当前位置:文档之家› Growth of Intermediate Massive Black Holes in the Hierarchical Formation of Small Spiral Ga

Growth of Intermediate Massive Black Holes in the Hierarchical Formation of Small Spiral Ga

Growth of Intermediate Massive Black Holes in the Hierarchical Formation of Small Spiral Ga
Growth of Intermediate Massive Black Holes in the Hierarchical Formation of Small Spiral Ga

a r X i v :a s t r o -p h /0504202v 1 8 A p r 2005

Draft version February 2,2008

Preprint typeset using L A T E X style emulateapj v.11/12/01

GROWTH OF INTERMEDIATE MASSIVE BLACK HOLES IN THE HIERARCHICAL FORMATION OF SMALL SPIRAL GALAXIES IN THE HIGH-Z UNIVERSE

NOZOMU KAWAKATU

International School for Advanced Studies (SISSA/ISAS),Via Beirut 2-4,34014Trieste,Italy

kawakatu@sissa.it

TAKAYUKI R.SAITOH

National Astronomical Observatory of Japan,Mitaka,Tokyo 181-8588,Japan

saitoh.takayuki@nao.ac.jp

and

KEIICHI WADA 1

National Astronomical Observatory of Japan,Mitaka,Tokyo 181-8588,Japan

wada.keiichi@nao.ac.jp Draft version February 2,2008

ABSTRACT

Combining a theoretical model of mass accretion onto a galactic center with a high-resolution N -body/SPH simulation,we investigate the formation of an intermediate massive black hole (IMBH)during the hierarchical formation of a small spiral galaxy (with a total mass of 1010M ⊙)in the high-z universe.We found that the rate of average mass accretion to the nucleus due to the radiation drag exerted by newly formed stars in the forming galaxy is ≈10?5M ⊙yr ?1.As a result of this accretion,an IMBH with ≈104M ⊙can be formed in the center of the spiral galaxy at z ~4.We found that a central BH coevolves with the dark matter halo from z ~15to z ~2.The mass ratio of the BH to the dark matter halo is nearly constant ≈(1?3)×10?6from z ~10to z ~2.This is because that change in the dark matter potential enhances star formation in the central part of the galaxy,and as a result the BH evolves due to mass accretion via the radiation drag.Therefore,our model naturally predicts a correlation between massive BHs and dark matter halos.Moreover,it is found that the ?nal BH-to-bulge mass ratio (≈5×10?5)in a small spiral galaxy at high-z is much smaller than that in the large galaxies (≈10?3).Our results also suggest that the scatter in the observed scaling relations between the bulge mass and black hole mass are caused by a time lag between BH growth and growth of bulge.We also predict that the X-ray luminosity of AGN is positively correlated with the CO luminosity in the central region.By comparing our results with the properties of Lyman break galaxies (LBGs),it is predicted that some LBGs have massive BHs of ≈106?107M ⊙.

Subject headings:black hole physics –galaxies:nuclei,starburst –hydrodynamics –radiation

mechanisms:general –method:numerical

1.introduction

Recent compilation of the kinematical data on galactic centers has revealed that a central “massive dark object”(MDO),which is a candidate for a supermassive black hole (BH),tightly correlates with the mass of a galactic bulge;the BH-to-bulge mass ratio is ≈0.001as a median value (e.g.,Kormendy &Richstone 1995;Magorrian et al.1998;Merritt &Ferrarese 2001;McLure &Dunlop 2002;Mar-coni &Hunt 2003).There have been a number of theoret-ical e?orts to clarify the origin of this relation (e.g.,Silk &Rees 1998:Ostriker 2000;Adams,Gra?&Richstone 2001).However,little has been elucidated regarding the physics on the angular momentum transfer in a spheroidal system (a bulge),which is inevitable for formation of BHs.Recently,Ferrarese (2002)and Baes et al.(2003)have ar-gued that the BH mass in spiral galaxies is related to the dark matter halo mass.This correlation suggests that for-mation of supermassive BHs is physically connected not only with formation of galactic bulges,but also with as-sembly processes of dark matter halos in galaxy formation.Since merging of proto-galaxies triggers active star forma-tion,a physical link between star formation and mass ac-cretion toward the central BH is expected.

Umemura (2001)has considered the e?ects of radiation drag as a mechanism for removing the angular momen-tum of the gas in the active galactic nuclei.The radia-tion drag in the solar system is known as the Poynting-Robertson e?ect.Note that,in the early universe,Comp-ton drag force has a similar e?ect on formation of massive BHs (Umemura,Loeb,&Turner 1997).The rate of an-gular momentum loss due to radiation drag is given by d ln J/dt ??χd E/c ,where J is the total angular momen-tum of the gaseous component,E is the energy density of the uniform spheroidal system,and χd is the mass extinc-tion coe?cient which is given by χd =n d σd /ρgas with the number density n d ,cross-section σd and gas density ρgas .The exact expressions for the radiation drag are given in the literature (e.g.,Umemura,Fukue,&Mineshige 1997;Fukue,Umemura,&Mineshige 1997).

In an optically thin regime,d ln J/dt ??(τL ?/c 2M gas ),where τis the total optical depth of the system,L ?is the total luminosity of the spheroidal system,and M gas is the total mass of gas.In an optically thick regime,the 1

Department of Astronomical Science,The Graduate University for Advanced Studies,Osawa 2-21-1,Mitaka,Tokyo 181-8588,Japan

1

2Kawakatu et al.

radiation drag e?ciency is saturated due to conservation of the photon number(Tsuribe&Umemura1997).Thus, an expression of the angular momentum loss rate suitable for both regimes can be d ln J/dt??(L?/c2M g)(1?e?τ). The mass accretion rate is therefore˙M=?M g d ln J/dt= (L?/c2)(1?e?τ).In an optically thick regime,this gives simply˙M=L?/c2(Umemura2001).Thus,the to-tal mass accreted onto the MDO,M MDO,is maximally M MDO? L?/c2dt.For more realistic cases,we should take into account inhomogeneity of the interstellar matter (ISM).In active star-forming galaxies,the ISM is observed to be highly inhomogeneous(Sanders et al.1988;Gor-don,Calzetti&Witt1997).In addition,high resolution three-dimensional hydrodynamic simulations have shown that multiple supernovae(SNe)in a galactic center form a quasi-stable inhomogeneous torus around a supermassive black hole(Wada&Norman2002).In such inhomoge-neous ISM,optically thin surface layers of optically thick clumpy clouds lose their angular momentum due to radia-tion drag,and eventually they accrete toward the galactic center(Sato et al.2004).Kawakatu&Umemura(2002) have shown that the inhomogeneity of ISM plays an impor-tant role in the radiation drag attaining maximal e?ciency. Based on the radiation drag model,Kawakatu,Umemura, &Mori(2003)predict that a mass ratio between the black hole mass and the bulge mass,M BH/M bulge?0.001,which is determined by the energy conversion e?ciency of nu-clear fusion from hydrogen to helium,i.e.,0.007(Umemura 2001).In these previous studies,galaxies are treated as a one-zone model,therefore the growth of supermassive BHs has not been revealed in a more realistic situation,namely that of the hierarchical formation of galaxies.Granato et al.(2004)presented a semi-analytic modeling of the early evolution of massive spheroidal galaxies and AGNs within the dark matter halo,including the angular momentum transfer via radiation drag.They claimed the feedback from supernovae and from AGNs determines the relation between the BH mass,the bulge mass and the dark matter halo mass(see also Bukert&Silk2001).

Di Matteo et al.(2003)followed the evolution of the gas,stars,and the dark matter in forming galaxies,and they found that the observed BH mass-to-stellar velocity dispersion of a bulge is reproduced if the gas mass in the bulge is linearly proportional to the black hole mass.How-ever,it is impossible to resolve the structure of the central sub-kpc region or the bulge component of host galaxies be-cause of the limitation on their numerical resolution(mass resolutions are107?108M⊙and gravitational softening lengths is4-9kpc).Recently,using high-resolution cos-mological N-body/SPH simulations with2×106particles (one SPH particle has103M⊙and a gravitational soften-ing length of~50pc),Saitoh&Wada(2004)investigated stellar and gaseous cores on a sub-kpc scale during the hierarchical formation of a small spiral galaxy(with a to-tal mass of1010M⊙),and found that the galactic core(< several100pc)coevolves with the galactic dark matter halo of~10kpc scale.The rapid increase of the gas mass and star formation rate(SFR)in the central sub-kpc re-gion may cause further mass accretion to the nucleus,due to,for example,a turbulent viscosity(Wada,Meurer,& Norman2002),a gas drag and dynamical friction in dense stellar clusters(Norman&Scoville1988),the radiation drag originating in the nuclear starburst(e.g.,Umemura 2001),or the BHs-BHs merger(e.g.,Haehnelt2004). Here we focus on the radiation drag as one of the pos-sible processes of mass accretion onto a BH during hi-erarchical formation of a galaxy.The observed AGN-starburst connection in nearby galaxies(Heckman et al. 1989;Kau?man et al.2003;Imanishi&Wada2004; Jahnke et al.2004)suggests that star formation plays an important role in the mass accretion.We expect a cor-relation between BHs and bulges as a natural result of galaxy formation,if the radiation drag works.In this pa-per,we quantitatively estimate evolution of a black hole mass in a forming galaxy,combining N-body/SPH simu-lations of cosmological galaxy formation done by Saitoh& Wada(2004)with an analytic model of angular momen-tum transfer due to the radiation drag.

This paper is organized as follows:In Section2,we brie?y describe the simulation of galaxy formation.Our model for the growth of a massive BH via the radiation-hydrodynamic process is also explained.Based on this model,in Section3,we show the history of accretion to a BH in a spiral galaxy.We also discuss the mutual rela-tionships between a massive BH,a galactic bulge,and a dark matter halo.Finally,we discuss correlation between AGN activities and the properties of bulges.In Section 4,we compare our predictions with observational scaling relations,and we discuss the Lyman break galaxies,as can-didates for the small spiral galaxies that we demonstrate here.Section5is devoted to conclusions.

2.models

2.1.Simulations of galaxy formation

The numerical simulations used here are based on Saitoh &Wada(2004)and Saitoh et al.(in preparation).We model the formation and evolution of galaxies in the CDM universe,adopting a top-hat initial condition with an open boundary for a single galactic halo(M halo~1010M⊙). The cosmological parameters in our model are?0=1.0,?λ=0.0,?b=0.1,h=H0/km/s/Mpc=0.5,and σ8=0.63.The collapse epoch of the halo is set at z c~3 and its spin parameter is0.05(Barns&Efstathiou1987; Heavens&Peacock1988).

Since the total mass of the object in our simulation is small(1010M⊙),evolution of the system and therefore the conclusion in this paper do no depend on the employed cosmology.The collapse epoch of the object in our sim-ulation is z c~3,for which the evolution is not strongly a?ected by theΛterm.This is in contrast to much larger systems,such as clusters of galaxies.

The number of baryon(SPH)and dark matter parti-cles in the spherical region is N SPH=N DM=1005600. The mass resolutions of baryon(gas and stars converted from the gas)and DM particles are1.1×103M⊙and 1.0×104M⊙,respectively.The gravitational softening lengths are52pc for baryon particles and108pc for DM particles.The initial distribution of the particles is gen-erated by COSMICS(Bertschinger2001).We discuss the evolution of galaxies until z=2,because the assembly history for the boundary conditions would not be realistic much later than the collapse epoch,z c.But,z~z c the assembly of the simulated galaxy?nishes,so that the mass of the galaxy at z=0would be equal to that at z=2.

IMBHs in Spirals

3

The numerical technique we employ to represent the evolution of galaxies is a standard hybrid N -body/hydrodynamic code for galaxy formation.The code includes both the radiative cooling and star formation.However,the dynamical and radiative feedback processes from star formation and supernova explosions are not ex-plicitly taken into account.The length of the interaction list of each SPH particle is N NB =50.In the SPH sim-ulations,the Jeans instability can be resolved correctly for masses larger than 2N NB m SPH (Bate &Burkert 1997),where m SPH is mass of an SPH particle.In the simulation,we can resolve gravitational instability of a cloud whose mass is larger than 1.1×105M ⊙.In order to model the multiphase nature of the interstellar medium (e.g.,Wada &Norman 2001),we solve the energy equation with the radiative cooling under 104K and the inverse Compton cooling.We assume that the gas has a primordial abun-dance of X=0.76and Y=0.24and we assume an ideal gas with γ=5/3.The mean molecular weight of gas,μ,is set to 0.59.

The star formation algorithm is similar to the one by Katz (1992).If an SPH particle satis?es all the fol-lowing conditions:(1)the regions are in virialized halos (ρSPH >200ρBG ),where ρBG is the background density,(2)low temperature (T <3×104K),and (3)collapsing regions (?·v <0),then it is converted into a collision-less star particle inheriting the velocity and the mass of the gas particle.The local star formation rate,SFR,is assumed to be SFR=c ?m SPH /τ?with c ?=1/30,where τ?=1/

√3πr 3

bulge

is the num-ber density of gas clouds.In this paper,we assume that

the cloud covering factor is order unity,i.e.ˉN

int ≈O (1),according to the previous analysis.A di?erent level of ISM clumpiness can reduce the radiation drag e?ciency by a factor of 2(Kawakatu &Umemura 2002).We also con?rm that the optical depth in a clumpy media is an order of unity,using a 3-D hydrodynamic simulations (see Fig.1in Wada &Norman 2002).Even if the system is extremely gas-rich (M gas =108M ⊙in the central 100pc),we found that the optical depth for the disk plane from various di-rections is distributed between 0.5and 1.2,assuming the same gas/dust ratio and dust opacity in the analysis here.Finally,using M gas =N c m gas the total optical depth of the bulge can be re-written to be

τbulge (t )=ˉτ(t )ˉN int ?3χd r 2bulge (t )

,(1)where r bulge (t )and M gas (t )are the size and the gas mass of the bulge.4

The radiation drag,which drives the mass accretion,originates in the relativistic e?ect in absorption and subse-quent re-emission of the radiation.This e?ect is naturally involved in relativistic radiation hydrodynamic equations (Umemura,Fukue,&Mineshige 1997;Fukue,Umemura,&Mineshige 1997).The angular momentum transfer in radiation hydrodynamics is given by the azimuthal equa-tion of motion in cylindrical coordinates,

1dt

=χd

c 2

1?e

?τbulge (t )

,(3)

where L bulge (t )and τbulge (t )are the total luminosity and the time-dependent total optical depth of the bulge.Kawakatu &Umemura (2002)found that the e?ciency ηdrag is maximally 0.34in the optically thick regime.

The radiation energy emitted by a main sequence star is 0.14?to the rest mass energy of the star,where ?is the en-ergy conversion e?ciency of the nuclear fusion from hydro-gen to helium,which is 0.007.Thus,the luminosity of the

2

It is noted that simulations with a three times larger number of clouds did not lead to any fundamental di?erence for ?nal BH mass,although at least 104clouds are necessary to treat the radiation transfer e?ect properly in clumpy ISM.The total optical depth,τbulge ,is not also signi?cantly a?ected by changing the cloud size,r c .

3We should keep in mind that recent observations suggest that the metallicity of the gas in the AGNs can be super-solar Z >Z ⊙(e.g.,Ohta et al.1996;Dietrich &Wilhelm-Erkens 2000;Maiolino et al.2003).If this is the case,the optical depth of a gas cloud can be enhanced by a factor of 3-4.

4In the present paper,we identify a ‘bulge’as a spheroidal star-forming region where the average number density of the gas,n H

,is larger than

0.1cm ?3in a spiral galaxy.This criterion corresponds to the density criterion of the star-forming region.

4Kawakatu et al. bulge at optical and UV bands is simply approximated by

L bulge(t)?0.14?˙M bulge(t)c2,where˙M bulge(t)is the SFR

in the bulge.Here,we employ a stellar initial mass func-

tion(IMF)such asφ=dn/d log m?=A(m?/M⊙)?αfor

a mass range of[m l,m u],where m?,m l,and m u are the

stellar mass,the lower mass,and the upper mass,respec-

tively.We assume m l=0.1M⊙and m u=60M⊙,and

the indexαis1.355.The accretion rate,equation(3),is

therefore

˙M

drag?1.2×10?3ηdrag˙M bulge(t)(1?e?τbulge(t)),(4)

Here we ignore the infrared luminosity from the evolved

stars because the dust opacity for the infrared band is

much smaller than that for the optical and UV bands.

˙M bulge andτ(t)are directly given from the numerical sim-

ulations.The total mass of dusty ISM accreted to the central massive dark object(MDO),M MDO(t),is obtained by

M MDO(t)= t0˙M drag dt.(5)

As seen in equation(3),(4)and(5),the linear relation between the MDO mass and the bulge mass is a direct re-sult of the radiation drag mechanism.The possible mass accreted by the radiation drag in the optically thick limit is given by

M MDO,max=ηdrag t1t0L bulge/c2dt?5×10?3M bulge,(6)

where t0is0.1Gyr(z~25)which corresponds to the epoch we detect the progenitor of galaxy?rstly,and t0is 2.6Gyr(z~2).The correspondance between time and redshift is based on the cosmological model we adopted. In this model,we should distinguish the BH mass from that of an MDO,although the mass of an MDO is of-ten regarded as BH mass from an observational point of view.The radiation drag is not likely to remove the an-gular momentum thoroughly,and thus some residual an-gular momentum will terminate the radial contraction of the accreted gas(Sato et al.2004).Hence,the dusty ISM probably forms a compact rotating torus.In this nuclear torus,we suppose that the mass accretion onto the BH horizon is determined by the Eddington rate,and that the BH mass grows according to

M BH(t)=M0e t/t Edd,(7) where t Edd is the Eddington time scale,t Edd=ηBH M BH c2/L Edd,with the energy conversion e?ciency,ηBH,and the Eddington luminosity,L Edd.Unless other-wise stated,ηBH is assumed to be0.42,which is the conver-sion e?ciency of an extreme Kerr BH.Recently,Shibata (2004)has found that a rigidly rotating very massive star (VMS)with several100M⊙can be unstable for a softer equation of state,and eventually it forms a BH.In addi-tion,the theory of stellar evolution reveals that the nuclear burning in VMSs above260M⊙is unable to halt gravita-tional collapse(e.g.,Heger et al.2003).Thus,the VMSs inevitably evolve into massive BHs without supernova ex-plosions.Here,we assume260M⊙as the mass of the seed black hole M0.

3.results

On the basis of the coevolution model described in the previous section,we estimate the mass accretion driven by the radiation drag during hierarchical galaxy forma-tion.Next,we reveal the relationship between the growth of a BH and that of a dark matter halo.Finally,we discuss the relation between AGN activity and the properties of the bulges.

3.1.Mass accretion rate via radiation drag Evolution of the SFR and the optical depth of bulge (~1kpc)are shown in Figure1.Before z~4,the SFR and the optical depth increase,while they decrease rapidly for z<

4.This can be understood as follows:At high-z (z>4),supply of the gas due to mergers of smaller proto-galaxies and consumption of the gas in the central part of the galaxy(bulge)are almost balanced.Thus,both the SFR and the optical depth are enhanced.At low-z(z<4), accretion of the gas to the bulge associated with merger events is decreased.The gas in the bulge is consumed by the star formation.As a result,it makes the gas of bulge poor.As seen in Figure1,we found that the evolution of the SFR and the optical depth are not smooth,but episodic.This episodic growth corresponds to the phase of the high mass accretion onto the bulge component trig-gered by major mergers with some time delays,which are typically107yrs(see Saitoh&Wada2004in details).

z

S

F

R

[

/

y

r

]

τ

bulge

τbulge

SFR

0.125

0.25

0.5

1

0510152025 10-4

10-3

10-2

10-1

1

Fig. 1.—Redshift evolution of the star formation rate(in units of M⊙yr?1)and total optical depth(τbulge)of the bulge at redshift (z).At z>4,both the SFR and the optical depth increase with time,while they decrease at low-z(z<4).

Figure2is evolution of the mass accretion rate due to the radiation drag(˙M drag),the rate of mass accretion onto a BH(˙M BH),and the Eddington mass accretion rate (˙M Edd).It is clear that˙M drag is also episodic,re?ecting the evolution of the SFR and optical depth(Figure1and eq.[4]).We have also found that the averaged mass accre-tion rate is≈10?5M⊙yr?1.This rate is comparable to the Eddington mass accretion rate for a black hole mass with104M⊙,that is,

˙M

Edd

=

1

c2≈10?5M⊙yr?1

ηBH104M⊙ .

(8)

5As for the e?ect of IMF,If the slope and the mass range of IMF are changed to satisfy the spectrophotometric properties of galactic bulges, then the radiation drag e?ciency is altered by a factor of±50%(Kawakatu&Umemura2004).

IMBHs in Spirals5 In Figure2,the Eddington mass accretion rate(eq.[8])

is larger than˙M drag after z~5.Since the BH mass equals

the mass of MDO at z≈4(see Figure3),the mass ac-

cretion onto the BHs after z~4would be controlled by

the mass accretion to the MDO via the radiation drag,

i.e.˙M BH=˙M drag.Figure2shows that˙M BH>˙M drag in

a period of4.2

In this paper,we call this period a‘BH-growing phase’,

which is≈108yr.

2

4 6 8 10 12 14

M halo

1010

Fig.3.—Same as Fig.1,but for masses of the dark halo(M halo)

,gas(M gas),and bulge(M bulge).Evolution of the mass of black

hole(BH)and the massive dark object(MDO)are also plotted.

The mass of the seed black hole is assumed to be M0=260M⊙(see

eq.[7]).M bulge and M gas,respectively,while M MDO is the mass of

MDO and M BH is the mass of the massive BH.It shows that the

MDO mass is proportional to the bulge mass.The BH mass reaches

the MDO mass at z≈

4.

2 4 6 8 10

z

M

a

s

s

r

a

t

i

o

6Kawakatu et al.

do not signi?cantly change with M BH /M bulge ≈5×10?5and M BH /M halo ≈3×10?6.Therefore,we would pre-dict that the scatter in the scaling relation is larger in the BH-growing objects at high-z than in nearby well-evolved galaxies.

In Figure 5,we plot mass of the MDO and the BH against the halo mass.This reveals that the MDO and the BH coevolve with the dark matter halo from z ~10to z ~2.The masses of the MDO and the BH increase with the development of the dark halo.The mass ratio of the BH to the halo (M BH /M DM )increases gradually from 10?6to 3×10?6from z ~7to z ~2(see also Figure 4).From these arguments,the M BH -M halo correlation indi-cates that variation of the dark matter halo potential as-sociated with merging processes positively links with the mass accretion toward the galactic center via the radiation drag.Our model suggests that a BH mass is mutually re-lated to the mass of a bulge and that of a dark matter halo throughout the history of the galaxy https://www.doczj.com/doc/ee10922511.html,par-ison with observations is discussed in §

4.

M a s s [ ]

10101010M halo [ ]

Fig. 5.—Masses of the BH (thick line)and MDO (thin line)are plotted against mass of the dark halo.The arrows indicate the masses of the dark halo at labeled redshifts.It shows that the BH coevolves with the dark matter halo from z ~10to z ~2.

3.3.AGN activity-host relation

In this section,we examine the relation between the AGN activities and the properties of bulge components.Evolution of the bulge luminosity (L bulge )at optical and UV-band and the AGN luminosity (L AGN )are plotted in Figure 6.During z >4,the AGN luminosity increases with the time,because the mass accretion is determined by the Eddington rate.After z ~4,the AGN luminosity is

limited by ˙M

drag (see Figure 3).Thus,the AGN luminos-ity exhibits a peak around z ~4,when M MDO ~M BH .As seen in this ?gure,the AGN luminosity is always smaller than the bulge luminosity;in other words,no quasar phase,i.e.AGN luminosity dominant phase,appears.However,the luminosity ratio of the AGN to the bulge exhibits the maximal value (L AGN /L bulge ≈0.1)at z ~4.This suggests that some small spiral galaxies at high-z could show the same level of typical low luminosity AGNs in the local universe.

Figure 7shows the relation between the X-ray lumi-nosity,L X ,of the AGN and the CO luminosity,L CO ,of the bulge.Here,the X-ray luminosity L X is esti-

mated assuming L X =?X L AGN ,where ?X is the X-ray emitting e?ciency,which is supposed to be 0.1.The CO luminosity is derived from the gaseous mass assuming a conversion factor,X CO =M gas /L CO =4.6M ⊙/K kms ?1pc 2(de Breuck et al.2003).We found that the X-ray luminosity is positively linked with the CO luminosity for a wide range of luminosities,i.e.L X ~1038(ergs s ?1)(L CO /K km s ?1kpc 2)2.

In Figure 7,we also ?nd that some points obviously de-viate from the linear relation.These points correspond to the BH-growing phase (4.2

L u m i n o s i t y [e r g /s ]

z

L AGN

1040

2

4

68

10

12

14

L bulge

1041

1042

1043

1044

IMBHs in Spirals7

that Lyman break galaxies(LBGs),which are starburst galaxies at high-z,may be in the forming phase of a galac-tic bulge(Friaca&Terlevich1999;Matteucci&Pipino 2002).The SFR in the LBGs is~3?300M⊙yr?1.LBGs have a typical luminosity~1010?1011L⊙,a stellar mass ~1010?1011M⊙,and they are observed to be optically thin(e.g.,Shapley et al.2001).They also exhibit strong clustering at z~3,suggesting that hierarchical clustering is on-going.In addition,the Chandra X-ray observatory has detected the hard X-ray of LBGs at z=2?4with the luminosity of~108L⊙although it is still uncertain whether the X-ray emission arises from AGNs(Brandt et al.2001).Comparing these properties of LBGs with our predictions(i.e.(1)-(6)),the small spiral galaxy(with a total mass of1010M⊙)in the BH-growing phase may cor-respond to low-mass counterparts of the LBGs.Extrapo-lating the scaling relation that we found to the observed LBGs,they would have the MBHs with≈106?107M⊙. According to recent observations,only3%of LBGs show AGN activity in the rest-frame hard X-ray band(Nam-dra et al.2002)and optical band(Shapley et al.2001). However,it has not been clear that this3%fraction re-?ects the duty cycle of mass accretion to BHs(see Shap-ley et al.2001in details)or the possibility that the LBGs have massive BHs.Hosokawa(2004)claimed,assuming M BH/M bulge≈0.001,that~10%of LBGs at z~3can have a massive BH with~107M⊙to reproduce the lo-cal mass function of SMBHs(Salucci et al.1999;Yu& Tremaine2002;Aller&Richstone2002;Shankar et al. 2004).

4.2.M BH?M bulge and M BH?M halo relations Barth et al.(2004)suggested that the correlation between BH mass and stellar velocity dispersion(the M BH?σrelation)holds on a mass scale of an intermediate BH with≈104?106M⊙.In addition,Baes et al.(2003) found a correlation between the BH mass and halo mass, i.e.M BH/108M⊙~0.11(M halo/1012M⊙)1.27,by using the M BH?σrelation.This relation gives M BH=3×104M⊙for M halo=1010M⊙,which is comparable to our predic-tion(M BH≈3×104M⊙at z~2).However,it should be noted that there are large uncertainties in the empirical laws,as mentioned by Ferrarese(2002).

In our model,the?nal BH mass-to-bulge mass ratio is≈5×10?5,which is much smaller than the observed value(≈10?3)in nearby large galaxies.Thus,if our sce-natio is correct,it is expected that small spiral galaxies at high-z,which are not direct counter parts of the dwarf galaxies at low-z,could have the IMBHs and the smaller BH mass-to-bulge mass ratios.Currently,it is di?cult to detect the IMBHs in small galaxies at high-z,and there-fore we can not directly prove our prediction,namely the small BH mass-to-bulge mass ratio.Moreover,there is also a room in the theoretical model,especially on e?ects of mechanical,radiative and chemical feedback processes from star formation.For instance,it is not trivial whether the stellar feedback a?ects on the SFR positively or neg-atively.Therefore,it is ultimately necessary to perform high-resolution radiative hydrodynamical simulations for galaxy formation taking into account these e?ects explic-itly.

In this paper,we focus on the formation of a MBH due to the radiation drag in a small spiral galaxy.However,the process discussed here could be applied to more massive galaxies because the transfer of the angular momentum via the radiation drag is independent of the mass scale of the galaxies.By using the BH mass-to-halo mass relation for a small spiral galaxy(M BH/M halo≈10?6),we can pre-dict that the massive spiral galaxies with M halo=1012M⊙have MBHs with106?107M⊙.In addition,the observa-tions have suggested the SFRs of the massive galaxies at high-z are10-100times higher than those of small galaxies like the one considered here.Thus,the?nal BHs might achieve≈108M⊙because the e?ect of the radiation drag is linearly proportional to the SFR(eq.[4]).If this is the case,host galaxies of the luminous quasars at high red-shift would be star-forming or post-starburst galaxies.On the other hand,we should note that the mass of a BH would depend on the morphology of the galaxies even if the mass of the dark halo is the same.This is because the rate of mass accretion onto the BHs is not determined by the disk components,but by the bulge components in the host galaxies,due to the e?ects of geometrical dilu-tion and opacity(see Kawakatu&Umemura2004in de-tails).Therefore,the morphology di?erences of host galax-ies would cause the large scatter in the mass relation of the BHs to the halos in spiral galaxies.In fact,some authors claim that the M BH?M halo relation is much weaker than the M BH?M bulge relation in spiral galaxies(Salucci et al. 2000;Zasov et al.2004).

Log L co [K km/s Kpc2]

L

o

g

L

x

[

e

r

g

/

s

]

39

40

41z=4.2

z=4.8

z=4.4

Fig.7.—The relation between the CO luminosity(L CO)and the X-ray luminosity(L X)during the evolution of the BH and the galaxy.The?lled circles show time evolution in our model. The X-ray luminosity is positively correlated with the CO luminos-ity.The thin line represents this correlation,i.e.log L X(erg/s)~38+2log L CO(K km s?1Kpc2).The shaded area corresponds to the BH growing phase(4.2

4.3.L X?L CO relation

In§3.3,we predicted that the X-ray luminosity of AGNs is positively correlated with the CO luminosity of bulges from z~10to z~ 2.This correlation(i.e.L X~1038(ergs s?1)

(L CO/K km s?1kpc2)2),if we extrapolate it to AGNs with higher luminosity,is consistent with the L X?L CO rela-tion found in the low redshift Seyfert galaxies and quasars (Yamada1994).The observed L X?L CO relation shows a scatter of about one order of magnitude.Suppose all

8Kawakatu et al.

galaxies follow the same L X?L CO relation that we found here,we suspect that the large scatter in the observed scaling relation was caused when the BHs were in their growing phases.Submillimeter observations by ALMA for luminous high-z quasars will be helpful to investigate the connection between the black hole mass and the host prop-erties.

5.conclusions

Combining a theoretical model of the mass accretion onto a galactic center due to the radiation drag with high-resolution N-body/SPH simulations(2×106particles,one SPH particle has103M⊙and a softening length of~50 pc),we demonstrate growth and formation of a massive BH during hierarchical formation of a small spiral galaxy (with a total mass of1010M⊙).We found that the aver-age rate of the mass accretion due to the radiation drag is≈10?5M⊙yr?1.Finally,a small spiral galaxy can have an IMBH with104?105M⊙at z~4.

Our model suggests that the growth of the massive BHs correlates not only with that of the galactic bulges,but also with that of the dark matter halos in the hierarchical formation of spiral galaxies.The massive BHs coevolve with the dark matter halo from z~15to z~2.This means that the change in the dark matter potential closely correlates with the rate of the mass accretion onto a seed BH with the help of the radiation drag.The?nal mass ra-tio of the BH-to-dark matter halo is≈10?6and the?nal BH-to-bulge mass ratio is about5×10?5in a small spi-ral galaxy,which is much smaller than the observed value (≈10?3)in the large galaxies due to the opacity e?ect, although the stellar feedback would a?ect on the result. Moreover,the time-lag between the BH growth and the growth of the bulge(halo)would cause the scatter of the observed scaling relation.

In terms of relationship between the AGN activity and the properties of host galaxies,we found that even a small spiral galaxy could show the same level of the typical low luminosity AGNs with L AGN/L bulge≈0.1at z≈4.Our model shows that the X-ray luminosity of the AGN is positively correlated with the CO luminosity(the gaseous mass)of the bulge very well.Furthermore,our result pre-dicts that the BH-growing objects deviate from this scaling relation.By comparing our results with the properties of the LBGs,we predict that the LBGs could harbor massive BHs with106?107M⊙.

The authors thank the anonymous referee for his/her fruitful comments and suggestions.NK acknowledges Ital-ian MIUR and INAF?nancial support.Numerical compu-tations were carried out on GRAPE clusters(MUV)and Fujitsu VPP5000at NAOJ(MUV Project ID g04a07, VPP Project ID rkw20a).The authors are supported by Grants-in-Aid for Scienti?c Research(no.15684003(KW) and no.16204012(TS))of JSPS.

REFERENCES

Abadi,M.G.et al.,2003,ApJ,591,499

Adams,F.,Gra?,D.S.,&Richstone,D.O.2001,ApJ,551,L31 Aller,M.C.,&Richstone,D.2002,AJ,124,3035

Baes,M.,et al.2003,MNRAS,341,L44

Barnes,J.,&Efstathiou,G.1987,ApJ,319,575

Barth,A.J.,et al.2004,ApJ,607,90

Barth,A.J.,Greene,J.E.,&Ho,L.C.2004,ApJ,in press(astro-ph/0412575)

Bate,M.R.,&Burkert,A.1997,MNRAS,288,1060 Bertschinger,E.ApJS,137,1

Brandt,W.N.,et al.2001,ApJ,558,L5

Bukert,A.,&Silk,J.2001,ApJ,554,L151

de Breuck,C.,et al.2003,A&A,401,911

Di Matteo,T.,et al.2003,ApJ,593,56

Dietrich,M.,&Wilhelm-Erkens,U.2000,A&A,354,17 Ferrarese,L.2002,ApJ,578,90

Friaca,A.C.S.,&Terlevich,R.J.1999,MNRAS,305,90 Fukue,J.,Umemura,M.,&Mineshige,S.1997,PASJ,49,673 Gordon,K.,Calzetti,D.,&Witt,A.N.1997,ApJ,487,625 Granato,G.L.,et al.2004,ApJ,600,580

Greene,J.E.,&Ho,L.C.2004,ApJ,610,722,2004

Haehnelt,M.G.2004,Coevolution of Black Holes and Galaxies, from the Carnegie Observatories Centennial Symposia.Published by Cambridge University Press,Ed.by L.C.Ho,2004,p406 Heaveans,A.,&Peacock,J.1988,MNRAS,232,339

Heckman,T.M.,et al.1989,ApJ,342,735

Heger,et al.2003,ApJ,591,288

Hosokawa,T.2004,ApJ,606,139

Imanishi,M.,&Wada,K.2004,ApJ,617,214

Jahnke,K.,et al.2004,ApJ,614,568

Katz,N.1992,ApJ,391,502

Kau?mann,G.,et al.2003,MNRAS,346,1055

Kawakatu,N.,&Umemura,M.2004,ApJ,601,L21

Kawakatu,N.,&Umemura,M.2002,MNRAS,329,572 Kawakatu,N.,Umemura,M.,&Mori,M.2003,ApJ,583,85Kormendy J.,&Richstone,D.1995,ARA&A,33,581 Magorrian,J.,et al.1998,AJ,115,2285

Maiolino,R.,et al.2003,ApJ,596,L155

Marconi,A.,&Hunt,L.K.2003,589,L21

Matteucci,F.,&Pipino,A.2002,ApJ,569,L69

McLure,R.J.,&Dunlop,J.S.2002,MNRAS,331,795

Merritt,D.,&Ferrarese,L.2001,ApJ,547,140

Nandra,K.,et al.2002,ApJ,576,625

Norman C.,&Scoville,N.1988,ApJ,332,124

Ohsuga,K.,&Umemura,M.1999,521,315

Ohta,K,et al.1996,Nature,382,4260

Ostriker,J.P.2000,Phy.Rev.Lett.,84,5258

Saitoh,R.T.,&Wada,K.,2004,ApJ,615,L93

Salucci,P.,et al.1999,MNRAS,307,637

Salucci,P.,et al.2000,MNARS,317,488

Sanders,D.B.,et al.1988,ApJS,325,74

Sato,J.,et al.2004,MNRAS,354,176

Shankar,F.,et al.2004,MNRAS,354,1020

Shapley,A.,et al.2001,ApJ,562,95

Shibata,M.2004,ApJ,605,350

Silk,J.,&Rees,M.J.1998,A&A,331,L1

Spitzer,L.,Jr.1978,Physics processes in the interstellar medium, Jphn Wiley&Sones,Inc.,New York,section9.3

Tsuribe,T.,&Umemura,M.1997,ApJ,486,48

Thacker,R.J.,&Couchman,H.M.,2001,ApJ,555,L17 Umemura,M,Loeb,A.,&Turner,E.L.1993,419,459 Umemura,M.,Fukue,J.,&Mineshige,S.1997,ApJ,479,L97 Umemura,M.2001,ApJ,560,L29

Wada,K.,&Norman,C.2001,ApJ,547,172

Wada,K.,Meurer,G.,&Norman,C.A.2002,ApJ,577,197 Wada,K.,&Norman,C.A.2002,ApJ,566,L21

Watabe,Y.,&Umemura,M.2005,ApJ,in press(astro-ph/0409455) Yamada,T.1994,ApJ,423,L27

Yu,Q.,&Tremaine,S.2002,MNRAS,335,965

Zasov,A.V.,Cherepashchuk,A.M.,&Petrochenko,L.N.2004, ARep,in press(astro-ph/0412560)

古代汉语词类活用例句列举

古代汉语词类活用例句列举 古代汉语词类活用例句列举《郑伯克段于鄢》1、例:壮公生,惊姜氏。P97 惊:用作使动,使。。。惊。2、例:无生民心。P99 生:用作使动,使。。。产生。3、例:若阙地及泉,隧而相见。P101 隧:名词动用。《公孙无知之乱》4、豕立而啼,P109 立:名词作状语,像人一样丫立。〈安之战〉5、皆主?献子。P117 主:名词动用,以。。。为主。6、君无所辱命。P119 辱:动词使动,使。。。受辱。7、从左右,皆肘之。P123 肘:名词使动,表示用胳膊推撞。8、臣辱戎士。123 辱:动词使动。9、人不难以死免其君。P123 免:用作使动,使。。。免于。10、故中御而从齐候。P123 中:方位名词做状语。〈子产说范宣子轻敝〉11、三周华不注。P122 周:

名词动用。12、郑人病之。P129 病:名词用作意动。13、象有齿而焚其身。P130 焚:动词用作使动。14、宣子说,乃轻弊。P130 轻:形容词用作使动,使。。。轻。〈苏秦连横约纵〉15、今先生俨然不运千里而庭教之。P182 远:形容词用作意动。16、明言章理,兵甲愈起。P183 明、章:用作使动。 1 17、辨言伟服。攻战不息。P183 辩、伟:都用作使动,使。。。雄辩,使。。。华美。18、繁称文辞,天下不冶。P183 文:名词用作使动。19、夫徒处而致利,安坐而广地。P183 广:形容词用作使动,使。。。广。20、言语相结,天下为一。P183 言语:名词作状语。21、今欲并天下,凌万乘,诎敌国。制海内,子元元。臣诸候。非兵不可。P183 诎:用作使动,使。。。屈服;子:名词用作使动,使。。。成为子女;臣:名词用作使动,使。。。成为臣子。22、约纵散横,以抑强秦。

华为AAU的有源天线解决方案

华为AAU的有源天线解决方案 国内三大运营商经过十多年从2G到3G移动网络建设、升级、改造,相当数量的站点空间变得越来越紧张,新设备的增加将极大加重运营商的建站和运维成本,为满足日益增长的移动宽带应用,需要运营商能迅速扩充网络容量以满足业务增长。 当前国内LTE建设迅速起步, 需要在现有的移动站点基础上,再加入一层LTE(FDD和TDD)网络,对站点机房空间,天面位置都提出了新的要求,据华为内部调查和经验,大部分一线和二线城市45%左右的站点天面空间拥挤,无法新增独立天线。 在多频多模建网模式下,如何高效利用有限的站点资源,进一步提升网络容量,为用户提供更好的宽带业务体验,成为各运营商面临的主要挑战。 以华为AAU为代表的有源天线解决方案,正在逐步成为行业的趋势。从90年代的GSM宏基站,到2004年华为首先推出分布式基站,华为一直通过基站形态的创新适应移动网络建设,在移动宽带MBB时代,需要进一步提升网络性能、解决天面获取难题的困扰,华为正在引领行业推动有源天线标准化。 AAU称做有源天线单元,如下图1所示,在多个频段组网下,传统方式需要选择两个RRU连接到一个无源天线, 采用AAU后,2个RRU集成到天线中,形成有源天线单元AAU。 图1 RRU和天线集成于一体的AAU 对于一个已有RRU和天线的站点,如果要增加LTE业务,将需要新增加一套新的RRU、天线、以及相关的附件, 而华为的AAU解决方案可以将新频段的LTE RRU集成在AAU内部,同时集成原来的两副天线,如下图2所示。

图2 高度集成的AAU替换传统大量的零散部件 华为的AAU,有效整合运营商的天面资源,简化了天面配套要求,将射频单元与天线合为一体,减小馈线损耗,增强了覆盖效果,更加适合多频段多制式组网的需求,有效保护了运营商比机房更重要的核心资产--天面资源。采用AAU 解决方案后,整个天面变得简洁、可靠、稳定,带来的好处有: 部署方便,节省空间,AAU尺寸和单频天线相当,降低选址和物业协调难度,同时集束线缆设计,AAU与原AAU连接仅需4根馈线。在节省70%的空间下,能够获得30%到70%的容量增益。 管理效率高, AAU本身支持多种电调模式,手动、近端、远端都可以方便地对天线进行调整,远端方式通过AISG接口实现和远端网管通信免进站,免上塔,提升维护效率可以实时调整,避免业务中断。 省钱省时,实现快速建设,通过一次部署,降低了物业协调难度,能够极大地减少抱杆、土建及楼面的租金成本,减少安装工程成本,据测算,采用AAU 能够减少30%的站点建设成本。 华为的AAU可集成两个不同频段的射频单元以及天线, 集成度是业界同类产品的2倍,帮助运营商平滑演进到HSPA+、LTE以及LTE-Advanced而无需新增射频单元或天线,每个站点最大可以节省75%的模块数量,也是业界唯一能够支持2个4×4 MIMO射频模块的产品,并支持波束成型技术,可实现85%的容量提升。 AAU解决方案,不仅是对基站架构、天面安装方式的创新,而且反映AAU产品稳定性、可靠性达到了相当的水平。AAU作为高度集成的产品,安装位置又很特别,要求其内部有源模块必须达到非常高的可靠性。华为将其十多年对RRU

古代汉语练习题 词类活用

古代汉语练习(词类活用) 班级:姓名:学号: 一、简答: 1、什么是古代汉语的词类活用?古代汉语中的词类活用有哪几种? 2、怎样区别使动用法和意动用法?试举例说明。并说明如何翻译。 3、试说明名词做状语主要有哪几种情况。 4、名词、形容词用作动词的情况主要有哪些?应该如何辨认? 二、多项选择题(在每小题的四个备选答案中,选出二个至四个正确的答案,并将其号码分别填在题干后的括号内,多选、少选、错选均无分。每小题1分,共5分) 1.下列各句中加着重号的词,属于词类活用的是() A.斩一首者爵一级B.能富贵将军者,上也 C.曹人凶俱,为其所得者棺而出之 D.夫鼠,昼伏夜动,不穴于寝庙,畏人故也 2.下列各句中加着重号的词属于名词作状语的是() A.裂裳衣疮,手往善药 B.其经承子厚口讲指画为文词者,悉有法度可观 C.范增数目项王D.诸侯宾至 3.下列各句含宾语前置现象的是() A.姜氏何厌之有B.楚君之惠,末之敢忘 C.除君之恶,唯力是视D.昭王南征而不复,寡人是问 4.对下列各句中加着重号的词组分析错误的是() A.子重使太宰伯州犁待于王后(动宾)B.将塞井夷灶而为行也(连动) C.臣之壮也犹不如人(主谓)D.以勇力之所加而治智能之官(偏正) 5.下列句子中有使动用法的是() A.秋九月,晋侯饮赵盾酒,伏甲将攻之 B.是时万石君奋为汉王中涓,受手谒,人见平

C.见灵辄饿,问其病,曰:“不食三日矣。”食之,舍其半 D.仓廪实而知礼节,衣食足而知荣辱 四、指出并具体说明下列文句中的词类活用现象: 1.秦数败赵军,赵军固壁不战。(秦与赵兵相距长平) 2.赵王不听,遂将之。(秦与赵兵相距长平) 3.身所奉饭饮而进食者以十数,所友者以百数。(秦与赵兵相距长平) 4.括军败,数十万之众遂降秦,秦悉阬之。(秦与赵兵相距长平) 5.信数与萧何语,何奇之。(韩信拜将) 6.王必欲长王汉中,无所事信。(韩信拜将) 7.吾亦欲东耳,安能郁郁久居此乎?(韩信拜将) 8.何闻信亡,不及以闻,自追之。(韩信拜将) 9.今大王举而东,三秦可传檄而定也。(韩信拜将) 10.遇有以梦得事白上者,梦得于是改刺连州。(柳子厚墓志铭) 11.自子厚之斥,遵从而家焉,逮其死不去。(柳子厚墓志铭) 12.以如司农治事堂,栖之梁木上。(段太尉逸事状) 13.踔厉风发,率常屈其座人。(柳子厚墓志铭) 14.晞一营大噪,尽甲。(段太尉逸事状) 15.即自取水洗去血,裂裳衣疮,手注善药。(段太尉逸事状) 16.黄罔之地多竹,大者如椽。竹工破之,刳去其节,用代陶瓦。(黄冈竹楼记)17.晋灵公不君。厚敛以彫墙。(晋灵公不君) 18.既而与为公介,倒戟以御公徒而免之。(晋灵公不君) 19.盛服将朝,尚早,坐而假寐。(晋灵公不君) 20.晋侯饮赵盾酒,伏甲将攻之。(晋灵公不君) 五、说明下列文句中的词类活用现象,并将全文译为现代汉语:

华为微波天线调测指导书

天线调测指导书 (仅供内部使用) 拟制:邢子彬日期:2009-03-30 审核:日期:yyyy/mm/dd 审核:日期:yyyy/mm/dd 批准:日期:yyyy/mm/dd 华为技术有限公司 版权所有侵权必究

修订记录

天线调测指导书 关键词:天线、主瓣、旁瓣、接收电平 摘要:介绍了天线主瓣与旁瓣相关知识,以及单极化天线和双极化天线的调整方法。 缩略语清单: 一、主瓣和旁瓣 在对调天线前,需掌握天线主瓣和旁瓣的相关知识。 1、主瓣和旁瓣的定义 天线辐射的电场强度在空间各点的分布是不一样的,我们可以用天线方位图来表示。通常取其水平和垂直两个切面,故有水平方向图和垂直方向图,如图1所示为垂直方向图。方向图中有许多波瓣,最大辐射方向的波瓣叫主瓣,其它波瓣叫旁瓣,旁瓣中可以影响对调天线的是第一旁瓣。 图1 主瓣和旁瓣 2、定位主瓣

微波天线的主瓣宽度很窄,通常在0.6~3.7度之间,例如:一个1.2m的天线(工作频率为23 GHz),信号电平从主瓣信号峰值衰减到零只有0.9度的方位角。所以在定位主瓣的时候,一旦检测到信号,则只需要对天线做微调即可。 在对调天线扫描过主瓣的时候,信号电平要经历一个快速变化的过程,通过比较接收到的信号峰值可以确定天线主瓣是否对准,通常情况下主瓣信号峰值比第一旁瓣的信号峰值高20~25dB。当两端天线同时收到对端的主瓣信号,如果两个信号强度差在2dB以内,属于允许范围。 如图2是天线在自由空间传播模型的正面图,旁瓣围绕在以主瓣为圆心的周围成放射状传播。 图2 天线水平方向图 3、扫描路径 在不同的俯仰角(方位角)上扫描信号时,扫描到的旁瓣信号有时被误认为主瓣信号。如图3是天线水平方向上的辐射模型,天线在三种不同仰角位置扫描到的信号电平值: 图3 三种扫描路径

初中所学文言文中的五类常见词类活用现象

初中所学文言文中的五类常见词类活用现象

古代汉语中的词类活用现象 五种类型:名词用作动词 动词、形容词、名词的使动用法 形容词、名词的意动用法 名词用作状语 动词用作状语 (一)名词用如动词 古代汉语名词可以用如动词的现象相当普遍。如: 从左右,皆肘.之。(左传成公二年) 晋灵公不君.。(左传宣公二年) 孟尝君怪其疾也,衣冠 ..而见之。(战国策·齐策四) 马童面.值,指王翳曰:“此项王也。”(史记·项羽本纪) 夫子式.而听之。(礼记·檀弓下) 曹子手.剑而从之。(公羊传庄公十三年) 假舟楫者,非能水.也,而绝江河。(荀子·劝学) 左右欲刃.相如。(史记·廉颇蔺相如列传) 秦师遂东.。(左传僖公三十二年) 汉败楚,楚以故不能过荥阳而西.。(史记·项羽本纪) 以上所举的例子可以分为两类:前八个例子是普通名词用如动词,后两个例子是方位名词用如动词。 名词用作动词是由上下文决定的。我们鉴别某一个名词是不是用如动词,须要从整个意思来考虑,同时还要注意它在句中的地位,以及它前后有哪些词类的词和它相结合,跟他构成什么样的句法关系。一般情况有如下四种:

①代词前面的名词用如动词(肘之、面之),因为代词不受名词修饰; ②副词尤其是否定副词后面的名词用如动词(“遂东”、“不君”); ③能愿动词后面的名词也用如动词(“能水”、“欲刃”); ④句中所确定的宾语前面的名词用如动词(“脯鄂侯”“手剑”) (二)动词、形容词、名词的使动用法 一、动词的使动用法。 定义:主语所代表的人物并不施行这个动词所表示的动作,而是使宾语所代表的人或事物施行这个动作。例如:《左传隐公元年》:“庄公寤生,惊姜氏。”这不是说庄公本人吃惊,而是说庄公使姜氏吃惊。 在古代汉语里,不及物动词常常有使动用法。不及物动词本来不带宾语,当它带有宾语时,则一定作为使动用法在使用。如: 焉用亡.郑以陪邻?《左传僖公三十年》 晋人归.楚公子榖臣与连尹襄老之尸于楚,以求知罃。(左传成公三年) 大车无輗,小车无杌,其何以行.之哉?《论语·为政》 小子鸣.鼓而攻之可也。《论语·先进》 求也退,故进.之;由也兼人,故退.之。《论语·先进》 故远人不服,则修文德以来.之。《论语·季氏》 有时候不及物动词的后面虽然不带宾语,但是从上下文的意思看,仍是使动用法。例如《论语·季氏》:“远人不服而不能来也”这个“来”字是使远人来的意思。 古代汉语及物动词用如使动的情况比较少见。及物动词本来带有宾语,在形式上和使动用法没有什么区别,区别只在意义上。使动的宾语不是动作的接受者,而是主语所代表的人物使它具有这种动作。例如《孟子·梁惠王上》“朝秦楚”,不食齐宣王朝见秦楚之君,相反的,是齐宣王是秦楚之君朝见自己。 下面各句中的及物动词是使动用法: 问其病,曰:“不食三日矣。”食.之。《左传·宣公二年》

词类活用例子

文言实词词类活用 活用为一般动词 (一)名词活用为一般动词 1.两个名词连用,既不是并列关系,又不是修饰关系,便是动宾或主谓,其中一个必然活用为动词。 a .有一老父,衣褐,至良所。 b.籍吏民,封府库。 c.我有嘉宾,鼓瑟吹笙。 d.冬雷震震夏雨雪。 2.名词后紧跟代词,该名词活用为动词。 a.驴不胜怒,蹄之。 b.以其乃华山之阳名之。 c.名余曰正则兮。 3.名词放在副词后,便活用为动词。 a.日将暮,取儿槁葬。 b.太子及宾客知其事者,皆白衣冠以送之。 c.从弟子女十人所,皆衣缯单衣,立大巫后。 4.名词放在“能”“可”“足”“欲”等呢过愿动词后,便活用为动词。 a.假舟楫者,非能水也。 b.云青青兮欲雨。 c.其力尚足以入,火尚足以明。 d.子谓公冶长:“可妻也。” 5.名词带介宾结构做补语,这个名词活用为动词。 a.晋军(于)函陵,秦军(于)氾南。 b.唐浮图慧褒始舍于其址。 6.名词用“而”同动词或动宾词组连接时,活用为动词。 a.三代不同礼而王,五霸不同法而霸。 7.名词在“所”“者”结构中便活用为动词。 a.置人所罾鱼腹中。

a.是以,令吏人完客所馆。 形容词活用为一般动词 1.形容词用在“所”字之后,便活用为动词。 故俗之所贵,主之所贱;吏之所卑,法之所尊也。 (认为宝贵、认为低贱、认为卑下、认为高贵) 2.形容词在能愿动词后,活用为动词。 问其深,则其好游者不能穷也。(走到尽头) 3.形容词在“之”“我”能代词前,活用为动词。 稍出近之。(靠近) 4.形容词后带介宾结构做补语,它活用为动词。 令尹子兰……率使上官大夫短屈原于顷襄王。 (诋毁) 数词活用做一般动词 六王毕,四海一。(统一) 名词做状语 一、普通名词作状语 1.表比喻 a.嫂蛇行匍匐。 b.狐鸣呼曰。 c .赢粮而景从。 d .天下云集响应。 e.常以身翼蔽沛公。 f.一狼径去,其一犬坐于前。 2.表对人的态度 a.君为我呼入,吾得兄事之。 b.人人皆得以隶使之。 3.表动作行为的处所 a.夫以秦王之威,相如廷叱之,辱其群臣廷:在朝廷上 b.童子隅坐而执烛. 隅:在墙角 4.表动作行为的工具、凭借、方式

词类活用例子

词类活用例子 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

文言实词词类活用 活用为一般动词 (一)名词活用为一般动词 1.两个名词连用,既不是并列关系,又不是修饰关系,便是动宾或主谓,其中一个必然活用为动词。 a .有一老父,衣褐,至良所。 b.籍吏民,封府库。 c.我有嘉宾,鼓瑟吹笙。 d.冬雷震震夏雨雪。 2.名词后紧跟代词,该名词活用为动词。 a.驴不胜怒,蹄之。 b.以其乃华山之阳名之。 c.名余曰正则兮。 3.名词放在副词后,便活用为动词。 a.日将暮,取儿槁葬。 b.太子及宾客知其事者,皆白衣冠以送之。 c.从弟子女十人所,皆衣缯单衣,立大巫后。 4.名词放在“能”“可”“足”“欲”等呢过愿动词后,便活用为动词。 a.假舟楫者,非能水也。 b.云青青兮欲雨。 c.其力尚足以入,火尚足以明。 d.子谓公冶长:“可妻也。”

5.名词带介宾结构做补语,这个名词活用为动词。 a.晋军(于)函陵,秦军(于)泛南。 b.唐浮图慧褒始舍于其址。 6.名词用“而”同动词或动宾词组连接时,活用为动词。 a.三代不同礼而王,五霸不同法而霸。 7.名词在“所”“者”结构中便活用为动词。 a.置人所罾鱼腹中。 a.是以,令吏人完客所馆。 形容词活用为一般动词 1.形容词用在“所”字之后,便活用为动词。 故俗之所贵,主之所贱;吏之所卑,法之所尊也。(认为宝贵、认为低贱、认为卑下、认为高贵)2.形容词在能愿动词后,活用为动词。 问其深,则其好游者不能穷也。(走到尽头) 3.形容词在“之”“我”能代词前,活用为动词。 稍出近之。(靠近) 4.形容词后带介宾结构做补语,它活用为动词。 令尹子兰……率使上官大夫短屈原于顷襄王。 (诋毁) 数词活用做一般动词 六王毕,四海一。(统一) 名词做状语

词类活用之名词使动用法

词类活用之名词使动用法 文言文中,有些名词带宾语之后,表示使宾语怎么样的意思。如:"而欲以力臣天下之主"中的"臣",就是名词作动词,臣服的意思。(使天下之主臣服。) 1、先破秦入咸阳者王之王:让……称王 2、汗牛充栋汗:使……出汗 3、齐威王欲将孙膑将:任命……为将 词类活用之名词意动用法 在文言文中,有些名词带上宾语后,表示主语把宾语当作是什么。如:"其闻道也固先乎吾,吾从而师之"中的"师",就是"以……为老师"的意思。 1、稍稍宾客其父宾客:把……当作宾客。 2、鱼肉百姓鱼肉:以……为鱼肉 3、孟尝君客我客:把……当作门客 4、故人不独亲其亲,不独子其子。"不仅仅把亲人当作亲人,不仅仅把孩子当作孩子。" 词类活用之动词用作名词 文言文中,动词往往用作句子的主语或宾语,有时又受"其""之"等词语修饰限制,这使之具有了名词的特点。如:"追亡逐北,流血漂橹"中的"亡""北"均为动词用作名词,意思是败逃的人。 1、殚其地之出,竭其庐之入出、入:产品、收入 2、去国怀乡,忧谗畏讥谗、讥:诬陷、嘲讽的话 词类活用之动词使动用法 文言文中,有些动词所表示的动作,其发出者是后面的宾语所表示的人或物,这就是动词的使动用法。如:"项伯杀人,臣活之"中的"活",就是使……活命的意思。 1、外连横而斗诸侯斗:让……争斗 2、中军置酒饮归客饮:使……饮酒 3、生死而肉骨生:使……复生

4、惊天动地惊:使……惊奇;动:使……感动 5、可烧而走也走:使……逃走 词类活用之形容词作名词 文言文中,当形容词担任主语或宾语时,它已不再表示事物的性质或特征,而是表示具有某种性质或特征的人或事物。如:"将军身披坚执锐"中的"坚""锐",指的是"坚固的铠甲和锐利的兵器"。 1、晓看红湿处红:红花 2、知否,知否,应是绿肥红瘦绿、红:绿叶、红花。 3、常在于险远。险远:危险而又道远的地方 词类活用之形容词用作动词 在文言文中,当形容词直接带宾语时,它不再表示事物性质,而是表示相应的动作行为或变化发展。如:"其好游者不能穷也"中的"穷",是走到尽头的意思。 1、欲穷千里目,更上一层楼穷:看尽 2、吾妻之美我者,私我也。私:偏爱 词类活用之形容词使动用法 在文言文中,当形容词带宾语时,它表示附加某种特征于宾语所表示的事物上,这种活用方式,就是形容词使动用法。如:"春风又绿江南岸,明月何时照我还"中的"绿",就是"使……变绿"的意思。 1、诸侯恐惧,会盟而谋弱秦弱:使……削弱 2、富国强兵富、强:使┉┉富、强 3、苦其心志,劳其筋骨,饿其体肤苦、劳、饿:使┉┉苦、劳、饿 词类活用之形容词意动用法 在文言文中,当形容词带上宾语时,它表示主语所表示的人或物认为宾语所表示的人或物具有某种性质或特征。如:"登泰山而小天下"中的"小",就是"认为……小"的意思。 1、孔子登东山而小鲁小:认为……小

词类活用中的使动用法

词类活用 一、使动用法: 1.概念: 使动用法是主语使宾语在客观上产生某种动作行为。使动用法指动词谓语表示主语使宾语"怎么样"的用法。有些名词和形容词活用为使动词,表示"使......"的意思。例如: (1)其风流遗迹,亦足以称快 ..世俗。(《黄州快哉亭记》) (2)项伯杀人,臣活.之。(《鸿门宴》) 2.思考:根据下列例子,思考实词使动用法有几种类型? (1)变化倏忽,动.心骇.目。 (2)闻.寡人之耳者,受上赏。 (3)春风又绿.江南岸。 (4)可以富安 ..天下。 (5)荣.于身后。《五人墓碑记》 3.常见类型: (1)动词的使动用法:使宾语产生某种动作、行为。例如: 故远人不服,则修文德来之。(《季氏将伐颛臾》 忧患思虑劳吾心于内。(《六一居士传》) 动词的动作是由宾语发出 (2)形容词的使动用法:使宾语具有某种性质或状态。例如: 忧劳可以兴国。(《伶官传序》) 今媪尊长安君之位。(《触龙说赵太后》) 形容词所描述的性质和状态是宾语所具有的。 (3)名词的使动用法:使宾语成为某种人或事物。例如: 舍相如广成传。(《廉颇蔺相如传》) 名词所描述的动作属性或身份是宾语所具有的。 二、意动用法: 1.概念: 所谓意动用法,是指谓语动词具有“以之为何”的意思,即认为宾语怎样或把宾语当作怎样。意动用法只限于形容词和名词的活用,动词本身没有意动用法。

意动用法是主语主观上认为(或以为)宾语具有谓语所表示的内容,是存于意念的想法或看法,客观上不一定如此。一般可译为“认为......”“以......为......”等。 2.常见类型: (1)名词的意动用法:把宾语当成某种人或事物,例如: ①侣鱼虾而友麋鹿。(《前赤壁赋》) 侣,友:名词的意动用法,以…为侣以…为友 ②邑人奇之,稍稍宾客其父。(《伤仲永》) 宾客:本为名词,这里活用为意动词。“宾客其父”是动宾结构,意为“以宾客之礼待其父”。 (2)形容词的意动用法:认为宾语具有某种性质、状态,是主观上认为后面的宾语所代表的人或事物具有这个形容词所代表的性质或状态。例如: ①而耻学于师。(《师说》) ②渔人甚异之。(《桃花源记》) 异:原为形容词,这里用作意动词。“异之”,即“以之为异”(认为这件事奇怪) 形容词描述的性质与状态是主语认为宾语所具有的性质与状态。 三、使动用法与意动用法的区别: 使动用法与意动用法的区分: 例:美:①吾妻之美我者,私我也 ②美其服,饱其食,洁其居 区别:使动:有实际的行为动作 意动:只是一种心理、看法

成语中词类活用

成语中词类活用 成语是定型化的固定词组或短句,是一个完整的意义单位。成语很多是古汉语演变而成的,这些成语中有许多词类活用的情况。如名词用如动词,动词、形容词、名词用作使动,名词作状语等,如果我们还按它原来的词性理解它的意义,对成语的理解就产生岐义。了解成语中词类活用的情况,不但有助于我们正确理解和使用成语,而且对帮助我们学习古汉语也是很有用的。 下面介绍成语几种词类活用的情况。 一、成语中名词用如动词 例: 1、一鼓作气这个成语出自《曹刿论战》:“一鼓作气,再而衰,三而竭。“一鼓作气”意思是说,第一次击鼓士气旺盛。“鼓”,名词用如动词,击鼓。 2、绳之以法“绳”,原意指墨斗线。这里作纠正讲。用法令、法则纠正。《书.同命》:“绳衍纠谬,格其非心。”“绳”和“纠”,都是动词。 3、未雨绸缪还未下雨就先酝酿,做准备。“雨”,名词用如动词。 4. 兵不血刃意思是说未经血战就取得胜利,形容战事顺利。血,血染,名词用如动词。《山海经.南山经》:“其名曰白皋,可以血玉。” 其注云:“血,谓可染玉作光彩。” 5、不衫不履意为不穿衣服不穿鞋子,形容不修边幅的人。衫:穿衣。履:

穿鞋。 6、原原本本前一个“原”作“追溯”讲,动词。后一个“原”作“根原”讲,名词。前一个“本”作“根据”讲,动词。后一个“本”意为“本来”,名词。这个成语的意思是说追溯事情发展的由来。如“本本主义”,意思是一切都要根据书本写的(或原来的)行事。《伶官传序》:“原庄宗所以得天下,与其所以失之者,可以知之矣。” 7、箪食壶浆此成语见《孟子.梁惠王下》:“箪食壶浆,以迎王师。”用箪盛(吃的),用壶装(喝的),迎接王师。箪,一种盛食物的竹器。箪,壶,名词用如动词。 8、有口皆碑意为人人称颂。碑,名词用如动词。 9、相形见绌互相比较就显出彼此的不足。形,形状。在成语里作动词,比较的意思。 10 、不甘后人不甘落在别人后面。后,方位词。成语中用如动词,落在........后面。《论语.先进》:“三子者出,曾晰后。”三个学生走出来,曾晰和孔子落在后面。” 怎样辨别成语中名词用如动词呢? (一)从整个成语的意思来考虑。如果按一般情况作名词解释不通,就要考虑它是否用如动词。如“有口皆碑”,若解释为“有口都是碑”显然不通。 (二)要分析它在成语与其他词的关系。一般情况下,副词是不能修饰名词的,那么“不衫不履”中,“衫”和“履”就不能作名词,只能从动词、形容词

古代汉语词类活用例句列举

古代汉语词类活用例句列举 《郑伯克段于鄢》 1、例:壮公生,惊姜氏。P97惊:用作使动,使。。。惊。 2、例:无生民心。P99生:用作使动,使。。。产生。 3、例:若阙地及泉,隧而相见。P101隧:名词动用。 《公孙无知之乱》 4、豕立而啼,P109立:名词作状语,像人一样丫立。 〈安之战〉 5、皆主?献子。P117主:名词动用,以。。。为主。 6、君无所辱命。P119辱:动词使动,使。。。受辱。 7、从左右,皆肘之。P123肘:名词使动,表示用胳膊推撞。 8、臣辱戎士。123辱:动词使动。 9、人不难以死免其君。P123免:用作使动,使。。。免于。 10、故中御而从齐候。P123中:方位名词做状语。 〈子产说范宣子轻敝〉 11、三周华不注。P122周:名词动用。 12、郑人病之。P129病:名词用作意动。 13、象有齿而焚其身。P130焚:动词用作使动。 14、宣子说,乃轻弊。P130轻:形容词用作使动,使。。。轻。〈苏秦连横约纵〉 15、今先生俨然不运千里而庭教之。P182远:形容词用作意动。 16、明言章理,兵甲愈起。P183明、章:用作使动。

17、辨言伟服。攻战不息。P183辩、伟:都用作使动,使。。。雄辩,使。。。华美。 18、繁称文辞,天下不冶。P183文:名词用作使动。 19、夫徒处而致利,安坐而广地。P183广:形容词用作使动,使。。。广。 20、言语相结,天下为一。P183言语:名词作状语。 21、今欲并天下,凌万乘,诎敌国。制海内,子元元。臣诸候。非兵不可。P183诎:用作使动,使。。。屈服;子:名词用作使动,使。。。成为子女;臣:名词用作使动,使。。。成为臣子。 22、约纵散横,以抑强秦。P188散:有作使动,使。。。离散。 23、廷说诸候之王,杜左右之口,天下莫之能伉。P189廷:名词作状玉器,指在朝廷上。 24、张乐设饮,郊迎三里。P190郊:郊外,名词作状语。 25、嫂蛇行匍伏,四自跪百不谢。P190蛇:名词作状语。 26、贫穷就父母不子。P190子:名词用作意动。 〈冯谖客孟尝君〉 27、左右君贱之口。食以草具。P195贱:形容词用作意动;食:名词用作意动。 28、孟尝客我。P195客:名词用作意动。 29、孟尝君怪之。196怪:形容词意动,以火为怪。 30、先生不羞乃有意欲为收责于薛乎。P196羞:名词意动,以/。。。为怪。 31、孟尝君怪其疾也,衣冠而见之。P197怪:形容词意动;衣冠:名词用作意动。 32、不拊爱子其民,因而贾利之。P198子:名词用作意动;贾:名词作状语,用商贾的方法;利:名词用作动词,取利。 33、西游于梁。P199西:名词作状语。向西。 〈郭隗说燕昭王求士〉 34、卑身厚弊,以招贤者。P204卑:形容词用作使动。 35、帝者与师处,王者与友处,霸者与臣处,亡国与役处。P205帝:

词类活用常见类型

词类活用常见类型: 1.名词活用为动词 (1)(名词+宾语)例如:籍吏民,封府库。《鸿门宴》 (2)(副词作状语+名词)例如:汉水又东。《水经注·江水》 (3)(能源动词+名词):例如:假舟楫者,非能水也,而绝江河。《荀子·劝学》 (4)(名词+补语)例如:今王鼓乐于此。《孟子·梁惠王下》 (5)(所+名词)例如:乃丹书帛曰:“陈胜王”,置人所罾鱼腹中。《陈涉世家》 (6)名词充当联合式或连动式谓语的组成部分之一)例如:卒中往往语,皆指目陈胜。《陈涉世家》 2.形容词活用为动词: 形容词是不带宾语的,如果带了宾语,而又没有使动、意动的意味,就是用作一般动词,例如: (1)楚左伊项伯者,项羽季父也,素善留侯张良。《鸿门宴》 (2)卒使上官大夫短屈原于顷襄王。《屈原列传》 3.动词、形容词活用为名词: 动词活用为名词,就是这个动词在句子中具有明显的表示人与事物的意义。它一般处在句中主语或宾语的位置,有时前边有“其”或“之”,例如:盖其又深,则其至又加少矣。《游褒禅山记》 形容词活用为名词,翻译时一般要补出中心词(名词),而以形容词作定语:例如: (1)将军身披坚执锐。《陈涉世家》 (2)兼百花之长而各去其短。《芙蕖》 4.名词作状语: 现代汉语里,普通名词是不能直接修饰谓语动词作状语的,而古代汉语中普通名词直接作状语却是相当普遍的现象。 (1)(表示比喻),例如: 又间令吴广之次所旁祀中,夜篝火,狐鸣呼曰:“大楚兴,陈胜王。”《陈涉世家》 (2)(表示对待人的态度)例如: 君为我呼入,吾得兄事之。《鸿门宴》 (3)(表示处所)例如: 不得已,变姓名,诡踪迹,草行露宿,日与北骑相出没于长淮间。《指南录》后序 (4)(表示动作使用的工具)例如: 箕畚运于渤海之尾。《愚公移山》 (5)(表示动作进行的方式)例如: 群臣吏民,能面刺寡人之过者,受上赏。《邹忌讽齐王纳谏》

二 什么叫词类活用

二什么叫词类活用?使动用法和意动用法有什么区别?举例说明。 在古代汉语中,某些词可以按照一定的语言习惯灵活运用,在句中临时改变它的基本功能,而使其具有另一类词的功能。这就叫做词类活用。例如:《公羊传?庄公十三年》:“曹子手剑而从之。”“手”本是名词,句中是动词“拿”的意思,还带了宾语“剑”,临时具有了动词的意义和语法特点,就是词类活用。《水经注?巫山、巫峡》:“江水又东,迳巫峡,杜宇所凿以通江水也。”句中的“东”字本来是个方位名词,这里临时具有了动词义“向东流”,作谓语,是词类活用。又如《蝜蝂传》:“苟能起,又不艾,日思高其位,大其禄。”句中的“高”、“大”原是形容词,这里是使动用法,临时具有了动词义,用作谓语,也都是词类活用。 使动用法和意动用法的区别是: 1.两者表达的含义不同。使动用法所表达的含义是“(主语)使宾语怎么样”,而意动用法所表达的含义是“(主语)认为宾语怎么样”。如《史记?鸿门宴》:“项伯杀人,臣活之。”《战国策?邹忌讽齐王纳谏》:“吾妻之美我者,私我也。”前例的“活”是使动用法,其含义是主语“臣(指张良)”使宾语“之(指项伯)”活了下来;后例的“美”是意动用法,其含义是主语“吾妻”认为宾语“我(指邹忌)”长得漂亮。 2.两者的使用范围不同。能够有使动含义的词有动词与活用为动词的名词、形容词等,而意动用法只限于形容词、名词的活用。 三举例说明古代汉语的几种被动句式。 1.“于”字被动句式 将介词“于”放在动词的后面引进行为动作的主动者。如《孙子兵法?行军篇》:“夫惟无虑而易敌者,必擒于人。”“擒于人”即被他人擒获。 2.“为”字被动句式 将介词“为”放在动词的前面引进行为动作的主动者,有时“为”后的主动者可以不出现。如《韩非子?五蠹》:“而身为宋国笑。”“为宋国笑”即被宋国人耻笑,出现主动者“宋国”;又《战国策?燕策三》:“父母宗族,皆为戮没。”“为戮没”即被杀戮,“为”后没有出现主动者。 3.“为……所”被动句式 “为”字被动句式的动词前加“所”字构成。主动者置于“为”与“所”之间,有时主动者可以不出现。如《汉书?霍光传》:“卫太子为江充所败。”“为江充所败”即被江充败坏,“为”与“所”之间出现了主动者“江充”;又《张中丞传后叙》:“嵩将诣州讼理,为所杀。”“为所杀”即被杀害,“为”与“所”之间没有出现主动者。 4.“见”字被动句式 将“见”放在动词的前面构成被动句式,不能引进主动者。如《韩非子?说难》:“厚者为戮,薄者见疑。”“见疑”即被怀疑。 5.“见……于”被动句式 是“见”字被动句与“于”字被动句的结合,“见”放在动词前表被动含义,“于”放在动词后引入主动者。如《史记?楚世家》:“必见欺于张仪。”“见欺”即被欺骗,又用“于”引入主动者“张仪”,“见欺于张仪”即被张仪欺骗。 6.“被”字被动句式 将“被”放在动词的前面构成被动句,也可由“被”直接引进主动者。如《史记?屈原贾生列传》:“信而见疑,忠而被谤。”“被谤”即被毁谤,“被”不引入主动者;又蔡邕《被收时表》:“臣被尚书召问。”“被尚书召问”即被尚书召去问话,“被”引入主动者“尚书”。 四古代汉语判断句中的“乃”、“即”、“维”、“惟”、“非”是不是判断词,为什么? 古代汉语判断句中的“乃”、“即”、“维”、“惟”、“非”都不是判断词。因为它们都不具备判断词的性质。“乃”、“即”是副词,在判断句中起加强肯定语气的作用,相当于现代汉语中的“就”、“便”等,所以当汉语中出现判断词“是”以后,它们还可以用在“是”前,构成“乃是”、“即是”等,可理

词类活用 初中例子 高考语文知识点

词类活用 ★考试时,往往要求“加点词的用法”或“词性”“词类活用”,是同一个意思。 ★翻译时一定不要生硬地套用词类活用,在直译的前提下,结合语境,看看前后文,确定是否是词类活用。秘诀: ①总的记住5 1、XX词活用为XX词: 2、名词用作状语 3、使动用法 4、意动用法 5、为动用法 ②后面的3种记住3---321:

后面的3个项依次又是321(名词的、动词的、形容词的) 古代汉语中的词类活用主要有: 1、XX词活用为XX词 两个“XX词”,“XX词”是指的词性,前一个指的是翻译前的古文,后一个指的是翻译后的现代文。这里的词性指的是他们分别在现代文中的词性(最常用的词性)是什么。 ①名词活用为动词 一鼓作气,再而衰,三而竭。鼓:击鼓。 应该是:(公)一鼓,(士兵)作气,再(鼓)而衰,三(鼓)而竭。原句和名词后面没有谓语就是名词活

用为动词不矛盾。 十年树木,百年树人。(树:种植,培育) 会天大雨,道不通。大雨:下大雨 江水又东。东:向东流 驴不胜怒,蹄之。蹄:用蹄子踢②动词活用为名词 殚其地之出,竭其庐之入出:出产的东西;入:收入的东西。 去国怀乡,忧谗畏讥谗、讥:诬陷、嘲讽的话 ③形容词活用为动词: 欲穷千里目,更上一层楼穷:看尽

牛困人饥日已高,市南门外泥中歇高:升高 亲小人,远贤臣,此后汉所以倾颓也。亲:亲近;远:疏远。 ④形容词活用为名词 知否,知否,应是绿肥红瘦绿、红:绿叶、红花。 温故而知新,可以为师矣。故,旧的知识;新,新的知识,新学的东西。 ⑤数词活用为动词 六王毕,四海一。一:统一 ⑥数词活用为形容词 蚓无爪牙之利,筋骨之强,上食埃土,下饮黄泉,用心一也。一:专

华为AAU3910 产品概述-天线

AAU3910概述 文档版本01 发布日期2013-08-31

版权所有? 华为技术有限公司2013。保留一切权利。 非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。 商标声明 和其他华为商标均为华为技术有限公司的商标。 本文档提及的其他所有商标或注册商标,由各自的所有人拥有。 注意 您购买的产品、服务或特性等应受华为公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,华为公司对本文档内容不做任何明示或默示的声明或保证。 由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。 华为技术有限公司 地址:深圳市龙岗区坂田华为总部办公楼邮编:518129 网址:https://www.doczj.com/doc/ee10922511.html, 客户服务邮箱:support@https://www.doczj.com/doc/ee10922511.html, 客户服务电话:4008302118

AAU3910概述目录 目录 1 概述 (1) 1.1 外观 (1) 1.2 物理接口 (2) 2 技术指标 (4) 2.1 频段 (4) 2.2 容量 (4) 2.3 接收灵敏度 (5) 2.4 EIRP (5) 2.5 功耗 (5) 2.6 电源 (6) 2.7 风阻 (6) 2.8 整机规格 (6) 2.9 环境指标 (6) 3 缩略语表 (8)

1 概述 多年以来,基站的架构正在发生不断的变化。相比于RFU模块,华为创新提出的RRU 解决方案,支持近天线安装,降低约3dB的馈线损耗的同时还可降低发射功率,提升网 络覆盖率。射频模块的功能向天线上移,已经成为业界的一种趋势,当前越来越多的运 营商选择全网使用RRU解决方案。 AAS有源天线系统(Active Antenna System)是继RFU、RRU之后衍生出的一种新型射 频模块形态。其主要特征在于AAS将原有的RRU单元功能和天线的功能合并,简化站 点资源;另外采用射频多通道技术对天线阵列进行控制,通过不同波束赋形的方式可以 达到改善无线信号覆盖质量以及提升网络容量的目的。 随着MBB(Mobile Broadband)的快速发展,多频多模建站渐渐成为业界主流。随着运 营商站点复杂度的增加以及站点上模块数量的增多,运营成本变得越来越高,所以简化 站点正在变成当前多频多模建网的一种趋势。为了响应这种趋势,华为在AAS技术上 率先投入,并且推出AAU系列化解决方案产品。 AAU3910是华为实现AAS技术的主打产品,相比于华为在RRU上的创新,该产品使 用有源天线技术,将射频模块的功能进一步上移到天线中。 AAU3910最大可集成2个有源频段。 AAU3910通过射频模块的上移,可节省大约0.8dB的跳线损耗,同时节能10%。 AAU3910简化当前的站点安装方式,相比传统的RRU安装方式,可节省安装时间。 AAU3910支持上行多接收,消除上行容量的瓶颈。 AAU3910作为有源天线产品,也可以外接RRU/RFU,通过替换现网天线,进一步简化 站点。 1.1 外观 AAU3910外观如图1-1所示。

古代汉语词类活用现象分析

古代汉语词类活用现象分析 田华发布时间: 2009-7-30 2:07:41 汉语缺乏严格意义上的形态变化,语言中的词随文而异现象较为常见,古代汉语中尤为突出。《马氏文通》在初创词类之时就已经发现汉语 所分的词类同语法成分无法对应的问题,所以提出“字无定义,故无定类”。词类活用的问题清人俞樾在《古书疑义举例》中就已经注意 到了,而将其作为一个重要的语法理论加以系统论述,是在近人陈承泽的《国文法草创》一书中。此后,这个问题一直被语法学界看作是古代汉语语法理论的一个重要组成部分。进入20世纪80年代,语法学界对“词类活用”说给予了新的关注,学者们用更审慎的态度对古汉语中这种特殊的语言现象重新进行了研究,提出了各自的观点,指出应该对众多的活用说进行一次认真的清理,分析本用、活用、兼用等各种现象。 应当承认,现今通行的“词类活用”说本身确实存在着某些缺陷,如活用类别不清、活用范围不明、词类活用的滥用以及对词类活用与词的兼类现象的模糊认识。词类活用现象是古籍中的常见现象,本文在辨正了部分词类活用滥用现象的基础上,分析了词类活用与兼类的区别及判别词类活用的方法。 一、词类活用的滥用与词的兼类现象

(一)词类活用的滥用现象 1.由于不理解词的本义而误作活用 词的本义是指词本来的意义,是与该词书写形式相应并有文献举证的最古 的意义。如果没有通过古文字文献资料而深入地探求词的本义,刻意造成解读上的偏差甚至错误。例如: 《史记·商君列传》:“不自知膝之前于席也。”《史记·留侯世家》:“子房前!”两句中的“前”,有的教材将其释为“方位名词用作动词”。“前”,金文作,字从止舟,象人足在船上,表示前进。《广雅·释诂》对“前”的意义解释得非常明确,曰:“前,进也。”又如《左传·昭公元年》:“二执戈者前矣”。《庄子·盗跖》:“孔子下车而前。”《韩非子·外储说右上》:“今有马于此,然驱之不往,引之不前。”“前”的古文字形体和众多的文献书证均可证明“前进”乃“前”的本义,是古代的常用义,“前”原本就是个动词。既然如此,就不应视其为名词用如动词。 “军”为“屯扎、屯兵”之义,而许多教材则释为“名词用如动词”。军,金文中从车从勹(音同包,包围),本义为用战车环绕为营垒。上古车战,军队驻扎时以车自围。《说文·车部》:“军,圜围也。”《广雅·释言》:“军,围也。”古注多训“军”为“屯”。如《国语·晋语》:“军于庐柳。”(韦昭注:“军犹屯也。”);《战国策·齐策》:“军于邯郸之郊。”(姚宏注:“军,屯也。”);。”)屯也。“军,(高诱注:”“以

2017年华为天线产品手册-中国移动

华为技术有限公司

创新共赢,助力中国移动打造LTE精品网络 随着LTE精品网络的深入建设,以及无线网络的不断演进,天馈系统已成为建设LTE精品网络的重要组成部分。 ●在业务需求日趋旺盛,潜力巨大的农村郊区广域场景,通过高增益天线解决方案,增强覆 盖效果,增加用户数量,提升用户体验;在高铁等特殊场景,通过高增益、窄波束天线专网解决方案保证覆盖效果,提升用户体验,扩大市场份额; ●针对网络容量不足,需精准覆盖的城区场景,通过多频天线解决方案实现独立电调,提升 精准覆盖;另外针对站点获取困难,急需补盲覆盖的城区场景,通过美化天线方案,降低站点获取难度,提高部署效率,提升用户体验; ●针对天面空间紧张场景,通过全频段智能天线进行天面收编,简化站点从而降低站点租金 和维护成本; ●随着4G站点规模继续增长,天线数量不断增加,通过天线智能化管理方案,可大幅提升 网络部署与管理效率,有效降低网络管理与维护成本。 华为依托20多年丰富的无线网络经验积累和对4G网络部署与发展的深刻理解,采用天线与RAN协同设计,聚焦整网性能最优,跨界创新推出了一系列无源和有源天线解决方案,助力中国移动打造持续领先的LTE精品网络。

全频段智能天线解决方案,打造用户体验更好的精品网络 全频段智能天线可对当前复杂天面进行收编,解决天面紧张问题。华为全频段智能天线, 两大系列产品:2288天线和4488天线,天线可同时支持900M、1800M、FA频段8T8R以及D频 段 8T8R,最大程度节省天面空间及TCO;同时,采用创新天线阵列架构设计,使天线尺寸更小,降低部署难度,并且保证各系统增益满足覆盖要求。 3D电调及美化天线解决方案,可独立优化、灵活调整,提升网络性能华为FA/D频段3D电调天线解决方案,支持FA与D频段同时接入,独立调节,解决天面空间 紧张问题,同时结合华为创新的EasyBeam解决方案,针对不同覆盖场景,实现天线波束的3D远程调节,包括:广播波束水平方位角连续调整、水平波瓣宽度远程调整和天线电下倾角度远程 连续可调。另外,华为美化天线解决方案降低站点获取难度,使网络部署更灵活,提高部署效率,提升用户体验。 高增益天线解决方案,实现农村郊区场景广覆盖 华为高增益天线解决方案,针对农村郊区等需要广覆盖的地区,依托现有站址资源,加速 广覆盖进程,通过阵列优化设计,提高天线增益2.5~3dB,有效提高覆盖半径。 高铁天线解决方案,实现专网覆盖,使部署与管理更高效 华为高铁天线解决方案,针对高铁场景,支持F与D频段一次部署,满足未来演进;同时采 用高增益窄波束天线对高铁沿线进行专网覆盖,减小对宏网的干扰,提升了网络部署与优化效率、提高网络性能。

相关主题
文本预览
相关文档 最新文档