and hardware?design.The designfirstly explains?thebasic?techniques.of?the variable speed,thetheory

and method of theSPWM.Then the major?hardwarecircuit is introduced,Especilly?TMS320F2812 andIPM.The?calculation about?parameter?is madein the?major?circuit.At the same time the security of the circuit was?equipped.?DSPwas?regarded as the controller core of the SPWM.We establish?a system model?whichcontrol system speed open and close?loop with SPWM,wesimulate and?analyze the control?system through MATLAB.The simulation results demonstrate that it isa?high value to popularize?and?apply?the?controlling system.Final ly The

转速开环恒压频比控制的交流异步电动机调速系统典型例子

课题:转速开环恒压频比控制的交速 姓名:谢海波 学号:P091812925 专业班级:电气工程及其自动化(3)班 西北民族大学电气工程学院 转速开环恒压频比控制的交流异步电动机调速系统

摘要:转速开环恒压频比控制是交流电动机变频调速最基本的控制方式,一般变频调速装置都有这项功能,恒压频比的转速开环工作方式能满足大多数场合交流电动机调速控制的要求,并且使用方便,是通用变频器的基本模式。采用恒压频比控制,在基频以下的调速过程中的转差率基本不变,所以电动机的机械特性较硬,电动机有较好的调速性能。异步电动机的变压变频调速系统一般简称为变频调速系统。由于在调速时转差功率不随转速而变化,调速范围宽,无论高速还是低速时效率都较高,在采取一定的技术措施后能实现高动态性能,可与直流调速系统媲美。因此现在它的应用面很广,目前交流异步电动机的调速系统已经广泛应用于数控机床、风机、泵类、传送带、给料系统、空调器等设备的电力源和动力源,并起到了节省电能,提高设备自动化,提高产品质量的良好效果.下文在详细分析交流异步电动机变频调速的原理基础上,应用MATLAB/SIMULINK仿真软件,实现了转速开环恒压频比控制的交流异步电动机调速系统的仿真,并且详细分析了仿真结果。 关键词:异步电动机;变频调速;MATLAB 仿真 1.仿真系统说明 本文对交流系统进行建模仿真,可以更加熟悉交流调速系统的结构,掌握各种调速系统的优缺点,选择合理的方案,解决实际中的问题。在进行电动机调速时,常须考虑的一个重 要因素,就是希望保持电动机中每极磁通量为额定值不变。如果磁通太弱,没有充分利用 电机的铁芯,是一种浪费;如果过分增大磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机。对于直流电机,励磁系统是独立的,只要对电枢反应有恰 当的补偿,保持不变是很容易做到的。在交流异步电机中,磁通由定子和转子磁动势合成产生,要保持磁通恒定就要费一些周折。 2.变频调速控制方式和原理 转速开环恒压频比控制是交流电动机变频调速最基本的控制方式,一般变频调速装置都带有这项功能,在异步电动机调速时,总希望保持主磁通为额定值。由异步电机定子每相电动势有效值可知,如果略去定子阻抗下降,有 (1) 由(1)式知,若定子端电压不变,随着升高,将减小。又由转矩公式 知,在相同的情况下,减小会导致电动机输出转矩下降,严重时会使电动机堵转。因此, 在变频调速过程中应该同时改变定子电压和频率,以保持主磁通不变。而如何按比例改变电压和频率,要分基频以下和基频以上两种情况。 2.1基频以下调速 恒定压频比调速要求;当相对较高时,可忽略定子电阻那么最大实用转

基于PLC的交流电机变频调速系统

目录 1 绪论 (1) 1.1课题的背景 (1) 1.1.1 电机的起源和发展............................. 错误!未定义书签。 1.1.2 变频调速技术的发展和应用..................... 错误!未定义书签。 1.2本文设计的主要内容............................... 错误!未定义书签。 2 变频调速系统的方案确定 (4) 2.1变频调速系统 (4) 2.1.1 三相交流异步电动机的结构和工作原理 (4) 2.1.2 变频调速原理 (4) 2.1.3 变频调速的基本控制方式 (5) 2.2系统的控制要求 (6) 2.3方案的确定 (6) 2.3.1 电动机的选择 (6) 2.3.2 开环控制的选择 (7) 2.3.3 变频器的选择 (7) 4 变频调速系统的硬件设计 (8) 4.1S7-200PLC (8) 4.2M ICRO M ASTER420变频器 (8) 4.3外部电路设计 (9) 4.3.1 变频开环调速 (9) 4.3.2 数字量方式多段速控制 (11) 4.3.3 PLC、触摸屏及变频器通信控制 (12) 5 变频调速系统的软件设计 (14) 5.1编程软件的介绍 (14)

5.2变频调速系统程序设计 (15) 6 触摸屏的设计 (23) 6.1触摸屏的介绍 (23) 6.2MT500系列触摸屏 (25) 6.3触摸屏的设计过程 (26) 6.3.1 计算机和触摸屏的通信 (26) 6.3.2 窗口界面的设计 (27) 6.3.3 触摸屏工程的下载 (31) 7 PLC系统的抗干扰设计 (33) 7.1 变频器的干扰源 (33) 7.2干扰信号的传播方式 (33) 7.3 主要抗干扰措施 (34) 7.3.1 电源抗干扰措施 (34) 7.3.2 硬件滤波及软件抗干扰措施 (34) 7.3.3 接地抗干扰措施 (34) 结论 (36) 致谢 ................................................ 错误!未定义书签。参考文献 .. (37)

交流异步电动机变频调速系统设计样本

中南大学 《工程训练》 ——设计报告 设计题目:异步电机变频调速 指引教师:黎群辉 设计人:冯露 学号: 专业班级:自动化0906班 设计日期:9月

交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。 V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒 f 化极为以便,新型集成元件采用也使得它开发周期短。 此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。 V控制,SA4828波形发生器 核心字:变频调速,正弦脉宽调制, f

目录 摘要................................................ 错误!未定义书签。 1.1 研究目与意义 (1) 1.2本次设计方案简介 (2) 1.2.1 变频器主电路方案选定 (2) 1.2.2 系统原理框图及各某些简介 (3) 1.2.3 选用电动机原始参数 (4) 2交流异步电动机变频调速原理及办法 (5) 2.1 异步电机变频调速原理 (5) 2.2 变频调速控制方式及选定 (6) V比恒定控制 (6) 2.2.1 f 2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13) 3.1 主电路工作原理 (13) 3.2 主电路各某些设计 (13) 3.3. 采用EXB840IGBT驱动电路 (15) 4控制回路设计 (16) 4.1 驱动电路设计 (16) 4.2 保护电路......................................... 错误!未定义书签。 4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。 4.2.2 过流保护设计................................ 错误!未定义书签。 4.3 控制系统实现 (19) 5变频器软件设计....................................... 错误!未定义书签。 5.1 流程图 (22)

第一节 交流异步电动机变频调速原理

第一节 交流异步电动机变频调速原理 根据电机学原理,交流异步电动机的转速可表示为: )1(**60s p f n -= (2-1-1) 式中: n 一 电动机转速/分钟,单位:r/min ; p 一 电动机磁极对数; f 一 电源频率,单位:Hz ; s 一 转差率,10<

I 一 定子绕组的相电流; r 一 定子绕组电阻与转子绕组电阻折算到定子侧的电阻之和。 交流异步电动机的定子绕组的感应电动势是定于绕组切割旋转磁场磁力线的结果, 其 有效值计算如下: E = K * f * Φ (2-1-3) 式中:K 一 与电动机结构有关的常数; f 一 电源频率; Φ 一 磁通量 。 由式(2-1-2)知,加在电机绕组端的电源电压U,一部分产生感应电动势E,另一部 分消耗在电阻 r ( 定子绕组电阻与转子绕组电阻折算到定子侧的电阻之和 )上 。其中定 子绕组的相电流 I 由两部分构成: 21I I I += (2-1-4) 电机的定子电流有一小部分1I 用于建立磁场的主磁通,其余大部分2I 用于产生拖动负 载的电磁力。 由式 (2-1-1)知,调整电源频率f 时,可以调节速度n 。 当电源频率f 下降时,由 式 (2-1-3)知,感应电动势随之比例减小;在相电压U 保持不变的情况下,由式(2-1-2) 知,定子绕组的相电流I 相应增大。在很多情况下,电机的负载是基本恒定的,因此用于产 生电磁力的电流2I 是基本不变的,于是1I 将增大;1I 的增大将直接导致主磁通的增大。由 式 (2-1-3),主磁通的增大,将引起感应电动势E比例增大;由式(2-1-2),感应电动势 E的增大将使定子电流I 减小。不难理解,通过这样的负反馈,电机将最终稳定在一个新的 工作点。 这样的控制方法看起来似乎没有问题。但实际情况是主磁通容量上限与电机的铁芯有 关。电机的铁芯受制于重量、体积、成本等因素的考虑,不可能做的很大。对于电机设计来 说,设计目标之一就是:当电机处于额定工作状态下时,主磁通接近容量上限。上述的变频 调速方法工作在额定频率以下时,将会导致铁心磁饱和,引起电流波形畸变,有效力矩下降; 严重时,将导致电机发热过快,振动和噪音加大;工作在额定频率以上时,铁心处于弱磁状 态,电磁力矩不足,电机的机械特性变软(转差率s 变大),带载能力下降。 结论:通过只调节电源频率来调节速度的方法不可取。

基于PLC控制的变频器调速系统_毕业设计论文

目录 目录 (1) 第一章系统的功能设计分析和总体思路 (2) 1.1 概述 (2) 1.2 系统功能设计分析 (3) 1.3 系统设计的总体思路 (3) 第二章PLC和变频器的型号选择 (4) 2.1 PLC的型号选择 (4) 2.2 变频器的选择和参数设置 (5) 2.2.1 变频器的选择 (5) 2.2.2 变频调速原理 (6) 2.2.3 变频器的工作原理 (6) 2.2.4 变频器的快速设置 (7) 第三章硬件设计以及PLC编程 (9) 3.1 开环控制设计及PLC编程 (9) 3.1.1 硬件设计 (9) 3.1.2 PLC软件编程 (10) 3.2 闭环控制设计 (14) 3.2.1 硬件和速度反馈设计 (14) 3.2.3 闭环的程序设计以及源程序 (16) 第四章实验调试和数据分析 (21) 4.1 PID 参数整定 (21) 4.2 运行结果 (22) 第五章总结和体会 (22) 第六章附录 (24) 6.1 变频器内部原理框图 (24) 第七章参考文献 (25)

第一章系统的功能设计分析和总体思路 1.1 概述 调速系统快速性、稳定性、动态性能好是工业自动化生产中基本要求。在科学研究和生产实践的诸多领域中调速系统占有着极为重要的地位特别是在国防、汽车、冶金、机械、石油等工业中,具有举足轻重的作用。调速控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。 可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继续计算机、自动控制技术和通信技术为一体的新型自动装置。它具有抗干扰能力强,价格便宜,可靠性强,编程简朴,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。 目前在控制领域中,虽然逐步采用了电子计算机这个先进技术工具,特别是石油化工企业普遍采用了分散控制系统(DCS)。但就其控制策略而言,占统治地位的仍旧是常规的PID控制。PID结构简朴、稳定性好、工作可靠、使用中不必弄清系统的数学模型。PID的使用已经有60多年了,有人称赞它是控制领域的常青树。 变频调速已被公认为是最理想、最有发展前景的调速方式之一,采用变频器构成变频调速传动系统的主要目的,一是为了满足提高劳动生产率、改善产品质量、提高设备自动化程度、提高生活质量及改善生活环境等要求;二是为了节约能源、降低生产成本。用户根据自己的实际工艺要求和运用场合选择不同类型的变频器。 组态软件是指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速构建工业自动控制系统监控功能的、通用层次的软件工具。在组态概念出现之前,要实现某一任务,都是通过编写程序来实现的。编写程序不但工作量大、周期长,而且轻易犯错误,不能保证工期。组态软件的出现,解决了这个问题。对于过去需要几个月的工作,通过组态几天就可以完成。组态王是海内一家较有影响力的组态软件开发公司开发的,组态王具有流程画面,过程数据记录,趋势曲线,

交流电机调压调速系统(matlab)正文

1 设计任务 1、了解并熟悉双闭环三相异步电机调压调速原理及组成。 2、学习 SIMULINK,熟悉相关的模块功能。 3、进一步理解交流调压系统中电流环和转速环的作用。 2 设计要求 1、利用SIMULINK建立闭环调速系统仿真模型。 2、调试完成调压模块仿真、开环系统仿真、闭环系统仿真。 3 设计设备 1、计算机一台 2、MATLAB仿真软件 4 设计原理 调压调速即通过调节通入异步电动机的三相交流电压大小来调节转子转速的方法。理论依据来自异步电动机的机械特性方程式: 其中,p为电机的极对数; 为定子电源角速度; w 1 为定子电源相电压; U 1 R ’为折算到定子侧的每相转子电阻; 2 为每相定子电阻; R 1 L 为每相定子漏感; 11 L 为折算到定子侧的每相转子漏感; 12 S为转差率。 图1 异步电动机在不同电压的机械特性

由电机原理可知,当转差率s 基本保持不变时,电动机的电磁转矩与定子电压的平方成正比。因此,改变定子电压就可以得到不同的人为机械特性,从而达到调节电动机转速的目的。 4.1 调压电路 改变加在定子上的电压是通过交流调压器实现的。目前广泛采用的交流调压器由晶闸管等器件组成。它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间通过调整晶闸管导通角的大小来调节加到定子绕组两端的端电压。这里采用三相全波星型联接的调压电路。 图2 调压电路原理图 4.2 开环调压调速 开环系统的主电路由触发电路、调压电路、电机组成。原理图如下: Ua Ub Uc T2 T3 T5 T4 T6 R R R N T1

图3 开环调压系统原理图 AT为触发装置,用于调节控制角的大小来控制晶闸管的导通角,控制晶闸管输出电压来调节加在定子绕组上的电压大小。

三相异步电动机变频调速

一、三相异步电动机变频调速原理 由于电机转速n 与旋转磁场转速1n 接近,磁场转速1n 改变后,电机转速n 也就随之变化,由公式1 160f n p =可知,改变电源频率1f ,可以调节磁场旋转,从而改变电机转速,这种方法称为变频 调速。 根据三相异步电动机的转速公式为 ()()1 16011f n s n s p = -=- 式中1f 为异步电动机的定子电压供电频率;p 为异步电动机的极对数;s 为异步电动机的转差率。 所以调节三相异步电动机的转速有三种方案。异步电动机的变压变频调速系统一般简称变频调速系统,由于调速时转差功率不变,在各种异步电动机调速系统中效率最高,同时性能最好,是交流调速系统的主要研究和发展方向。 改变异步电动机定子绕组供电电源的频率1f ,可以改变同步转速n ,从而改变转速。如果频率1f 连续可调,则可平滑的调节转速,此为变频调速原理。 三相异步电动机运行时,忽略定子阻抗压降时,定子每相电压为 1111m 4.44m U E f N k φ≈= 式中1E 为气隙磁通在定子每相中的感应电动势;1f 为定子电源频率;1N 为定子每相绕组匝数; m k 为基波绕组系数,m φ为每极气隙磁通量。 如果改变频率1f ,且保持定子电源电压1U 不变,则气隙每极磁通m φ将增大,会引起电动机铁芯磁路饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。因此,降低电源频率1f 时,必须同时降低电源电压,已达到控制磁通m φ的目的。 .1、基频以下变频调速 为了防止磁路的饱和,当降低定子电源频率1f 时,保持 1 1 U f 为常数,使气每极磁通m φ为常数,应使电压和频率按比例的配合调节。这时,电动机的电磁转 矩为 ()()2 22 2 11 1 111 2 12222111211222p r r m pU f m U s s T f r r f r x x r x x s s ππ?? ?? ?? ??? ??? ?? ??? ''??= = ?''????'+++'+++ ? ? ? [1][8]

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

交流异步电动机变频调速系统

摘要 现在流行的异步电动机的调速方法可分为两种:变频调速和变压调速,其中异步电动机的变频调速应用较多,它的调速方法可分为两种:变频变压调速和矢量控制法,前者的控制方法相对简单,有二十多年的发展经验。因此应用的比较多,目前市场上出售的变频器多数都是采用这种控制方法。本设计采用恒压变频调速并在MTALAB运行环境下进行仿真设计并运行仿真模型得出结论。 关键词:交流调速系统, 异步电动机, PWM技术MATLAB.....

目录 摘要................................ 错误!未定义书签。第一章前言.......................... 错误!未定义书签。 1.1 设计的目的和意义................. 错误!未定义书签。 1.2变频器调速运行的节能原理......... 错误!未定义书签。第二章交流异步电动机............... 错误!未定义书签。 2.1交流异步电动机变频调速基本原理 ... 错误!未定义书签。 2.2变频变压(VVVF)调速时电动机的机械特性 (6) 2.3变压变频运行时机械特性分折 (7) 第三章变频技术简介和控制方法 (11) 3.1 变频调速技术简介 (11) 3.2变频器工作原理及分类 (12) 3.3 交流调速的基本控制方法 (18) 3.4脉冲宽度调制(PWM)技术 (21) 第四章异步电动机变频调速系统设计的仿真和实现 (24) 4.1 MATLAB的编程环境 (24) 4.2仿真结果 (29) 结论 (30) 致谢.............................. 错误!未定义书签。参考文献............................ 错误!未定义书签。

交流电动机调速系统的分类

交流电动机调速系统的分类 1.同步电动机调速系统 同步电动机只能依靠改变频率来进行调速,而根据频率控制方式的不同,可把同步电动机调速系统分为他控式和自控式两种类型。 如果用独立的变频装置作为同步电动机的变频电源进行调速,则称之为他控式同步电动机调速系统,大多用于类似永磁同步电动机的小容量场合。 采用频率闭环方式的同步电动机调速系统称为自控式同步电动机调速系统,它是用电动机轴上安装的位置检测器来控制变频装置触发脉冲,使同步电动机工作在自同步状态。自控式同步电动机调速系统又可细分为负载换向自控式同步电动机调速系统和交一交变频供电的自控式同步电动机调速系统。 负载换向自控式同步电动机调速系统叉称为x换向器电机,它的主电路采用交一直-交电流型变流器,利用同步电动机电流超前电压的特点,使逆变器的晶闸管工作在自然换向状态。这种系统又被称为LCI(Load Commutated Inve11er),它的容量已达到数万千伏安,电压达万伏以上。 交一交变频同步电动机调速系统的逆变器由晶闸管组成,采用交一交循环变流结构和矢量控制技术,具有优良的动态性能,广泛地用于轧钢机主传动系统中。交一交变频同步电动机调速系统的容量很大,但调频范围只能限制在工频的三分之一左右。 2.异步电动机调速系统 在异步电动机中,从定子传入转子的电磁功率可以分成两部分:一部分是拖动负载的有效功率;另一部分是转差功率,与转差率成正比,它的去向是调速系统效率高低的标志。就转差功率的处理方式的不同,异步电动机调速系统可分成三大类。 (1)转差功率消耗型调速系统。这种调速系统全部转差功率都被消耗掉,用增加转差功率的消耗来换取转速的降低,因而效率也随之降低。降电压调速、电磁转差离合器调速及绕线异步电动机转子串电阻调速这三种方法都属于这一类。 (2)转差功率回馈型调速系统。这种调速系统的大部分转差功率通过变流装置回馈给电网或者加以利用,转速越低回馈的功率越多,但是增设的装置也要多消耗一部分功率。绕线异步电动机转子双馈调速即属于这一类。 (3)转差功率不变型调速系统。在这种调速系统中,转差功率仍旧消耗在转子里,但小论转速高低,转差功率基本不变。如变极对数调速、变频调速两种调速方法即属于这一类。 2.异步电动机转差回馈型调速系统 双馈调速足指将电能分别馈入异步电动机的定子绕组和转子绕组,通常将定子绕组接入工频电源,将转子绕组接到频率、幅值、相位和相序都可以调节的变频电源。如果改变转子绕组电源的频率、幅值、相位和相序,就可以调节异步电机的转矩、转速、转向及和定子侧的无功功率。这种双馈调速的异步电动机可以超同步或亚同步运行,不但可以工作在电动状态,而且可以工作在发电状态。 因为交一交变流器采用晶闸管自然换向方式,结构简单,可靠性高,而且交,交变流器能够直接进行能量转换,效率高,所以,在双馈调速方式中采用交.交变流器作为转子绕组的变频电源是比较合适的。 绕线式异步电动机串级调速系统是从定子侧馈入电能,从转子侧馈出电能的系统。从广义上说,它也是双馈调速系统的一种。 在双馈调速中,所用变频器的功率仅占电动机总功率的一小部分,可以大大降低变频器的容量,从而降低了调速系统的成本,此外,双馈电机还可以调节功率因数,由于具有这些优点,双馈电机特别适合应用于大功率的风机、水泵类负载的调速场合;双馈调速方式在风力、

交流异步电动机变频调速系统设计

湖南工程学院应用技术学院毕业设计说明书 目:题 专业班级:号:学学生姓名: 完成日期: 指导教师: 评阅教师:

2011 年 6 月

院术学学院应用技湖南工程务任书(论文)毕业设计 设计(论文)题目:交流异步电机的调速控制系统设计 姓名专业班级学号 指导老师职称教研室主任 一、基本任务及要求: 主要设计完成可控硅交流调压调速系统的设计,主要完成: (1)交流调压调速的原理和调压调速的静、动态性能分析; (2)系统组成与工作原理; (3)主电路与控制电路设计; (4)元器件选型及参数计算; (5)软件设计; (6)系统应用与调试说明。 二、进度安排及完成时间: (1)第一至第三周:查阅资料,撰写文献综述和开题报告。 (2)第四周至第五周:毕业实习。 (3)第六周至第七周:交流调压调速的原理和调压调速的静、动态性能分析。 (4)第八周至第九周:系统组成与工作原理;主电路与控制电路设计。

(5)第十周至第十二周:元器件选型及参数计算;软件设计;系统应用与调试说明。 (6)第十三周至第十五周:撰写毕业设计论文。 (7)第十六周:毕业设计答辩 目录 摘 要 .................................................................. .... I ABSTRACT ............................................................ ..... II 第1章绪 论 (1) 1.1 变频调速技术简介 ................................................. 1 1.2 变频器的发展现状和趋 势 (2) 1.2.1 变频器的发展现状 ............................................. 2 1.2.2 变频器技术的发展趋势 ......................................... 2 1.2 研究的目的与意义 ................................................. 3 1.3 本次设计方案简 介 (4) 1.3.1 变频器主电路方案的选定 ....................................... 4 1.3.2 系统原理框图及各部分简介 ..................................... 5 1.3.3 选用电动机原始参数 ........................................... 6 第2章交流异步电动机变频调速原理及方 法 (7)

变频调速电梯控制系统设计

摘要 电梯是一种用于电力拖动的特殊升降设备,是现代城市生活中必不可少且应用最广泛的垂直交通运输工具。随着社会的不断发展,电梯从手柄开关操纵电梯、按钮控制电梯发展到了现在的群控电梯,为高层运输做出了不可磨灭的贡献。 随着电力电子技术和计算机控制技术的飞速发展,交流变频调速技术的发展十分迅速。变频调速电梯使用了先进的PWM技术,明显改善了电梯运行质量和性能;调速范围广、控制精度高、动态性能好,舒适、安静、快捷,几乎可与直流电机相互媲美。同时也明显改善了电动机供电电源的质量,减少了谐波,提高了效率和功率因数,节能显著。 本设计在采用PLC和变频器相互结合而实现电梯常规控制的基础上,通过对变频器和PLC芯片的合理选择和设计,大大提高了电梯的控制水平,并改善了电梯运行的舒适感,使电梯达到了较为理想的控制和运行效果。 关键词:电梯,PWM控制,变频调速

ABSTRACT Summary elevator is a special electric traction equipment, is indispensable in modern urban life, and the most widely used vertical transportation. As society develops, elevator from the handle switch elevators, buttons control the elevator to the current group of Elevator, for senior transportation present. With power electronics and computer control technology and the rapid development, AC inverter technology development very rapidly. Variable speed elevator use advanced PWM, significantly improve the quality and performance elevator; speed range widely, control, precision, dynamic performance, comfortable, quiet, fast, almost comparable to the DC motor. At the same time significantly improved motor power quality, reduced harmonic, which improves the efficiency and power factor, energy-saving significantly. This design in use PLC and inverter elevator on the basis of conventional control, through the inverter and PLC chip design, selection and greatly improves the elevator control levels, and improves the comfort, Elevator makes elevator reaches more ideal control and operating results. Keywords: elevator, PWM, frequency

基于MATLAB-SIMULINK的交流电动机调速系统仿真毕业设计

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容: 按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

7、交流电动机调速及变频原理

交流电动机调速及变频原理 一、交流异步电动机调速的基本类型 交流调速系统的主要类型 交流电机主要分为异步电机(即感应电机)和同步电机两大类,每类电机又 有不同类型的调速系统。现有文献中介绍的异步电机调速系统种类繁多,可按照不同的角度进行分类。 1、交流异步电动机调速的基本类型 由异步电动机的转速公式:min)/)(1(60r s p f n -= 可知,异步电动机有下列三种基本调速方法: (1)改变定子极对数p 调速。 (2)改变电源频率1f 调速。 (3)改变转差率s 调速。 异步电动机的调速方式: 1.1 变频调速 交流变频调速技术的原理是把工频50Hz 的交流电转换成频率和电压可调的交流电,通过改变交流异步电动机定子绕组的供电频率,在改变频率的同时也改变电压,从而达到调节电动机转速的目的。

它与直流调速系统相比具有以下显著优点: (1)变频调速装置的大容量化。 (2)变频调速系统调速范围宽,能平滑调速,其调速静态精度及动态品质好。 (3)变频调速系统可以直接在线起动,起动转矩大,起动电流小,减小了对电网和设备的冲击,并具有转矩提升功能,节省软起动装置。 (4)变频器内置功能多,可满足不同工艺要求;保护功能完善,能自诊断显示故障所在,维护简便;具有通用的外部接口端子,可同计算机、PLC 联机,便于实现自动控制。 (5)变频调速系统在节约能源方面有着很大的优势,是目前世界公认的交流电动机的最理想、最有前途的调速技术。其中以风机、泵类负载的节能效果最为显著,节电率可达到20%~60%。 1.2变极调速 磁极对数 p 的改变,取决于电动机定子绕组的结构和接线。通过改变定子绕组的接线,就可以改变电动机的磁极对数。 1.3 变转差率调速 1.3.1、改变定子电压调速 ??交流调压调速 异步电动机的机械特性方程式: ])()/[(/32'21212' 211' 221l l e L L s R R s R pU T +++=ωω

基于PLC的变频调速系统设计

目录 第 1 章绪论 (1) 1.1 PLC (可编程序控制器)概述 (1) 1.2 PLC 特点 (1) 第2章VFO 变频器介绍 (3) 2.1 松下变频器VF0 系列简介 (3) 2.2 设定变频器模式 (3) 2.3 变频器的控制方式 (4) 2.3.1 U/f=C 的正弦脉宽调制(SPWM控制方式 (4) 232 电压空间矢量(SVPWM控制方式 (4) 233 矢量控制(VQ方式 (5) 2.3.4 直接转矩控制(DTC方式 (5) 2.3.5 矩阵式交—交控制方式 (5) 2.4欧姆龙CP1H勺特点及功能简介 (6) 2.4.1 欧姆龙CP1H功能简介 (6) 2.4.2 欧姆龙功能简介 (7) 2.5 变频器接线 (7) 2.5.1 主回路接线 (7) 2.5.2 控制回路接线 (8) 2.5.3 接线注意事项 (8) 第 3 章电机介绍 (9) 3.1 电机的规格指标参数 (9) 3.2 电动机的工作原理 (10) 3.3 电动机的接线 (10) 3.4 PLC 、变频器、电机三者的运行关系 (10) 第 4 章PLC 变频调速系统的设计与调试 (11) 4.1 系统设计程序 (11) 4.2 接线图 (12) 4.3 程序调试 (12) 第 5 章课程总结 (14) 参考文献 (15)

第1章绪论 1.1 PLC (可编程序控制器)概述 PLC(可编程控制器)应用广泛,其CPU功能较强,可靠性高,但在输入输出I/O方面,PLC存在价格过高,扩展模块不隔离,输入信号还要进行编程运算来完成采集,品牌繁多,互不兼容,用户使用起来不方便等缺点。其在工业现场因其编程方便,抗干扰能力强,获得了广泛的应用。但受到内部硬件电路的限制,在运算速度、数据处理能力等方面和PC机相比,要逊色很多。因此在工业现场对复杂模型进行控制时,可以借助上位机PC来建立生产模型,通过构建SCC监督式控制系统,让下位机PC为一DCC直接数字控制系统,实现复杂系统的控制。另外,还可通过上位机PC和下位机PC组建监控系统,达到对工业现场实时监控的目的。其中关键技术为PC机和PC之间的通讯。本文首先介绍PC机与PLC的通讯种类和机制,然后就采用高级语言VB和组态软件MCGS对完成以上二者通讯。 PC机和PLC有两种通讯方式,一种是PC机作主动者,即主局,PLC为从动者,即子局。另一种是PLC为主局,而PC机为子局。无论工作在哪种方式,数据一般都采用串行方式来传输,即可通过RS232 RE422或RS485电缆线来进行信息传递。 在进行通讯时,首先将PC机和PLC传递信息的波特率设置一致。另外还要对奇偶校验位、传输数据位数和停止位进行设置。在PC机和PLC进行通讯时,要使用命令帧和响应帧的形式来进行信息传递。 每次通信送出的一组数据称作“帧”。帧可以从持有发送权的一方传出。每送出一帧,上位机或PLC就将发送权交给另一方。当接收方收到终端(命令或响应的终字符)或分界符(分割帧的字符)信息后,就将发送权转到另一方。 1.2 PLC特点 PLC是面向用户的专用工业控制计算机,具有许多明显的特点 1. 可靠性高,抗干扰能力强 为了限制故障的发生或者在发生故障时,能很快查出故障发生点,并将故障限制在局部,采取了多种措施,使PC除了本身具有较强的自诊断能力,能及时给出出错信息,停止运

相关主题
文本预览
相关文档 最新文档