当前位置:文档之家› 09第九讲 拉贝判别法

09第九讲 拉贝判别法

数学分析第十二章数项级数

拉贝判别法

第九讲

数学分析第十二章数项级数

由于比式和根式判别法的比较对象是几何级数,如果级数的通项收敛速度较慢,它们就失效了, 如p 级数.这类级数的通项收敛于零的速度较慢,因此较比式法或根式法在判断级数收敛时更精细.

*拉贝判别法

拉贝(Raabe)判别法是以p 级数为比较对象,

数学分析第十二章数项级数

定理12.10(拉贝判别法)

+??-≥> ??

?111,

n n u n r u ;

n u 则级数收敛∑>0(ii),n N 若对一切成立不等式+??-≤ ??

?111,

n n u n u .

n u ∑则级数发散>0(i),n N 若对一切成立不等式

设n u ∑为正项级数, 且存0.

N r 在某正整数及常数

数学分析第十二章数项级数

.1p p r <<选使得故存在正数N , 111p

r n n ,?

?>-- ??

?证(i)111,n n u n r u +??-≥> ??

?由11.n n u r

u n +≤-得

111lim p

n n r n →∞?

?-- ???()101lim p x p x r -→-=p

r

=,1<使对任意n >N ,都有

由于

()011lim

p

x x rx

→--=1p

n n -??≤ ???

111.p

r n n 或??-<- ???

数学分析第十二章数项级数

11

11n n N n N n n N

u u u u u u u u +++-=

???? 于是, 当n >N 时,有

1211p p p

N

n n N u n n N ---??????≤ ? ? ?-?????? >∑∑1

1,,.

n p p u n

因为时收敛所以是收敛的这样11n n u r u n +<-11p n ??<- ???1.p

n n -??= ???

()1p

N

p

N u n

-=

?()11

.p

p N

N u n

-=

?

数学分析第十二章数项级数

13

1

2

12

n n n n n u u u u u u u u ++-= 2121

12n n u n n -->

- 21.u n

=∑∑1

,.

n u n

因为发散故是发散的1(ii)11,n n u n u +??-≤ ??

?由111

1,n n u n u n n +-≥-=得

于是

数学分析第十二章数项级数

推论(拉贝判别法的极限形式)

∑n

u

为正项级数,且极限

+→∞??

-= ??

?1lim 1n n n u n r u 存在, 则

(i)1,;

n r u 当时级数收敛>∑(ii)1,.

n r u 当时级数发散<∑

数学分析第十二章数项级数

(21)!!.(0(14)(2)!!S

n s n )

??

->????∑的敛散性.

例14 讨论下面级数解由于1

lim 1n n n

u u ,+→∞=所以考虑用拉贝判别法.洛必达法则因为

121lim 1lim 122s

n n n n u n n n u n +→∞→∞????

+??-=-?? ? ?+????????

012lim 122s

t t t t →??

+??=-?? ?+??????

1

2022lim 22(22)s t t s t t -→??+-??=-??? ?++??????

.2s =

数学分析第十二章数项级数

当s = 2时, 由于

由拉贝法的非极限形式知级数(14)发散.

11n n u n u +??- ??

?()()24322n n n +=+2

2

43484n n n n +=++,1<(21)!!(14)

(2)!!S

n n ??

-????

∑由此可知

当s > 2时,原级数收敛;当s < 2时,原级数发散;

数学分析第十二章数项级数

或根式法更广泛,13似乎可以得出这样的结论:的收敛级数.

的收敛问题,而不能解决所有级数的收敛问题.我们还可以建立比拉贝判别法更为精细有效的判别法,但这个过程是无限的.

从上面看到,拉贝判别法虽然判别的范围比比式法但当r =1时仍无法判别.而从例没有收敛得“最慢”

因此任何判别法都只能解决一类级数当然

多元统计分析期末复习

第一章: 多元统计分析研究的内容(5点) 1、简化数据结构(主成分分析) 2、分类与判别(聚类分析、判别分析) 3、变量间的相互关系(典型相关分析、多元回归分析) 4、多维数据的统计推断 5、多元统计分析的理论基础 第二三章: 二、多维随机变量的数字特征 1、随机向量的数字特征 随机向量X 均值向量: 随机向量X 与Y 的协方差矩阵: 当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。 随机向量X 与Y 的相关系数矩阵: )',...,,(),,,(2121P p EX EX EX EX μμμ='=Λ)')((),cov(EY Y EX X E Y X --=q p ij r Y X ?=)(),(ρ

2、均值向量协方差矩阵的性质 (1).设X ,Y 为随机向量,A ,B 为常数矩阵 E (AX )=AE (X ); E (AXB )=AE (X )B; D(AX)=AD(X)A ’; Cov(AX,BY)=ACov(X,Y)B ’; (2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. (3).X 的协方差阵D(X)是对称非负定矩阵。例2.见黑板 三、多元正态分布的参数估计 2、多元正态分布的性质 (1).若 ,则E(X)= ,D(X)= . 特别地,当 为对角阵时, 相互独立。 (2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量, AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立. (4).多元正态分布的不相关与独立等价. 例3.见黑板. 三、多元正态分布的参数估计 (1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面. (2)多元分布样本的数字特征---常见多元统计量 样本均值向量 = 样本离差阵S= 样本协方差阵V= S ;样本相关阵R (3) ,V分别是 和 的最大似然估计; (4)估计的性质 是 的无偏估计; ,V分别是 和 的有效和一致估计; ; S~ , 与S相互独立; 第五章 聚类分析: 一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。用于对事物类别不清楚,甚至事物总共可能有几类都不能确定的情况下进行事物分类的场合。聚类方法:系统聚类法(直观易懂)、动态聚类法(快)、有序聚类法(保序)...... Q-型聚类分析(样品)R-型聚类分析(变量) 变量按照测量它们的尺度不同,可以分为三类:间隔尺度、有序尺度、名义尺度。 二、常用数据的变换方法:中心化变换、标准化变换、极差正规化变换、对数变换(优缺点) 1、中心化变换(平移变换):中心化变换是一种坐标轴平移处理方法,它是先求出每个变量的样本平均值,再从原始数据中减去该变量的均值,就得到中心化变换后的数据。不改变样本间的相互位置,也不改变变量间的相关性。 2、标准化变换:首先对每个变量进行中心化变换,然后用该变量的标准差进行标准化。 经过标准化变换处理后,每个变量即数据矩阵中每列数据的平均值为0,方差为1,且也不再具有量纲,同样也便于不同变量之间的比较。 3、极差正规化变换(规格化变换):规格化变换是从数据矩阵的每一个变量中找出其最大值和最小值,这两者之差称为极差,然后从每个变量的每个原始数据中减去该变量中的最小值,再除以极差。经过规格化变换后,数据矩阵中每列即每个变量的最大数值为1,最小数值为0,其余数据取值均在0-1之间;且变换后的数据都不再具有量纲,便于不同的变),(~∑μP N X μ∑μ p X X X ,,,21Λ),(~∑μP N X ) ,('A A d A N s ∑+μ)()1(,, n X X ΛX )',,,(21p X X X Λ)')(()()(1X X X X i i n i --∑=n 1 X μ∑μX )1,(~∑n N X P μ),1(∑-n W p X X

正项级数的常用审敛法和推广比值审敛法的比较

正项级数的常用审敛法和推广比值审敛法的比较 摘 要 数项级数是数的加法从有限代数和到无限和的自然推广.由于无限次相加,许多有限次相加的性质便在计算无限和时发生了改变.首先,有限次相加的结果总是客观存在的,而无限次相加则可能根本不存在有意义的结果。 这就是说,一个级数可能是收敛或发散的.因而,判断级数的敛散性问题常常被看作级数的首要问题。 在通常的微积分学教程中,审敛正项级数的敛散性有许多有效的方法,比如达朗贝尔审敛法,拉贝审敛法等,本文就达朗贝尔审敛法和拉贝审敛法与几个新审敛法进行一些适当的比较总结,另对其应用做一些举例验证。 关键词 数学分析 正项级数 推广比值审敛法 一.预备知识 1.正项级数的定义 如果级数1n n x ∞ =∑的各项都是非负实数,即0,1,2,, n x n ≥= 则称 此级数为正项级数 2..收敛定理 正项级数收敛的充分必要条件是它的部分和数列有上界。 若正项级数的部分和数列无上界,则其必发散到+∞ 例 级数22(1)(1) n n n n ∞ =??-+? ∑是正项级数。它的部分和数列的通项 21 12212ln ln ln 2ln ln 2(1)(1)11n n n k k k k k n s k k k k n ++==?++??=<- =-,若1 lim n n n U L U +→∞=,当 L<1,级数收敛,当L>1,级数发散,L=1,不能审敛。

距离判别法及其应用

距离判别法及其应用 一、什么是距离判别 (一)定义 距离判别分析方法是判别样品所属类别的一应用性很强的多因素决策方法,根据已掌握的、历史上每个类别的若干样本数据信息,总结出客观事物分类的规律性,建立判别准则,当遇到新的样本点,只需根据总结得出的判别公式和判别准则,就能判别该样本点所属的类别。 距离判别分析的基本思想是:样本和哪个总体的距离最近,就判它属于哪个总体。 (二)作用 判别个体所属类型。例如在经济学中,可根据各国的人均国人民收入、人均工农业产值和人均消费水平等多种指标来判定一个国家经济发展程度的怕属类型医学上根据口才的体温、白血球数目以及其他病理指标来判断患者所患何病等。 二、距离判别分析原理 (一)欧氏距离 欧氏距离(Euclidean distance )是一个通常采用的距离定义,最多的应用是对距离的测度。大多情况下,人们谈到距离的时候,都会很自然的想到欧氏距离。从数学的角度来讲,它是在m 维空间中两个点之间的真实距离。 在二维空间中其公式为: 2 21221)()(y y x x d -+-=

推广到n 维空间其公式为: 2 1) (1 i n i i y x d -=∑= (二)马氏距离 在判别分析中,考虑到欧氏距离没有考虑总体分布的分散性信息,印度统计学家马哈诺必斯(Mahalanobis )于1936年提出了马氏距离的概念。 设总体T m X X X G },...,,{21=为m 维总体(考察m 个指标),样本 T m i x x x X },...,,{21=。令μ=E(i X )(i=1,2, …,m),则总体均值向量为 T m },,{21μμμμ???=。总体G 的协方差矩阵为: ]))([()(T G G E G COV μμ--==∑。 设X ,Y 是从总体G 中抽取的两个样本,则X 与Y 之间的平方马氏距离为: )()(),(12Y X Y X Y X d T -∑-=- 样本X 与总体G 的马氏距离的平方定义为: )()(),(12μμ-∑-=-X X G X d T 1.两总体距离判别。设有两总体1G 和2G 的均值分别为1μ和2μ,协方差矩阵分别为1∑和2∑(1∑,2∑>0),1?m X 是一个新样本,判断其属于哪个总体。定义1?m X 到1G 和2G 的距离为),(12 G X d 和),(22 G X d , 则按如下判别规则进行判断: 1G X ∈,若),(12G X d ≤),(22G X d 2G X ∈,若),(22G X d ﹤),(12G X d (1)当1∑=2∑时,该判别式可进行如下简化: ),(12G X d -),(22G X d =)()(111μμ-∑--X X T -)()(212μμ-∑--X X T

求根公式及根的判别式

加强班求根公式及根的判别式 在解一元二次方程有关问题时,最好能知道根的特点:如是否有实数根,有几个实数根,根的符号特点等。我们形象地说,判别式是一元二次方程根的“检测器”,在以下几个方面有着广泛的应用: 利用判别式,判定方程实根的个数,根的特点; 运用判别式,建立等式、不等式,求方程中参数的值或参数的取值范围; 通过判别式,证明与方程相关的代数问题; 借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题。 例题1 (1)设a,b 是整数,方程02=++b ax x 的一根是324-,则a+b 的值是 (2)满足1)1(22=--+n n n 的整数n 有 个。(全国初中数学竞赛题) 例题2 已知0132=+-a a ,那么=++ --2219294a a a ( ) A 、3; B 、5; C 、35; D 、65 例题3 解关于x 的方程02)1(2=+--a ax x a 例题4 设方程04|12|2=---x x ,求满足该方程的所有根之和。 例题 5 设关于x 的二次方程0)2()2()1(222=+++--a a x a x a ○1及 0)2()2()1(222=+++--b b x b x b ○ 2(其中a,b 皆为正整数,且a ≠b )有一个公共根。求

a b a b b a b a --++的值。 例题6(1)关于x 的方程k x k kx 8)18(22-=++有两个不相等的实数根,则k 的取值范围是 , (2)关于x 的方程0122 23=-+--a ax ax x 只有一个实数根,则a 的取值范围是 例题7 把三个连续的正整数a,b,c 按任意次序(次序不同视为不同组)填入□2x +□x+□=0的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项,使所得方程至少有一个整数根的a,b,c ( ) A 、不存在; B 、有一组; C 、有两组; D 、多于两组; 例题8 已知关于x 的方程02)2(2=++-k x k x (1)求证:无论k 取任何实数值,方程总有实数根。 (2)若等腰三角形ABC 的一边长a=1,另两边长b,c 恰好是这个方程的两个根,求三角形ABC 的周长。(湖北省荆门市中考题) 例题9 设方程4||2=+ax x 只有3个不相等的实数根,求a 的取值和相应的3个根。(重庆市竞赛题)

多个总体距离判别法(DOC)

多个总体距离判别法 及其应用 课程名: 年级: 专业: 姓名: 学号:

目录 一、摘要 (1) 二、引言 (1) 三、原理 (1) 3.1定义 (1) 3.2思想 (1) 3.3判别分析过程 (1) 四、具体应用 (3) 4.1判别分析在医学上的应用 (3) 4.2距离判别法在居民生活水平方面的应用 (9) 4.3判别分析软件的使用 (12) 五、参考文献 (14) 六、附录 (15)

一、 摘要 近年来随着信息化社会的进行,数据分析对我们来说日趋重要,为了对数据的分类进行判别,本文介绍了数据分类判别的一种方法:距离判别法。本文从多个总体距离判别法理论出发并结合例题详细介绍了多个总体距离判别法的在医学领域以及居民生活水平方面的应用,同时也简单介绍了spss 软件一般判别法的具体操作。 关键词: 距离判别法 判别分析 一般判别分析 二、 引言 随着科技的发展,判别分析在经济,医学等很多领域以及气候分类,农业区划,土地类型划分等有着重要的应用, 本文从多个总体距离判别分析理论出发,介绍了多个总体距离判别法在医学以及人民生活方面的应用,并介绍了spss 一般判别分析的应用。 三、 原理 3.1 定义 距离判别法:距离判别分析方法是判别样品所属类别的一应用性很强的多因素决方法,其中包括两个样本总体距离判别法,多个样本距离判别法。 多个总体距离判别法:多个总体距离判别法是距离判别法的一种,是两个总体距离判别法的推广,具有多个总体,将待测样本归为多个样本中的一类。 3.2 思想 计算待测样本与各总体之间的距离,将待测样本归为与其距离最进的一类。 3.3 判别分析过程 对于k 个总体k 21G G G ?, ,,假设其均值分别为:k 21u u u ,,,?,协方差阵

判别分析-四种方法

第六章 判别分析 §6.1 什么是判别分析 判别分析是判别样品所属类型的一种统计方法,其应用之广可与回归分析媲美。 在生产、科研和日常生活中经常需要根据观测到的数据资料,对所研究的对象进行分类。例如在经济学中,根据人均国民收入、人均工农业产值、人均消费水平等多种指标来判定一个国家的经济发展程度所属类型;在市场预测中,根据以往调查所得的种种指标,判别下季度产品是畅销、平常或滞销;在地质勘探中,根据岩石标本的多种特性来判别地层的地质年代,由采样分析出的多种成份来判别此地是有矿或无矿,是铜矿或铁矿等;在油田开发中,根据钻井的电测或化验数据,判别是否遇到油层、水层、干层或油水混合层;在农林害虫预报中,根据以往的虫情、多种气象因子来判别一个月后的虫情是大发生、中发生或正常; 在体育运动中,判别某游泳运动员的“苗子”是适合练蛙泳、仰泳、还是自由泳等;在医疗诊断中,根据某人多种体验指标(如体温、血压、白血球等)来判别此人是有病还是无病。总之,在实际问题中需要判别的问题几乎到处可见。 判别分析与聚类分析不同。判别分析是在已知研究对象分成若干类型(或组别)并已取得各种类型的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类。对于聚类分析来说,一批给定样品要划分的类型事先并不知道,正需要通过聚类分析来给以确定类型的。 正因为如此,判别分析和聚类分析往往联合起来使用,例如判别分析是要求先知道各类总体情况才能判断新样品的归类,当总体分类不清楚时,可先用聚类分析对原来的一批样品进行分类,然后再用判别分析建立判别式以对新样品进行判别。 判别分析内容很丰富,方法很多。判别分析按判别的组数来区分,有两组判别分析和多组判别分析;按区分不同总体的所用的数学模型来分,有线性判别和非线性判别;按判别时所处理的变量方法不同,有逐步判别和序贯判别等。判别分析可以从不同角度提出的问题,因此有不同的判别准则,如马氏距离最小准则、Fisher 准则、平均损失最小准则、最小平方准则、最大似然准则、最大概率准则等等,按判别准则的不同又提出多种判别方法。本章仅介绍四种常用的判别方法即距离判别法、Fisher 判别法、Bayes 判别法和逐步判别法。 §6.2 距离判别法 基本思想:首先根据已知分类的数据,分别计算各类的重心即分组(类)的均值,判别准则是对任给的一次观测,若它与第i 类的重心距离最近,就认为它来自第i 类。 距离判别法,对各类(或总体)的分布,并无特定的要求。 1 两个总体的距离判别法 设有两个总体(或称两类)G 1、G 2,从第一个总体中抽取n 1个样品,从第二个总体中抽取n 2个样品,每个样品测量p 个指标如下页表。 今任取一个样品,实测指标值为),,(1'=p x x X ,问X 应判归为哪一类? 首先计算X 到G 1、G 2总体的距离,分别记为),(1G X D 和),(2G X D ,按距离最近准则

公式法解一元二次方程与根的判别式

课题 公式法解一元二次方程与根的判别式 教学目标: 1、熟记求根公式,掌握用公式法解一元二次方程. 2、通过求根公式的推导及应用,渗透化归和分类讨论的思想. 3、通过求根公式的发现过程增强学习兴趣,培养概括能力及严谨认真的学习态度. 4、能不解方程,而根据根的判别式判断一元二次方程的根的情况. 5、培养思维的严密性、逻辑性和灵活性以及推理论证能力. 教学重点: 1、求根公式的推导和用公式法解一元二次方程. 2、会用判别式判定一元二次方程根的情况. 教学难点: 1、正确理解“当240b ac -<时,方程2 0(0)ax bx c a ++=≠无实数根. 2、运用判别式求出符合题意的字母的取值范围. 一、学习新知,推导公式 我们以前学过的一元一次方程0=+b ax (其中a 、b 是已知数,且a ≠0)的根唯一存在,它的根可以用已知数a 、b 表示为a b x -=,那么对于一元二次方程02=++ c bx ax (其中a 、b 、c 是已知数,且a ≠0),它的根情况怎样?能不能用已知数a 、b 、c 来表示呢?我们用配方法推导一元二次方程的求根公式. 用配方法解一元二次方程)0(02 ≠=++a c bx ax 解: c bx ax -=+2 移常数项 a c x a b x -=+2 方程两边同除以二次项系数(由于a ≠0,因此不需要分类讨论) 222)2()2(a b a c a b x a b x +-=++ 两边配上一次项系数一半的平方 22244)2(a ac b a b x -=+ 转化为n m x =+2)(的形式 注:在我们以前学过的一元二次方程中,会碰到有的方程没有解。 因此对上面这个方程要进行讨论

多元统计分析课后习题解答_第四章

第四章判别分析 简述欧几里得距离与马氏距离的区别和联系。 答:设p维欧几里得空间中的两点X= 和Y=。则欧几里得距离为 。欧几里得距离的局限有①在多元数据分析中,其度量不合理。②会受到实际问题中量纲的影响。 设X,Y是来自均值向量为,协方差为 的总体G中的p维样本。则马氏距离为D(X,Y)= 。当 即单位阵时,

D(X,Y)==即欧几里得距离。 因此,在一定程度上,欧几里得距离是马氏距离的特殊情况,马氏距离是欧几里得距离的推广。 试述判别分析的实质。 答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。设R1,R2,…,Rk是p维空间R p的k个子集,如果 它们互不相交,且它们的和集为,则称为的一个划分。判别分析问题实质上就是在某种意义上,以最优的性质对p维空间 构造一个“划分”,这个“划分”就构成了一个判别规则。 简述距离判别法的基本思想和方法。 答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。

①两个总体的距离判别问题 设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是 1 和 2, 对于一个新的样品X ,要判断它来自哪个总体。计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2(X ,G 2),则 X ,D 2(X ,G 1)D 2(X ,G 2) X ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析, 2212(,)(,) D G D G -X X 111122111111 111222********* ()()()() 2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2() 22()2() ---''=-++-' +? ?=--- ??? ''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为 X ,W(X)

数项级数的收敛与发散判别法

数项级数的收敛与发散判别法 作者:张应飞 作者单位:辽宁医学院 刊名: 陕西教育(高教) 英文刊名:SHAANXI JIAOYU(GAOJIAO) 年,卷(期):2008,""(8) 被引用次数:0次 参考文献(2条) 1.华东师范大学数学系教学分析 2.同济大学数学教研室高等数学 相似文献(10条) 1.期刊论文尤秀英双侧二重随机Dirichlet级数的相关收敛公式-广东工业大学学报2002,19(3) 在双侧二重Dirichlet级数的相关一致有界收敛定理及Valiron公式基础上,通过引进一个随机变量序列,在概率空间(Ω,A,P)上定义了下侧二重随机Dirichlet级数,建立了该级数的收敛性理论,并建立了双侧随机Dirichlet级数相关收敛横坐标的Valiron推广公式. 2.期刊论文唐荣荣渐近级数与收敛级数的比较-大学数学2009,25(3) 函数的渐近级数展开式与收敛级数展开式是解决非线性问题的有力工具.本文剖析了这两类展开式的特性、分析了它们的区别等,在此基础上对如何准确有效地使用这两类展开式进行了探讨. 3.学位论文杨云燕最强Orlicz-Pettis拓扑及最一般的Orlicz-Pettis型定理2005 本文主要在一个具有普遍意义的对偶系统(E,F)中研究了Orlicz-Pettis定理和Orlicz-Pettis拓扑,得到了最强的Orlicz-Pettis拓扑和一个最一般的Orlicz-Pettis型定理.这个结论的产生具有非常重大的理论与实际意义:首先,它是几十年来Orlicz-Pettis型定理的一个终极性结果,我们不但得到了最强的Orlicz-Pettis拓扑OP(E,F),而且还找到了生成拓扑OP(E,F)的F的最大子集族FOP(E,F),而使得余下的研究只能围绕着F的哪一类特殊的子集族包含在最大子集族FOP(E,F)中来进行;其次,我们的研究框架具有空前的普遍性,致使历史上的各种Orlicz-Pettis型定理都成为了这个结论的特殊情形,而且许多其它著名的定理也成为它的推论,例如Vitali-Hahn-Saks-Nikodym定理、Graves-Ruess定理和Thomas定理等;另外,同我们所得的最强Orlicz-Pettis拓扑OP(E,F)相比,Tweddle得到的Orlicz-Pettis拓扑τ(E,G”)和Dierolf得到的Orlicz-Pettis拓扑D只是拓扑OP(E,F)在特殊框架下的两个特殊情形,而且τ(E,G”)与D虽然都是局部凸空间中的Orlicz-Pettis拓扑,但是Tweddle和Dierolf都仅仅给出了其拓扑在各自意义下的最强性,而没能够指出E’或G”中的何种子集M使得当∞∑j=1xj子级数弱收敛时,级数∞∑j=1f(xj)关于f∈M一致收敛.事实上,生成Tweddle拓扑和 Dierolf拓扑的子集族都包含在我们的最大子集族FOP(E,F)中.而弄清楚这个最大的子集族不仅有着明显的理论意义,而且还有重要的实际意义,例如在测度系统(∑,ca(∑,G))中,一致地可列可加测度族的全体就相当于是M的全体.这也充分说明了在比线性对偶更加一般的框架下讨论子级数收敛问题的必要性. 其次,在局部凸空间中建立了级数绝对收敛的定义,将原本只在赋范空间中有定义的级数的绝对收敛这一简单概念进行了推广.这使得对级数绝对收敛的研究突破了范数的限制,对级数收敛理论来说具有重大意义.由于在有限维空间中,级数的绝对收敛、无条件收敛、子级数收敛和有界乘数收敛都是等价的,因而只有在无限维空间中去研究它们的关系才是必要的,而且这样的研究也具有十分重要的理论和实际意义,例如,著名的Orlicz定理、Dvoretzky-Rogers定理和Rolewicz-Ryll-Nardzewski定理等就是对这几种级数收敛关系的研究.本文将在局部凸空间中,对级数的绝对收敛与有界乘数收敛的性质及其关系进行深入地探讨与研究,进而得到以下结果:在任意对偶(X,X’)中,存在一个可容许拓扑η(X,X’)使得,在(X,η(X,X’))上,有界乘数收敛级数都是绝对收敛的,但是当可容许拓扑τ严格强于η(X,X’)时,在(X,τ)中,一定存在级数有界乘数收敛,但不是绝对收敛的.这个结果的建立主要借助于李容录的一致收敛引理和Antosik-Mikusinski基本矩阵定理. 另外,在已经对级数的绝对收敛概念进行了推广的基础之上,我们通过对绝对收敛级数的研究,并且借助于李容录的一致收敛引理和Antosik-Mikusinski基本矩阵定理,得到了对偶中的一个关于绝对收敛级数的不变性定理,即当局部凸空间X序列弱完备时,在对偶(X,X’)中,存在一个X上的可容许极拓扑F(C)使得,F(C)与弱拓扑σ(X,X’)具有相同的绝对收敛级数.这个结论在级数收敛理论中具有重要意义.因为作为对偶中的不变性质,子级数收敛、无条件收敛和有界乘数收敛都曾经被人们研究过,但把绝对收敛作为不变性来研究却是首次出现,因而它使得本文具有重要的开创性意义.同时,通过对局部凸空间中的绝对收敛级数与子级数收敛级数的研究,我们在任意对偶中找到了一个可容许极拓扑使得在该拓扑中,子级数收敛级数都是绝对收敛的. 4.期刊论文尤秀英.YIU Xiu-ying在左半平面收敛的Dirichlet级数与随机Dirichlet级数的下级与准确下级-哈尔滨工业大学学报2000,32(1) 对于在左半平面σ<0内收敛的下侧Dirichlet级数所定义的解析函数f1(s)定义了下级;通过引入一个较弱的指数条件,建立了f1(s)的下级存在的充分必要条件;定义了在概率空间(Ω,(A,P))上的下侧随机 Dirichlet级数(σ<0),研究了该级数所定义的随机解析函数f1(s,ω)的下级存在的条件;建立了 f1(s)或 f1(s,ω)在σ<0内的准确下级和下型概念及其与f1(s)或f1(s,ω)的系数及指数之间的关系式. 5.期刊论文尤秀英.YOU Xiu-ying下侧或双侧二重Dirichiet级数收敛性-广东工业大学学报2000,17(4) 定义了双侧与下侧二重的Dirichlet级数;讨论了它们的几对相关收敛横坐标;建立了下侧二重Dirichlet级数的相关一致有界收敛定理;建立了该两类级数的Valiron推广公式及Knopp-Kojima推广公式.拓广了关于单复变数的Dirichlet级数相应结论. 6.学位论文程财生Walsh-Fourier级数收敛性的研究2007 本论文分两部分研究了Walsh-Fourier级数收敛性: 第一部分重点介绍二进调和分析中与Walsh-Fourier级数收敛问题相关的经典定理和最近的研究成果.其主要内容分别是Walsh函数系的基本概念、二进Hardy空间和Fourier级数收敛,其中Fourier级数收敛这节详细罗列了在三角级数和Walsh级数收敛方面的经典结果以及比较感兴趣的最新研究成果,它们分别为: 1.点态收敛; 2.强求和及(H,q)求和; 3.依范收敛及统计收敛. 第二部分在Walsh—Fourier级数的方面的研究结果,其主要讨论了(0,1)上的可积函数f(x)关于Walsh函数系的Fourier级数的Norlund平均 t<,m,n>(f),证明了对双重序列{(m,n))满足某些条件的子序列{(m<,l>,n<,l>)),其极大算子t<'*>(f)=sup<,l>≤|t<,ml,nl>(f)|是弱(1,1)有界的

公式法与根的判别式

八 年级 数学 学科 总计 20 课时 第 5 课时 课题 求根公式与根的判别式 教学目标: 1、熟记求根公式,掌握用公式法解一元二次方程. 2、通过求根公式的推导及应用,渗透化归和分类讨论的思想. 3、通过求根公式的发现过程增强学习兴趣,培养概括能力及严谨认真的学习态度. 4、能不解方程,而根据根的判别式判断一元二次方程的根的情况. 5、培养思维的严密性、逻辑性和灵活性以及推理论证能力. 教学重点: 1、求根公式的推导和用公式法解一元二次方程. 2、会用判别式判定一元二次方程根的情况. 教学难点: 1、正确理解“当240b ac -<时,方程20(0)ax bx c a ++=≠无实数根. 2、运用判别式求出符合题意的字母的取值范围. 一、学习新知,推导公式 我们以前学过的一元一次方程0=+b ax (其中a 、b 是已知数,且a ≠0)的根唯一存在,它的根可以用已知数a 、b 表示为a b x -=,那么对于一元二次方程02=++ c bx ax (其中a 、b 、c 是已知数,且a ≠0),它的根情况怎样?能不能用已知数a 、b 、c 来表示呢?我们用配方法推导一元二次方程的求根公式. 用配方法解一元二次方程)0(02≠=++a c bx ax 解: c bx ax -=+2 移常数项 a c x a b x -=+2 方程两边同除以二次项系数(由于a ≠0,因此不需要分类讨论) 222)2()2(a b a c a b x a b x +-=++ 两边配上一次项系数一半的平方 22244)2(a ac b a b x -=+ 转化为n m x =+2)(的形式 注:在我们以前学过的一元二次方程中,会碰到有的方程没有实数解。 因此对上面这个方程要进行讨论 因为2 040a a ≠>所以

公式法与根的判别式

公式法与根的判别式-CAL-FENGHAI.-(YICAI)-Company One1

八 年级 数学 学科 总计 20 课时 第 5 课时 课题 求根公式与根的判别式 教学目标: 1、熟记求根公式,掌握用公式法解一元二次方程. 2、通过求根公式的推导及应用,渗透化归和分类讨论的思想. 3、通过求根公式的发现过程增强学习兴趣,培养概括能力及严谨认真的学习态度. 4、能不解方程,而根据根的判别式判断一元二次方程的根的情况. 5、培养思维的严密性、逻辑性和灵活性以及推理论证能力. 教学重点: 1、求根公式的推导和用公式法解一元二次方程. 2、会用判别式判定一元二次方程根的情况. 教学难点: 1、正确理解“当240b ac -<时,方程20(0)ax bx c a ++=≠无实数根. 2、运用判别式求出符合题意的字母的取值范围. 一、学习新知,推导公式 我们以前学过的一元一次方程0=+b ax (其中a 、b 是已知数,且a ≠0) 的根唯一存在,它的根可以用已知数a 、b 表示为a b x -=,那么对于一元二次方程02=++ c bx ax (其中a 、b 、c 是已知数,且a ≠0),它的根情况怎样能不能用已知数a 、b 、c 来表示呢我们用配方法推导一元二次方程的求根公式. 用配方法解一元二次方程)0(02≠=++a c bx ax 解: c bx ax -=+2 移常数项 a c x a b x -=+ 2 方程两边同除以二次项系数(由于a ≠0,因此不需要分类讨论) 222)2()2(a b a c a b x a b x +-=++ 两边配上一次项系数一半的平方 22244)2(a ac b a b x -=+ 转化为n m x =+2)(的形式

多元统计分析课后习题解答_第四章知识讲解

第四章判别分析 4.1 简述欧几里得距离与马氏距离的区别和联系。 答:设p维欧几里得空间中的两点X=和Y=。则欧几里得距离为 。欧几里得距离的局限有①在多元数据分析中,其度量不合理。②会受到实际问题中量纲的影响。 设X,Y是来自均值向量为,协方差为 的总体G中的p维样本。则马氏距离为D(X,Y)= 。当 即单位阵时, D(X,Y)==即欧几里得距离。 因此,在一定程度上,欧几里得距离是马氏距离的特殊情况,马氏距离是欧几里得距离的推广。 4.2 试述判别分析的实质。

答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。设R1,R2,…,Rk 是p 维空 间R p 的k 个子集,如果它们互不相交,且它们的和集为,则称为的一 个划分。判别分析问题实质上就是在某种意义上,以最优的性质对p 维空间构造一个“划 分”,这个“划分”就构成了一个判别规则。 4.3 简述距离判别法的基本思想和方法。 答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。 ①两个总体的距离判别问题 设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是μ1和μ 2,对于一个新的样品X , 要判断它来自哪个总体。计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2 (X ,G 2),则 X ,D 2 (X ,G 1) D 2(X ,G 2) X ,D 2(X ,G 1)> D 2 (X ,G 2, 具体分析, 2212(,)(,) D G D G -X X 111122111111 111222********* ()()()() 2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2() 22()2() ---''=-++-' +? ?=--- ?? ?''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为

Bland-Altman方法判定测量一致性

运用Bland-Altman分析水稻测量方法一致性 摘要:在农业生产中,对水稻穗长进行测量的数据是预测水稻产量,观测农作物生长情况的重要指标。在实际测量中,经常会遇到评价两种或多种检测、测量方法结果一致性的问题。一般情况下,其中一种方法是目前广泛应用的或被称为“金标准”的方法,在对水稻穗长进行测量的过程中,水稻穗长的手动测量方法即人工对每棵水稻的穗长进行测量,此测量数据可作为“金标准”。而另一种方法则是更先进、更便于应用、更经济的方法,在对水稻穗长进行测量的过程中,水稻穗长的自动测量方法即使用机器视觉采集水稻穗长图像,然后用图像识别的方法获得每个水稻的穗长。本文将通过运用Bland-Altman方法对水稻穗长测量实例的分析,来判断这两种方法是否可以互相替代。 一、原理和方法 Bland-Altman方法的基本思想是计算出两种测量结果的一致性界限,并用图形的方法直观地反映这个一致性界限。最后结合水稻穗长的实际状况,得出两种测量方法是否具有一致性的结论。 1.一致性界限 在进行两种方法的测定时,通常是对同一批受试对象同时进行测量。这两种方法一般不会获得完全相同的结果,总是存在着有一定趋势的差异,如一种方法的测量结果经常大于(或小于)另一种方法的结果,这种差异被称为偏倚。偏倚可以用两种方法测定结果的差值的均数d进行估计,均数d的变异情况则用差值的来描述。如果差值的分布服从正态分布,则95%的差值应该位于标准差S d 和d+1.96Sd之间。我们称这个区间为95%的一致性界限,绝大多数d-1.96S d 差值都位于该区间内。如果两种测量结果的差异位于一致性界限内在实际上是可以接受的,则可以认为这两种方法具有较好的一致性,这两种方法可以互换使用。当样本量较小时,抽样误差会相对较大,因此还要给出95%一致性界限的上下限的置信区间。差值均数的标准差SE(d),一致性界限的上、下限的标准误近似等于1.71SE(d),则可以分别计算出一致性界限上限的95%置信区间和下限的95%置信区间。

级数判别法

级数判别法 基本定理:正项级数收敛的充要条件是: ∑∞ =1 n n a 的部分和数列 }{n S 有界。 1、 比较判别法:设 ∑∞=1 n n a 和∑∞ =1 n n b 是两个正项级数,且存在 0>N ,使当N n >时,有不等式n n b a ≤,则: ○ 1:∑∞ =1n n b 收敛 ∑∞ =?1 n n a 收敛。 ○ 2:∑∑∞ =∞ =?10 1 n n n n b a 发散发散。 2、 比较判别法极限形式:设 ∑∞ =1 n n a 和 ∑∞ =1 n n b 是两个正项级数,且 λ=+∞→n n n b a lim ,则: ○ 1:当+∞<<λ0时,∑∞ =1 n n a 和 ∑∞ =1 n n b 具有相同的敛散性。 ○ 2:当0=λ时,∑∞=1 n n b 收敛∑∞ =?1n n a 收敛。 ○ 3:当+∞=λ时,∑∞=1 n n b 发散∑∞ =?1 n n a 发散。 3、 比较判别法II :设有两正项级数 ∑∑∞ =∞ =10 1 n n n n b a 和,)0,0(≠≠n n b a 满足: n n n n b b a a 1 1++≤,则: ○ 1:∑∞ =1 n n b 收敛 ∑∞ =?1 n n a 收敛。 ○ 2:∑∞ =1 n n a 发散∑∞ =? 1 n n b 发散。 4、 比值判别法(达朗贝尔):设 ∑∞ =1 n n a 为正项级数,则: 1°若当n 充分大时有: 11 <≤+q a a n n ,则级数∑∞ =1n n a 必收敛。 2°若当n 充分大时有: 11 ≥+n n a a ,则级数∑∞=1 n n a 必发散。 5、 达朗贝尔判别法的极限形式:设 ∑∞ =1 n n a 为正项级数,且 2111lim lim λλ==+∞→+∞→n n n n n n a a ,a a ,+∞≤2,1λ,则: 1°:当11 <λ时,级数∑∞ =1n n a 收敛。 2°:当 12>λ时,级数∑∞ =1 n n a 发散。 6、 根值判别法(Cauchy ):设 ∑∞ =1 n n a 为正项级数,则:

浅谈达朗贝尔判别法

浅谈达朗贝尔判别法 郑媛媛 (渤海大学数学系 辽宁 锦州 121000 中国) 摘要:通过学习了达朗贝尔判别法及其推论,我们了解到达朗贝尔判别法在判别正项级数的敛散性中是非常简便适用的。但这种判别法仍存在着一些弊端,给我们在学习中造成了许多不便,为了便于我们今后的学习,本文简单的介绍和研究了几种达朗贝尔判别法的推广方法,主要解决了达朗贝尔判别法在n lim a a n n 1+=1失效的情况下敛散性的判别。文中提到的方法,不但使用简便, 具有广泛的适用性,而且更为精细。为正项级数敛散性的判定提供了更有力的工具。 关键词:正项级数 敛散性 TALK ABOUT J.D ‘ALEMBERT ‘S PRINCIPLE Zheng Yuanyuan (Department of Mathsmatic Bohai University Liaoning Jinzhou 121000 China) Abstract :The study of the D`Alembert Discrimination Act and its corollary,We understand that d`Alembert Discrimination in the series Conwergence Divergence is very simple application.This Criterion there are still some drawbacks to the study,we created a lot of inconvenience.In order to facilitate our future study,this brief introduction and study of several d`Alembert Criterion promotional measures,mainly to solve the D`Alembert`s Test=failure in the case of convergence and divergence of discremination.The article mentions the method not only easy to use,with broad applicability,but more subtly.For the positive series fugitive convicted of a more powerful tool. Key words :positive series ; conbergence anddivergence.

SPSS操作方法:判别分析例题

为研究1991年中国城镇居民月平均收入状况,按标准化欧氏平方距离、离差平方和聚类方法将30个省、市、自治区.分为三种类型。试建立判别函数,判定广东、西藏分别属于哪个收入类型。判别指标及原始数据见表9-4。 1991年30个省、市、自治区城镇居民月平均收人数据表 单位:元/人 x1:人均生活费收入 x6:人均各种奖金、超额工资(国有+集体) x2:人均国有经济单位职工工资 x7:人均各种津贴(国有+集体) x3:人均来源于国有经济单位标准工资 x8:人均从工作单位得到的其他收入 x4:人均集体所有制工资收入 x9:个体劳动者收入 5

贝叶斯判别的SPSS操作方法: 1. 建立数据文件 2.单击Analyze→ Classify→ Discriminant,打开Discriminant Analysis 判别分析对话框如图1所示: 图1 Discriminant Analysis判别分析对话框 3.从对话框左侧的变量列表中选中进行判别分析的有关变量x1~x9进入Independents 框,作为判别分析的基础数据变量。 从对话框左侧的变量列表中选分组变量Group进入Grouping Variable 框,并点击Define Range...钮,在打开的Discriminant Analysis: Define Range对话框中,定义判别原始数据的类别数,由于原始数据分为3类,则在Minimum(最小值)处输入1,在Maximum(最大值)处输入3(见图2)。。 选择后点击Continue按钮返回Discriminant Analysis主对话框。 图2 Define Range对话框 4、选择分析方法 ?Enter independent together 所有变量全部参与判别分析(系统默 认)。本例选择此项。 ?Use stepwise method 采用逐步判别法自动筛选变量。

多元统计复习题 附问题详解

复习题 原文: 答案: 4.2 试述判别分析的实质。 4.3 简述距离判别法的基本思想和方法。 4.4 简述贝叶斯判别法的基本思想和方法。 4.5 简述费希尔判别法的基本思想和方法。 4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。 4.2 试述判别分析的实质。 答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。设R1,R2,…,Rk是p维空间R p的k个子集,如果它们互不相交,且它 们的和集为,则称为的一个划分。判别分析问题实质上就是在某种意义上,以最优的性质对p维空

间构造一个“划分”,这个“划分”就构成了一个判别规则。 4.3 简述距离判别法的基本思想和方法。 答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。 ①两个总体的距离判别问题 设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是m 1和m 2,对于一个新的样品X ,要判断它来自哪个总体。计算新样品X 到两个总体的马氏距离D 2 (X ,G 1)和D 2 (X ,G 2),则 X ,D 2 (X ,G 1) D 2(X ,G 2) X ,D 2(X ,G 1)> D 2 (X ,G 2, 具体分析, 2212(,)(,) D G D G -X X 111122111111 111222111 211122 ()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2() 22()2() ---''=-++-' +??=--- ???''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为 X ,W(X) X ,W(X)<0 ②多个总体的判别问题。 设有k 个总体k G G G ,,,21 ,其均值和协方差矩阵分别是k μμμ,,,21 和k ΣΣΣ,,,21 ,且 ΣΣΣΣ====k 21。计算样本到每个总体的马氏距离,到哪个总体的距离最小就属于哪个总体。 具体分析,21 (,)()()D G ααα-'=--X X μΣX μ

相关主题
文本预览
相关文档 最新文档