当前位置:文档之家› 我国铁矿山选矿技术

我国铁矿山选矿技术

我国铁矿山选矿技术
我国铁矿山选矿技术

硫铁矿烧渣磁选一重选联合工艺回收铁精矿研究

摘要:介绍了从硫铁矿烧渣中回收铁精矿的工艺流程。试验研究表明,硫铁矿烧渣经预先分级、磨矿后,在120 kA/m条件下磁选,磁选尾矿用螺旋溜槽重选,获得混合精矿产率72.86%、品位61.32%、回收率83.28%的较好指标。硫铁矿烧渣不经磨矿直接磁选得不到高品位精矿;全部磨矿后分选,精矿品位略有提高,但回收率下降较多。

关键词:硫铁矿烧渣铁精矿磁选重选工艺流程

硫铁矿烧渣是利用硫铁矿制备硫酸的过程中所排放的废渣,每生产1 t硫酸大约要排放0.8 t左右硫铁矿烧渣。我国硫酸生产行业目前每年约产生1 000万t硫铁矿烧渣[1],大都采用堆填处理,不仅大量占用土地,增加企业费用,而且还严重污染环境。硫铁矿烧渣的综合利用程度及技术水平,将是影响硫铁矿制酸企业社会、经济效益及可持续发展的重要因素。

近年来我国钢铁产量大幅增长,国产铁矿石供应缺口越来越大,进口铁矿石连年大幅度增加,并将超过国产铁矿石,预示着我国钢铁工业开始步人以进口铁矿石为主的时代,同时也成为我国钢铁工业经济安全的隐患。硫铁矿烧渣中全铁含量一般在50%左右,比我国铁矿平均品位(仅32.67%)要高得多。从硫铁矿烧渣中回收铁精矿用于炼铁,可以弥补我国铁资源的不足,同时消除了硫铁矿烧渣对生态环境的污染,更可创造出良好的经济效益与社会效益,其应用前景极为广阔。国内外众多科研工作者对从硫铁矿烧渣中回收铁精矿的工艺进行了大量研究,取得了一些成果,但由于硫铁矿烧渣性质的复杂性及不确定性,实际投入生产应用的并不多。本研究介绍的磁选一重选联合工艺,既有较好的工艺指标,又对硫铁矿烧渣性质的变化有一定适应性,具有良好的应用前景。

1硫铁矿烧渣性质研究

本次试验研究所用硫铁矿烧渣样品取自湖南某化工厂,呈棕黑色,粒度微细,粒度分析结果见表l,化学分析结果见表2。

从表1可见,硫铁矿烧渣中-200目含量为77.70%,-23μm的含量达35.4%,这部分微细粒级将会给铁矿物的富集带来极大的不利影响。

从表2可知,主要矿物为磁铁矿、赤铁矿和石英。根据显微镜下的观察,细颗粒中铁矿物与石英颗粒的单体解离度均很高,连生体极少,较大颗粒中则依然存在较多连生体颗粒。

2试验研究

硫铁矿烧渣中铁矿物主要为磁铁矿,其磁性率为31.26%,具有较强的磁性。可考虑采用弱磁选回收磁铁矿,磁选尾矿中的赤铁矿可考虑用重选方法回收[2]。而是否需要进行磨矿,则通过试验确定。

2.1 硫铁矿烧渣直接进行磁选

硫铁矿烧渣不经磨矿,采用XCGS型φ50磁选管,在激磁电流为1.6 A的条件下磁选4次,试验结果见表3。

从表3可看出,分选效果不够理想,精矿品位尚不到60%,且回收率也不够高。分析其原因,主要是由于硫铁矿烧渣中的粗粒连生体大多回收到精矿产品中,导致品位低;硫铁矿烧渣中的赤铁矿物磁性弱,大多随尾矿跑掉,降低了回收率。

2.2硫铁矿烧渣预先分级磨矿分选试验

为提高精矿品位,应对硫铁矿烧渣进行磨矿,解离粗粒连生体,以进一步提高精矿品位;对损失于尾矿中的弱磁性铁矿物,可考虑用重选设备——螺旋溜槽回收[3]。

硫铁矿烧渣中-200目含量为77.7%,这部分微细粒已基本达到单体解离,在球磨前预先分出这部分细粒级,只对筛上较粗粒级进行磨矿,可以降低能耗,减少过磨,提高工艺指标。本研究所采用的选别工艺流程如图1所示。

(1)磨矿磁选试验。采用200目标准筛对硫铁矿烧渣原样进行筛分。筛上物用辊筒棒磨机磨矿5 min 后,与筛下物合并,采用CYG-φ200鼓形永磁磁选机选2次,筒表磁场强度为120 kA/m。试验结果见表4。

(2)螺旋溜槽回收弱磁性铁矿物。将磁选后的尾矿浓缩至矿浆浓度为30%~35%后,送入LL400螺旋溜槽分选。选别指标见表5。

从表5可看出,螺旋溜槽重选精矿品位要低于磁选精矿品位,磁选精矿与螺旋溜槽精矿的混合精矿,其品位为61.32%,回收率为83.28%,产率为72.86%。

2.3硫铁矿烧渣全部磨矿分选试验

按前一流程分选后的磁选精矿品位为61.64%,混合铁精矿品位为61.32%,比天然铁矿物分选出的铁精矿品位有较大差距。为探索进一步提高铁精矿品位的可能性,我们将入选的硫铁矿烧渣原料全部进行

磨矿处理,以期提高铁矿物解离度,从而提高精矿品位。硫铁矿烧渣分选流程中取消了预先筛分,其他的工艺条件不变,分选结果见表6。

磁选精矿与螺旋溜槽精矿混合到一起,作为最终精矿,其品位为62.1l%,回收率为73.82%,产率为63.76%。

2.4分选效果讨论

(1)预先分级分选工艺。硫铁矿烧渣中FeO含量为16.77%,可相应计算出铁矿物中Fe3O4占73%左右[2]。磁选的回收率为69.26%,表明硫铁矿烧渣中强磁性矿物通过弱磁选可回收90%以上,效果较为理想,磁选工艺条件设置合理。

螺旋溜槽分选的作业回收率为45.61%,富矿比为1.44,。考虑到实际生产中使用螺旋溜槽的生产成本较低,能提高回收率14.02个百分点,分选效果是较为理想的。

(2)全部磨矿分选工艺。硫铁矿烧渣经全部磨矿后,与预先分级工艺相比较,磁选精矿品位提高0.77个百分点,回收率降低5.15个百分点。原渣中-200目中有部分连生体,通过磨矿得以解离,使品位有所提高。回收率下降较大的原因主要是磨矿使得与磁铁矿粘连在一起的部分赤铁矿颗粒分离,由于其磁性较弱,弱磁选无法回收。试验中可以明显看出,磨矿后的矿浆颜色发红,磁选精矿的颜色则更黑,也间接印证了这一点。

在显微镜下观察磁选精矿,发现夹杂的脉石颗粒极少,表明精矿品位偏低的原因是磁铁矿颗粒的纯度较低,用物理法已无法再进一步提高精矿品位。

磁选尾矿经螺旋溜槽分选,与预先分级工艺相比较,精矿品位提高了0.42个百分点,回收率较低了4.31个百分点。作业回收率降低了18.56个百分点,仅为27.05%。回收率下降较大的原因主要是硫铁矿烧渣中铁矿物硬度较低,经磨矿后粒度太细,超过了螺旋溜槽分选的粒度下限,难以回收。

两种分选工艺相比较,全部磨矿分选工艺混合最终精矿品位由61.32%提高到62.1l%,但回收率则由83.28%下降为73.82%。综合考虑,以预先分级分选工艺为佳。

3结论

(1)硫铁矿烧渣中-200目含量为77.7%,但直接磁选精矿品位仅为59.2l%,回收率为76.48%,分选效果较差。

(2)采用预先分级工艺,+200目进行磨矿。经120 kA/m磁选、螺旋溜槽重选后,最终混合精矿产率为72.86%,品位61.32%,回收率83.28%。分选效果较为理想。

(3)采用全部磨矿分选工艺,最终混合精矿产率为63.76%,品位62.1l%,回收率73.82%。精矿品位略有提高,但回收率下降较多,综合效率不如预先分级工艺。

参考文献:[1] 刘心中,等.硫酸渣的综合利用[J].金属矿山,2002(9):51-53.

[2] 魏德洲.固体物料分选学[M].北京:冶金工业出版社,2000.

[3] 刘惠中.BLl500-A型螺旋溜槽的研制及其在尾矿再选中的应用[J].矿冶.2001.10(4):24-28.我国铁矿山选矿技术成就与发展展望

红矿(赤铁、褐铁、菱铁矿)磁化

焙烧新工艺新技术

时间:2010-06-23 14:03:01 来源:作者:人气:178 次

一、红矿的磁化焙烧选矿技术及工程

赤铁矿、褐铁矿、菱铁矿及其共生矿(红矿)属于难选矿,尤其是嵌布粒度细、易泥化的矿石,常规的强磁或强磁-浮选工艺求。工业应用表明:磁化焙烧是一种把难选红矿变为易选磁矿的经济可行的有效法。

1、基本原理:

铁是一种多价态元素,能形成几种氧化物:α-Fe2O3(赤铁矿) 、γ-Fe2O3(磁赤铁矿)、Fe3O4(磁铁矿)、FexO(浮氏体). 其中只响因素。磁铁矿是一种尖晶石型的铁氧体,赤铁矿及浮氏体的晶体结构属斜方晶系,磁化焙烧是矿石加热到一定温度后在相应气氛共生矿)经磁化焙烧后,磁性显著增强,即可通过弱磁选进行有效的分离。

常用的的磁化焙烧法可分为:还原焙烧、中性焙烧、氧化焙烧、氧化还原焙烧和还原氧化焙烧。

我们通过多年的试验研究和工业化实施,解决了磁化焙烧工业应用方面的技术问题,通过磁化焙烧,赤铁矿、褐铁矿、菱铁矿达70~85%、精矿品位61~63%,为这些难选资源的工业应用找到了一条经济、可行的新方法。

2、还原焙烧:

赤铁矿、褐铁矿、高价锰矿石和铁锰矿石在加热到一定温度后,与适量的还原剂相作用,就

可使弱磁性的铁矿物转变为磁铁矿,同时锰矿物由高价还原为低价,

常用的还原剂有C、CO、H2等。

Fe2O3+C →Fe3O4+CO

Fe2O3+CO→Fe3O4+CO2

Fe2O3+H2→Fe3O4+H2O

MnO2+CO→MnO+CO2

MnO2+H2→MnO+H2O

褐铁矿在加热脱水后变成赤铁矿后,按上述反应还原成磁铁矿。

3、中性焙烧:

菱铁矿(FeCO3)、菱镁铁矿、菱铁镁矿、等碳酸铁矿石与赤褐铁矿的共生矿在一定焙烧条件也可变成磁铁矿。碳酸锰矿石通过中 FeCO3→Fe3O4+CO或FeCO3→Fe2O3+CO2

Fe2O3+CO→Fe3O4+CO2

MnCO3→MnO+CO2

4、氧化焙烧:

黄铁矿(FeS2)、高硫锰矿石在氧化气氛下经焙烧可变成磁铁矿。碳酸锰矿石通过中性焙烧可得到MnO。

FeS2 +O2→Fe7O8(磁黄铁矿)+SO2

Fe7O8+O2→Fe3O4+SO2

MnS+O2 →MnO+SO2

5、氧化还原焙烧:

含有菱铁矿、赤铁矿、褐铁矿的铁矿石,在菱铁矿与赤铁矿的比值小于1时,在氧化气氛和一定温度条件下,菱铁矿可先氧化

新疆磁化焙烧磁选厂一期现场新疆一期Φ4.0×60米磁化焙烧回

转窑

新疆二期200万吨工程施工现场

1

新疆二期200万吨工程施工现

2

还原焙烧铁相图云南40万吨赤褐铁矿磁化焙烧项

目工地

云南磁化焙烧项目工地施工协商磁法焙烧回转窑中试实

6、菱褐铁矿磁化焙烧—磁选原则流程:

菱褐铁矿磁化焙烧选矿工艺流程图

二、磁化焙烧简介:

常用的还原焙烧装置有回转窑和竖炉。回转窑磁化焙烧使用于粒度范围:15~0mm,竖窑磁化焙烧:+20~-75mm。

回转窑磁化焙烧装置组成如下:定量给料系统、回转窑系统、窑头燃烧系统、配风系统、窑尾除尘系统、自控系统、焙烧矿冷★各种磁化焙烧的反应过程都是相互影响的可逆过程,若要控制反应过程稳定持续地向生成Fe3O4(磁铁矿)的方向进制是必不可少的。

仪表自控系统

回转窑磁化焙烧控制系统图

窑内工况视频监控

回转窑焙烧与除尘控制系统主界面

燃烧系统控制界面

收尘系统控制界面

电机驱动控制界面

三、菱褐铁矿磁化焙烧工业应用:

1)菱褐铁矿磁化焙烧年处理量与回转窑规格选择

注:由于矿石性质的不同,焙烧时间都有所不同,通过试验确定,上述配置供参考。

2)新疆阿图什菱褐铁矿:

新疆阿图什某处菱褐铁矿为氧化较为强烈的菱铁矿石,属于弱磁性矿物。矿石中铁主要以高价氧化铁形式赋存在赤(褐)铁矿中,保铁矿石的性质,通过磁选、重选、强磁反浮等试验表明,采用传统的磁、重、浮选矿工艺,精矿品位只能达到52%~54%。要达的菱铁矿(FeCO3)或假象赤铁矿(r一Fe2O3)进行磁化焙烧,转化为强磁性的磁铁矿,然后以经济可行的方式进行分选。

阿图什菱铁矿磁化焙烧选矿厂,一期磁化焙烧系统2008年5月建成试生产,经技术人员指导调试,生产已基本正常,二期4套所示:

阿图什菱铁矿磁化焙烧选矿指标

3)陕西大西沟铁矿菱铁矿:

大西沟铁矿属于沉积型菱铁矿,位于陕西省柞水县境内,是我国目前探明储量最大的菱铁矿床,储量约三亿吨。矿石中原生金属矿方铅矿、磁黄铁矿、毒砂、锆石等。氧化金属矿物主要为褐铁矿,其次有少量的孔雀石、兰铜矿、辉铜矿、胆矾、假象赤铁矿等。母等,另有少量方解石、鲕状绿泥石、钠长石、电气石、叶腊石、高岭石等。菱铁矿:矿石最主要的铁矿物,在6、7号矿体中约占0.1mm。2006年8月建成磁化焙烧选矿厂,2007年开始试生产,由于公司性质复杂、有用矿物堪布粒度细,建厂初期,生产常。指标如下。

大西沟菱铁矿磁化焙烧选矿生产指标

4)云南玉溪峨山褐铁矿:

峨山褐铁矿磁化焙烧选矿厂设计指标(%):

5)云南玉溪峨山菱铁矿

玉溪峨山某菱铁矿矿石铁品位为36%左右,属低磷含硫的单一原生菱铁矿矿石。矿石中可供选矿回收的主要组分是铁,其品位达该精矿主要杂质为碱性脉石,其折算品位高,有害杂质硫、磷含量低,粒度细,焙烧性能好,适于球团矿生产,为高炉炼铁的优质该矿100万吨/a磁化焙烧选矿厂设计正在进行中。预计2009年10月建厂,2010年5月投产。玉溪某褐铁矿属于低硫磷的单一酸锰矿分布;脉石矿物主要是石英,其次为高岭石,少量绢云母和方解石。我们承建的一期40万吨/a磁化焙烧磁选厂,2008年11

玉溪菱铁矿化学成分分析(%)

矿石中铁的化学物相分析结果(%)

菱铁矿磁化焙烧-磁选设计指标(%)

我们可为用户提供赤铁矿、褐铁矿、菱铁矿及其共生矿(红矿)的磁化焙烧选矿技术、工程设计、成套装备供应和工程建设全

磁化焙烧系统监测及自动控制系统

磁化焙烧系统监测及自控系统烟气

褐铁矿石选矿技术

由于褐铁矿中富含结晶水,因此采用物理选矿方法铁精矿品位很难达到百分之60,但焙

烧后因烧损较大而大幅度提高铁精矿品位。另外由于褐铁矿在破碎磨矿过程中极易泥化,

难以获得较高的金属回收率。褐铁矿的选矿工艺有还原磁化焙烧—弱磁选、强磁选、重选、

浮选及其联合工艺。过去具有工业生产实践的选矿工艺有强磁选、强磁选—正浮选,但由

于受褐铁矿石性质(极易泥化)、破石机 强磁选设备(对-20μm铁矿物回收率较差)及浮选药剂的制约,其选别指标较差,而还原磁化焙烧—弱磁选工艺的选矿成本较高,因此该类铁矿石基本没有得到有效利用。为了提高细粒铁矿物的回收率,曾进行用褐煤作还原剂和燃料的回转窑焙烧磁选技术的半工业试验、絮凝—强磁选技术工业试验等,均取得较好的试验结果。我们对江西铁坑褐铁矿石进行了选择性絮凝—强磁选技术工业试验,结果表明铁金属回收率可提高10个百分点以上,但由于絮凝设备及选择性絮凝工艺条件的控制尚未过关而未能工业化。近两年来,随着新型高梯度强磁选机及新型高效反浮选药剂的研制成功,强磁选—反浮选—焙烧联合工艺分选褐铁矿石取得明显进展,即先通过强磁—反浮选获得低杂质含量的铁精矿,然后通过普通焙烧或者与磁铁精矿混合生产球团矿可大幅度提高产品的铁品位,仍不失为优质炼铁原料。

颚式破碎机 我们对江西铁坑褐铁矿等铁

矿石的试验研究结果表明,反浮选精矿铁品位可达到百分之57、SiO2含量降至百分之5左右,经焙烧后产品的铁品位可达到百分之64以上,与焙烧、磁选、反浮选联合工艺相比,生产成本大幅度下降,使该类型铁矿石具有经济开采利用价值,并且2005年将投入生产。

磁铁矿干选技术工艺说明书

磁铁矿粗粉生产技术

目录

一、技术领域

二、技术背景

三、传统工艺

四、新型工艺

五、工艺对比

六、新工艺指标

七、销售与合作

一、技术领域

本套新型工艺、设备(专利)涉及矿物粉碎、磁铁矿技术领域,特别针对低品位磁铁矿选矿技术及其设备工艺。在磁铁矿干选技术方面取得了突破性进展,实现了完全技术国有化的目标。

二、技术背景

中国地质条件复杂,具有多种矿的成矿条件,矿产资源十分丰富,种类齐全,居世界领先地位。我国矿产资源总量丰富,但人均占有量不足;支柱性矿产之一(富铁矿/磁铁矿)后备储量不足,中小矿床多,大型特大型矿床少,支柱性矿产中贫矿和难选矿多、富矿少。“十一五”期间,随着我国钢铁行业的大力发展,各钢铁厂家对铁矿石的需求量,特别是对铁精矿的需求量越来越大。中国已经钢铁大国,每年需要铁矿石6亿吨,由于国内富铁矿储量资

②新型干选工艺

配套设备少:基建时间短(7-10天),维修量小,运行稳定,运营成本低,耗能小,人员少。新粉碎设备:强力粉碎机颠覆了传统破/粉碎机的工作模式,吸取了球磨机、自磨机的优点,利用衬板的转动作业有效的避免了锤头衬板消耗快的问题,入料粒度提升至80mm,节省了细碎环节,提高了粉碎产量可达50T-80T/h。由于率先大胆采用了锤头/衬板相对旋转理念(解决了闷机问题),使粉碎粒度得到了较大的控制:2mm-0mm占30%,0mm-30目占70%完全达到80%的矿物干选分离粒度要求。锤头免调整,更换期30-90天,衬板更换期:60-180天。

强力粗粉机,它的诞生代替了球磨机粗磨的工艺,在作业中不依靠水源,可将矿物磨到粒度40目-80目,耗电量150kw,达到了球磨机正常磨粉能力。它的运行原理是对球磨机的一种作业方式的改变,改变了球磨机横式作业的技术基础,采用了立式滑道作业,装球数量少,维修简单,球体与衬板的使用时间为240天左右,中间需要添加1-2次球体,每次一颗。相对球磨机而言单单在球体添加方面就减少了百倍以上,正常球磨机每天添球量1-3颗。耗电量是同等产量球磨机的50%,型号越大省电量越高,最高可达70%。入料颗粒提升至30mm,处理量根据入料粒度大小的不同可实现50T-100T/h,配套产品:强力粉碎机,也可直接配套鄂式破碎机,效果会有所降低,大概30%。

新干选设备:带式干选机打破了传统的干选机工作方式,采用新颖的平面上吸作业,更有效的提高矿石品位,并解决了有益矿物跑尾较大的问题。有利的回避了:(传统磁选机)离心力强,扫选时间短,触矿磁极变化单一问题,有效铁矿品位提升10%-30%作业中矿物受到:3840次不同磁极作用,迫使矿物产生微度跳跃,更好的达到穿透筛选效果。后期球磨机产量相比传统提高2-3倍。

带式精选机在(带式干选机)的基础上将3840次磁极变化提升到15360次。磁力由800Oe-3500Oe转化到600Oe-2500Oe,磁场穿透力由100mm提升至300mm。可对0.83mm-0mm(平均60目,最细80目)的磁铁矿进行干选分离,分离效果可达90%,品位提升可达到50%-60%左右,可使用在缺水或环境污染地区。操控性能强,操作简单,无需任何化学药剂。

2、水选工艺对比

①传统水选工艺

配套设备多:维修量大,运行稳定性差,耗能大,人员多。

产量低:钢球砸后成点状,面积小,利用率低,添加量大。

控制性差:由于高频筛的使用,造成球磨机配水效果差,矿浆浓度不达标,反料多,产量低。

②新型水选工艺

配套设备少:维修量小,运行稳定,运营成本低,耗能小,人员少。

产量高:由于入磨粒度小,可使用钢段来代替钢球,钢段砸后成线状,面积大,利用率高。控制性好:自由调控球磨机配水量,矿浆达到浓度标准,物料在球磨机内加工时间长,产量高,有效控制、解决反料问题。

由于矿产资源的大量开发利用,可供资源量不断减少,造成原矿开采品味日渐降低,冶炼等后续加工对选矿产品质量要求也日益提高。同时,人类的环保意识日益加强。这些现实对选矿设备提出了越来越高的要求,促使选矿设备不断向更大、更优和高效节能的方向发展。选矿设备和选矿工艺的发展是同步的,工艺是主导,设备是基础。一种新型选矿设备的诞生,往往带来选矿工艺的变革。设备的技术水平不仅是工艺水平的前提,也直接影响着生产过程的畅通和应用。科学技术的进步,各科学门类间相互渗透和各行业间的相互融合,新结构、新材质、新技术和新加工工艺的层出不穷,机电一体化和自动控制技术的广泛应用,有力的促进了选矿设备的不断创新和向高效节能方向发展。化建最新研制的高效节能成套铁矿选矿设备新鲜出炉。

化建铁矿选矿包括:球磨机,破碎机,粉碎机,颚式破碎机,反击式破碎机,圆锥破碎机,超细细碎机,磁选机,干式磁选机,湿式磁选机,磁铁矿选矿设备,浮选机,矿用浮选机,分级机,螺旋分级机,高堰式螺旋分级机,烘干机,回转窑,摇床,提升机,高频筛,成品筛,高效浓缩机,螺旋溜槽,圆盘造粒机,槽式给矿机,节能球磨机。

铁矿选矿方法:

1.磁铁矿选矿:主要用来选别低品位的“鞍山式”磁铁矿。由于矿石磁性强、好磨好选,国内磁选厂均采用阶段磨矿和多阶段磨矿流程,对于粗粒嵌布的磁铁矿采用前者(一段磨矿),细粒、微细粒嵌布的磁铁矿采用后者(二段或三段磨矿)。我国自己研制的系列化的永磁化,使磁选机实现了永磁化。70年代以后,由于在全国磁铁矿选矿厂推广了细筛再磨新技术,使精矿品位由62%提高到了66%左右,实现了冶金工业部提出精矿品位达到65%的要求。

2.弱磁性铁矿选矿:主要用来选别赤铁矿、褐铁矿、镜铁矿、菱铁矿、假象赤铁矿或混合矿,也就是所谓的“红矿”。这类矿石品位低、嵌布粒度细、矿物组成复杂,选别困难。80年代后,选矿技术方面对焙烧磁选、湿式强磁选、弱磁性浮选和重选等工艺流程、装备和新品种药剂的研究不断改进,使精矿品位、金属回收率不断提高。如鞍钢齐大山选矿厂采用弱磁—

强磁—浮选的新工艺流程,获得令人鼓舞的成就。

3.多金属共(伴)生矿选矿:这类矿石成分复杂、类型多样,因此采用的方法、设备和流程也各不相同,如白云鄂博铁矿采用反浮选—多梯度磁选、絮凝浮选、弱?a href="https://www.doczj.com/doc/e110455034.html,/search/pro_xaM_3D.html" target="_blank" style="color:#1111CC;">牛 锤⊙。 看叛⑷醮牛 ⊙⒈荷沾叛〉炔煌 墓ひ樟鞒蹋 蕴岣咛 幕厥章剩 ⒆酆匣厥障⊥裂趸 铩E手 ㄌ 笸ü 叛』竦肨Fe53%左右的钒铁精矿,磁选后的尾矿通过弱磁扫选-强磁选-重选-浮选-干燥电选,获得钛精矿和硫钴精矿,回收钛和钴。大冶铁矿采用弱磁-强磁和浮选,综合回收铁、铜和钴、硫等元素。了解铁矿选矿设备工艺,询问铁矿选矿设备系列产品价格,更多信息了解请登录公司网站:https://www.doczj.com/doc/e110455034.html,查询。

磁选机

磁选机适用于粒度3mm以下的磁铁矿、磁黄铁矿、焙烧矿、钛铁矿等物料的湿式磁选机,也用于煤、非金属矿、建材等物料的除铁作业。强磁选机的磁系,采用优质铁氧体材料或与稀土磁钢复合而成,筒表平均磁感应强度为100~600mT。根据用户需要,可提供顺流、半逆流、逆流型等多种不同表强的磁选。湿式强磁选机产品具有结构简单、处理量大、操作方便、易于维护等优点。

永磁磁力滚筒性能特点:

永磁磁力滚筒(也称磁滑轮),主要适用于以下用途:

1、贫铁矿经粗碎或中碎后的粗选,排除围岩等废石,提高品位,减轻下一道工序的负荷。

2、用于赤铁矿还原闭路焙烧作业中将未充分还原的生矿选别,返回再烧。

3、用于陶瓷行业中将瓷泥中混杂的铁除去,提高陶瓷产品的质量。

4、燃煤矿、铸造型砂、耐火材料以及其它行的需用要的除铁作业。

永磁磁力滚筒技术参数

选矿实验流程

选矿试验的要求 选矿试验资料是选矿工艺设计的主要依据。选矿试验成果不仅对选矿设计的工艺流程、设备选型、产品方案、技术经济指标等的合理确定有着直接影响,而且也是选矿厂投产后能否顺利达到设计指标和获得经济效益的基础。因此,为设计提供依据的选矿试验,必须由专门的试验研究单位承担。选矿试验报告应按有关规定审查批准后才能作为设计依据。在选矿试验进行之前,选矿工艺设计者应对矿床资源特征、矿石类型和品级、矿石特征和工艺性质、以及可选性试验等资料充分了解,结合开采方案,向试验单位提出试验要求,在“要求”中,一般不必详述试验单位通常都应做到的内容,而应着重提出需要试验单位解决的特殊内容和主要问题。 一、选矿试验类型的划分 选矿试验按研究的目的可分为可选性试验、工艺流程试验和选矿单项技术试验三种,按试验规模可分为试验室试验、半工业试验和工业试验三种。为便于明确选矿试验要求和叙述的方便,概括上述两种分类,将选矿试验类型划分为可选性试验、试验室小型流程试验、试验室扩大连续试验、半工业试验、工业试验和选矿单项技术试验六种。 (1)可选性试验。一般由地质勘探部门完成。在地质普查、初勘和详勘阶段,应循序渐进地提高和加深可选性试验研究深度。可选性试验着重研究和探索各种类型和品级矿石的性质与可选性差别,基本选矿方法与可能达到的选矿指标,有害杂质剔除的难易,伴生成分综合回收的可能性等。试验研究的内容和深度应能判定被勘探的矿床矿石的利用在技术上是否可行、经济上是否合理,能为制订工业指标和矿床评价提供依据。可选性试验是在试验室装置或小型试验设备上进行的,一般只作矿床评价用。 (2)试验室小型流程试验。试验室小型流程试验是在矿床地质勘探完成之后,可行性研究或初步设计之前进行。它着重对矿石矿物特征和选矿工艺特性、选矿方法、工艺流程结构、选矿指标、工艺条件及产品(包括某些中间产品)等进行试验研究和分析,并应进行两个以上方案的试验对比。试验研究的内容和深度。一般应能满足设计工作中初步制订工艺流程和产品方案、选择主要工艺设备及进行设计方案比较的要求。由于试验室小型流程试验规模小、试料少、灵活性大、入力物力花费较少,因此允许在较大范围内进行广泛的探索,又因它的试料容易混匀,分批操作条件易于控制,因此是各项试验的最基本试验。但是,它是在试验室小型非连续(或局部连续)试验设备上进行的,其模拟程度和试验结果的可靠性虽优于可选性试验,但不及试验室扩大连续试验。 (3)试验室扩大连续试验。试验室扩大连续试验是在小型流程试验完成之后,根据小型流程试验确定的流程,用试验室设备模拟工业生产过程的磨矿、选别乃至脱水作业的连续试验。它着重考察流程动态平衡条件下(包括中矿返回)的选矿指标和工艺条件。各试验研究单位连续试验设备的能力很不一致,一般为 40 一 200kg/h。试验室扩大连续试验比小型流程试验的模拟性较好,可靠性较小型流程试验高些。 (4)半工业试验。半工业试验是在专门建立的半工业试验厂或车间进行的,试验可以是全流程的连续,也可以是局部作业的连续或单机的半工业试验。试验的目的主要是验证试验室试验的工艺流程方案,并取得近似于生产的技术经济指标,为选矿厂设计提供可靠的依据或为进一步做工业试验打下基础。半工业试验所用的设备为小型工业设备,试验厂的规模尚无明确的规定,一般为 1~5t/h。 (5)工业试验。工业试验是在专门建立的工业试验厂或利用生产选矿厂的一个系列甚至全厂进行的局部或全流程的试验,由于其设备、流程、技术条件与生产或今后的设计基本相同,故技术经济指标和技术参数比半工业试验更为可靠。

关于铁矿选矿技术分析

关于铁矿选矿技术分析 随着世界经济的复苏和结构调整的加快,特别是我国经济的快速发展,拉动了我国钢铁工业持续高增长,我国钢铁总产量已经居世界第一,对于铁矿石进口依存度越来越高,已成为我国钢铁工业经济安全的重大隐患。因此,迫切需要依靠技术进步来最大限度地利用国内现有铁矿资源,提高铁矿石的自给率,缓解进口矿的压力,维持稳定、足量、优质的铁矿原料供给,以保障钢铁工业持续稳定的发展。 一、菱铁矿石选矿技术 由于菱铁矿的理论铁品位较低,且经常与钙、镁、锰呈类质同象共生,因此采用物理选矿方法铁精矿品位很难达到百分之45以上,但焙烧后因烧损较大而大幅度提高铁精矿品位。比较经济的选矿方法是重选、强磁选,但难以有效地降低铁精矿中的杂质含量。强磁选—浮选联合工艺能有效地降低铁精矿中的杂质含量,铁精矿焙烧后仍不失为一种优质炼铁原料。 二、褐铁矿石选矿技术 由于褐铁矿中富含结晶水,因此采用物理选矿方法铁精矿品位很难达到百分之60,但焙烧后因烧损较大而大幅度提高铁精矿品位。另外由于褐铁矿在破碎磨矿过程中极易泥化,难以获得较高的金属回收率。褐铁矿选矿工艺有还原磁化焙烧—弱磁选、强磁选、重选、浮选及其联合工艺。过去具有工业生产实践的选矿工艺有强磁选、强磁选—正浮选,但由于受褐铁矿石性质(极易泥化)、强磁选设备(对-20μm铁矿物回收率较差)及浮选药剂的制约,其选别指标较差,而还原磁化焙烧—弱磁选工艺的选矿成本较高,因此该类铁矿石基本没有得到有效利用。为了提高细粒铁矿物的回收率,曾进行用褐煤作还原剂和燃料的回转窑焙烧磁选技术的半工业试验、絮凝—强磁选技术工业试验等,均取得较好的试验结果。我们对江西铁坑褐铁矿石进行了选择性絮凝—强磁选技术工业试验,结果表明铁金属回收率可提高10个百分点以上,但由于絮凝设备及选择性絮凝工艺条件的控制尚未过关而未能工业化。近两年来,随着新型高梯度强磁选机及新型高效反浮选药剂的研制成功,强磁选—反浮选—焙烧联合工艺分选褐铁矿石取得明显进展,即先通过强磁—反浮选获得低杂质含量的铁精矿,然后通过普通焙烧或者与磁铁精矿混合生产球团矿可大幅度提高产品的铁品位,仍不失为优质炼铁原料。 三、复合铁矿石选矿技术 我国大多铁矿石中都含有两种以上的铁矿物,种类越多其可选性越差。该类铁矿石中以共生有赤铁矿、镜铁矿、针铁矿、菱铁矿、褐铁矿等弱磁性铁矿物者较为难选。常规的选矿工艺均可用于分选该类铁矿石,但当矿石中含菱铁矿或褐铁矿较多时,其铁精矿品位和回收率均难以提高。为此,近几年开展了大量的相关研究工作,较突出的研究成果是弱磁—强磁—浮选和磁化焙烧—反浮选等联合工艺。例如,我们对酒钢铁矿石(含镜铁矿、菱铁矿及褐铁矿等)粉矿(-15mm)采

铁矿石选矿技术

铁矿选矿与加工技术 一、铁矿石分类 各种含铁矿物按其矿物组成,主要可分为4大类:磁铁矿、赤铁矿、褐铁矿和菱铁矿。由于它们的化学成分、结晶构造以及生成的地质条件不同,因此各种铁矿石具有不同的外部形态和物理特性。 (一)磁铁矿 主要含铁矿物为磁铁矿,其化学式为Fe3O4,其中FeO=31%,Fe2O3=69%,理论含铁量为72.4%。这种矿石有时含有TiO2及V2O5组合复合矿石,分别称为钛磁铁矿或矾钛磁铁矿。在自然纯磁铁矿矿石很少遇到,常常由于地表氧化作用使部分磁铁矿氧化转变为半假象赤铁矿和假象赤铁矿。所谓假象赤铁矿就是磁铁矿(Fe3O4)氧化成赤铁矿(Fe2O3),但它仍保留原来磁铁矿的外形,所以叫做假象赤铁矿。磁铁矿具有强磁性,晶体常成八面体,少数为菱形十二面体。集合体常成致密的块状,颜色条痕为铁黑色,半金属光泽,相对密度4.9~5.2,硬度5.5~6,无解理,脉石主要是石英及硅酸盐。还原性差,一般含有害杂质硫和磷较高。 (二)赤铁矿 赤铁矿为无水氧化铁矿石,其化学式为Fe2O3,理论含铁量为70%。这种矿石在自然界中经常形成巨大的矿床,从埋藏和开采量来说,它都是工业生产的主要矿石。赤铁矿含铁量一般为50%~60%,含有害杂质硫和磷比较少,还原较磁铁矿好,因此,赤铁矿是一种比较优良的炼铁原料。赤铁矿有原生的,也有野生的,再生的赤铁矿的磁铁矿经过氧化以后失去磁性,但仍保存着磁铁矿的结晶形状的假象赤铁矿,在假象赤铁矿中经常含有一些残余的磁铁矿。有时赤铁矿中也含有一些赤铁矿的风化产物,如褐铁矿(2Fe2O3·3H2O)。赤铁矿具有半金属光泽,结晶者硬度为5.5~6,土状赤铁矿硬度很低,无解理,相对密度4.9~5.3,仅有弱磁性,脉石为硅酸盐。 (三)褐铁矿 褐铁矿是含水氧化铁矿石,是由其他矿石风化后生成的,在自然界中分布得最广泛,但矿床埋藏量大的并不多见。其化学式为nFe2O3·mH2O(n=1~3、m=1~4)。褐铁矿实际上是由针铁矿(Fe2O3·H2O)、水针铁矿(2Fe2O3·H2O)和含不同结晶水的氧化铁以及泥质物质的混合物所组成的。褐铁矿中绝大部分含铁矿物是以2Fe2O3·H2O形式存在的。 一般褐铁矿石含铁量为37%~55%,有时含磷较高。褐铁矿的吸水性很强,一般都

铁矿石常用的选矿方法

第一章铁矿石常用的选矿方法 第一节磁铁矿选矿流程 磁铁矿石主要包括单一磁铁矿矿石、钒钛磁铁矿 矿石、含磁铁矿混合矿石和含磁铁矿多金属共生矿石, 磁铁矿属强磁性产物,在磁铁矿选矿中普遍采用以弱 磁选工艺为主的选别流程: 1、单一弱磁选流程:选别作业采用单一弱磁选工艺,适合于矿物组成简单的易 选单一磁铁 矿矿石;可进一步划分为两类:连续磨矿-弱磁选流程、阶段磨矿-阶段选别流程。 1)连续磨矿-弱磁选流程:适用于嵌布粒度较粗或含铁品位较高的矿石。根据 铁矿无的嵌布 粒度,可采用一段磨矿或两段连续磨矿,磨矿产品达到选别要求后进行弱磁选。 2)阶段磨矿-阶段选别流程:适用于嵌布粒度较细的低品位矿石。在一段磨矿 石进行磁选粗 选,抛弃部分合格尾矿,磁选粗精矿在给入二段磨矿(再磨)进行再磨再选。如果能再粗磨条件下,经过选别丢弃大量尾矿,对于减少后续磨矿和分选作业负荷、降低成本是有利的。 2、弱磁选-反浮选流程:主要针对的是某些铁矿石精矿石品位难以提高、铁精 矿中SiO2等 杂质组成偏高的问题,工艺方法包括磁选-阳离子反浮选流程和磁选-阴离子反浮选流程两种。

3、弱磁选-精选流程:这种流程方法是对某些铁矿石精矿品位难以提高、铁精 矿石中SiO2 等杂质组分偏高的问题开发出来的。 4、弱磁-强磁-浮选联合流程:主要用于处理多金属共生铁矿石和混合铁矿石, 分为三类: 1)弱磁选-浮选流程:主要用于处理伴生硫化物的磁铁矿矿石。根据矿石性质 进一步分为先 磁后浮和先浮后磁两种。 2)弱磁-强磁流程:主要用于处理磁性率较低的混合矿石。特点是采用弱磁选 首先分离弱磁 性的磁铁矿,弱磁选尾矿再采用强磁选回收赤铁矿等弱磁性矿物。 3)弱磁-强磁-浮选流程:主要用于处理多金属共生铁矿石。 第二节赤铁矿选矿流程 赤铁矿化学成分为Fe2O3、晶体属三方晶系的氧化物 矿物。与等轴晶系的磁赤铁矿成同质多象。晶体常呈板状; 集合体通常呈片状、鳞片状、肾状、鲕状、块状或土状等。 呈红褐、钢灰至铁黑等色,条痕均为樱红色。 1、焙烧磁选流程:当矿物组成比较复杂而其他选矿方法难以获得良好的选别指 标时,往往 采用磁化焙烧宣发;对于粉矿常用强磁选、重选、浮选等方法及其联合流程进行选别。 2、赤铁矿浮选流程:

铁矿选矿工艺

我国铁矿石资源供给形势 随着我国经济持续高速的发展,钢铁工业迅速发展。国内各钢铁企业对矿石的需求量增长迅猛,国内的矿山生产已远远满足不了需求,不得不依靠国外的优质铁矿石资源。据统计,1985年我国进口铁矿石突破1000万t,2002年突破1亿t,2004年突破2亿t,2005 年1~7月份累计进口铁矿石已达2亿t。 国内的铁矿石资源中易选的磁铁矿资源日益减少,充分利用国内的资源,提高钢铁企业矿石的自给率,缓解进口铁矿石的压力,维持优质的铁矿原料供给,必须以科技的进步来推动贫铁矿资源的高效开发与利用。我国铁矿矿床类型多,贮存条件复杂,矿石类型多,硫、磷、二氧化硅等有害组分含量高,多组分共生铁矿石占了很大比重,而且有用组分嵌布粒度细,因此采选难度大、效率低、产品质量差。 几十年来,广大选矿工作者针对我国铁矿资源“贫、细、杂”的特点开展了大量的研究工作,解决了诸多技术难题,使我国铁矿选矿技术得到长足进步和发展,总体水平有很大提高。尤其是近年来,研制并成功应用了新的高效分选设备、新的高效浮选药剂以及新的分选工艺。从而使选矿工艺指标取得了突破性进展。 铁矿选矿技术及选矿设备简介 (一)矿石破碎 我国选矿厂一般采用粗破、中破和细破三段破碎流程破碎铁矿石。粗破多用1.2m或1.5m旋回式破碎机,中破使用2.1m或2.2m标准型圆锥式破碎机,细破采用2.1m或2.2m 短头型圆锥式破碎机。通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛分成矿石粒度小于12mm的最终产品送磨矿槽。 (二)磨矿工艺 我国铁矿磨矿工艺,大多数采用两段磨矿流程,中小型选矿厂多采用一段磨矿流程。由于采用细筛再磨新工艺,近年来一些选矿厂已由两段磨矿改为三段磨矿。采用的磨矿设备一般比较小,最大球磨机3.6m×6m,最大棒磨机3.2m×4.5m,最大自磨机5.5m×1.8m,砾磨机2.7m×3.6m。磨矿后的分级基本上使用的是螺旋分级机。为了提高效率,部分选矿厂用水力旋流器取代二次螺旋分级机。 (三)选别技术 1.磁铁矿选矿主要用来选别低品位的“鞍山式”磁铁矿。由于矿石磁性强、好磨好选,国内磁选厂均采用阶段磨矿和多阶段磨矿流程,对于粗粒嵌布的磁铁矿采用前者(一段磨矿),细粒、微细粒嵌布的磁铁矿采用后者(二段或三段磨矿)(图3. 2.23)。我国自己研制的系列化的永磁化,使磁选机实现了永磁化。70年代以后,由于在全国磁铁矿选矿厂推广了细筛再磨新技术,使精矿品位由62%提高到了66%左右,实现了冶金工业部提出精矿品位达到65%的要求。 2.弱磁性铁矿选矿主要用来选别赤铁矿、褐铁矿、镜铁矿、菱铁矿、假象赤铁矿或混合矿,也就是所谓的“红矿”。这类矿石品位低、嵌布粒度细、矿物组成复杂,选别困难。80年代后,选矿技术方面对焙烧磁选、湿式强磁选、弱磁性浮选和重选等工艺流程、装备和新品种药剂的研究不断改进,使精矿品位、金属回收率不断提高。如鞍钢齐大山选矿厂采用弱磁—强磁—浮选的新工艺流程,获得令人鼓舞的成就。 3.多金属共(伴)生矿选矿这类矿石成分复杂、类型多样,因此采用的方法、设备和流程也各不相同,如白云鄂博铁矿采用反浮选—多梯度磁选、絮凝浮选、弱磁-反浮选-强磁选、弱磁-正浮选、焙烧磁选等不同的工艺流程,以提高铁的回收率,并综合回收稀

铁矿选矿技术概述(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 铁矿选矿技术概述(通用版) Safety management is an important part of production management. Safety and production are in the implementation process

铁矿选矿技术概述(通用版) 我国铁矿由于贫矿多(占总储量的97.5%)和伴(共)生有其他组分的综合矿多(占总储量的1/3),所以在冶炼前绝大部分需要进行选矿处理。 1996年全国入选铁矿石21497万t,占全国产铁矿石原矿25228万t的85.2%。入选铁矿石生产铁精矿粉8585.7万t,其中重点选矿厂处理原矿10961万t,生产铁精矿粉4158万t,占全国铁精矿粉产量的48.4%。 (一)矿石破碎 我国选矿厂一般采用粗破、中破和细破三段破碎流程破碎铁矿石。粗破多用1.2m或1.5m旋回式破碎机,中破使用2.1m或2.2m标准型圆锥式破碎机,细破采用2.1m或2.2m短头型圆锥式破碎机。通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛分成矿石粒度小于12mm的最终产品送磨矿槽。

(二)磨矿工艺 我国铁矿磨矿工艺,大多数采用两段磨矿流程,中小型选矿厂多采用一段磨矿流程。由于采用细筛再磨新工艺,近年来一些选矿厂已由两段磨矿改为三段磨矿。采用的磨矿设备一般比较小,最大球磨机3.6m×6m,最大棒磨机3.2m×4.5m,最大自磨机5.5m×1.8m,砾磨机2.7m×3.6m。磨矿后的分级基本上使用的是螺旋分级机。为了提高效率,部分选矿厂用水力旋流器取代二次螺旋分级机。 (三)选别技术 1.磁铁矿选矿 主要用来选别低品位的“鞍山式”磁铁矿。由于矿石磁性强、好磨好选,国内磁选厂均采用阶段磨矿和多阶段磨矿流程,对于粗粒嵌布的磁铁矿采用前者(一段磨矿),细粒、微细粒嵌布的磁铁矿采用后者(二段或三段磨矿)(图3.2.23)。我国自己研制的系列化的永磁化,使磁选机实现了永磁化。70年代以后,由于在全国磁铁矿选矿厂推广了细筛再磨新技术,使精矿品位由62%提高到了66%

选矿工艺流程介绍

选矿工艺流程介绍(附流程图) [导读]:选矿是冶炼前的准备工作,从矿山开采下来矿石以后,首先需要将含铁、铜、铝、锰等金属元素高的矿石甄选出来,为下一步的冶炼活动做准备。选矿一般分为破碎、磨矿、选别三部分。其中,破碎又分为:粗破、中破和细破;选别依方式不同也可分为:磁选、重选、浮选等。本专题将详细向大家讲述选矿的一些具体工艺常识,以及主要选矿设备的大致工作原理,主要控制要点等知识。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 选矿的目的:提高矿石品位。 选矿方法: ◆重力选矿法。根据矿物密度的不同,在选矿介质中具有不同的沉降速度而进行选矿。 ◆磁力选矿法。磁力选矿法是利用矿物的磁性差别,在不均匀的磁场中,磁性矿物被磁选机的磁极吸引,而非磁性矿物则被磁极排斥,从而达到选别的目的。 ◆浮游选矿法。浮游选矿法是利用矿物表面不同的亲水性,选择性地将疏水性强的矿物用泡沫浮到矿浆表面,而亲水性矿物则留在矿浆中,从而实现不同矿物彼此分离。 选矿后的产品:精矿、中矿和尾矿。 ◆精矿是指选矿后得到的含有用矿物含量较高的产品。 ◆中矿为选矿过程中间产品,需进一步选矿处理。 ◆尾矿是经选矿后留下的废弃物。

选矿的流程: (一)矿石破碎 我国选矿厂一般采用粗破、中破和细破三段破碎流程破碎铁矿石。粗破多用1.2m或1.5m旋回式破碎机,中破使用2.1m或2.2m标准型圆锥式破碎机,细破采用2.1m或2.2m短头型圆锥式破碎机。通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛分成矿石粒度小于12mm的最终产品送磨矿槽。 (二)磨矿工艺 我国铁矿磨矿工艺,大多数采用两段磨矿流程,中小型选矿厂多采用一段磨矿流程。由于采用细筛再磨新工艺,近年来一些选矿厂已由两段磨矿改为三段磨矿。采用的磨矿设备一般比较小,最大球磨机 3.6m×6m,最大棒磨机 3.2m×4.5m,最大自磨机5.5m×1.8m,砾磨机2.7m×3.6m。 磨矿后的分级基本上使用的是螺旋分级机。为了提高效率,部分选矿厂用水力旋流器取代二次螺旋分级机。 (三)选别技术 1.磁铁矿选矿 主要用来选别低品位的“鞍山式”磁铁矿。由于矿石磁性强、好磨好选,国内磁选厂均采用阶段磨矿和多阶段磨矿流程,对于粗粒嵌布的磁铁矿采用前者(一段磨矿),细粒、微细粒嵌布的磁铁矿采用后者(二段或三段磨矿)。我国自己研制的系列化的永磁化,使磁选机实现了永磁化。70年代以后,由于在全

复杂难选铁矿石选矿

复杂难选铁矿石选矿技术 我国97%的铁矿石需要选矿处理 找国铁矿石的主要特点是“贫”、“细”、“杂”,平均铁品位32%,比世界平均品位低11个百分点。其中97%的铁矿石需要选矿处理,并且复杂难选的红铁矿所占比例大(约占铁矿石储量的20.8%)。铁矿床成因类型多样,矿石类型复杂。我国探明的铁矿资源量为380亿~410亿吨,主要铁矿类型有:鞍山式沉积变质型铁矿,以磁铁矿石为主,品位为30%~35%,资源量为200亿吨。其中鞍本地区120亿吨,冀东地区50亿吨,山西、北京、冀西、安徽等地约30亿吨。攀枝花式岩浆分异则铁矿,以磁铁矿、钛铁矿为主,品位为30%~35%,主要分布在四川省西昌到渡口一带,资源量为70亿吨。大冶式和邯邢式接触交代型铁矿,以磁铁矿石为主,品位为35%~60%,主要分布在邯邢、莱芜和长江中下游一带,资源量为50亿吨,铁含量>45%的富矿较多。梅山式玢岩型铁矿,以磁铁矿石为主,资源量为10亿吨,品位为35%~60%。宣龙式和宁乡式沉积型铁矿,以赤铁矿石为主,品位低,含磷高,难处理,主要分布在河北宣化和湖北鄂西一带,资源量为30~50亿吨。大红山式和蒙库式海相火山沉积变质型铁矿,以

磁铁矿矿石为主,品位为35%~60%,主要分布在云南、新疆一带,资源量为20亿吨。在铁矿中共生和伴生铁矿多,约占资源量的17.9%,典型矿床有攀枝花铁矿、白云鄂博铁矿、大冶铁矿等,共(伴)生组分有钒、钛、稀土、铜等。 目前,我国菱铁矿石和褐铁矿石的利用率极低,大部分没有回收利用或根本没有开采利用。我国利用最多的矿石为鞍山式沉积变质铁矿石,但其中也有部分矿石由于嵌布粒度微细,矿物组成复杂尚未得到有效的开发利用。宣龙式和宁乡式铁矿,约占我国铁矿总储量的12%,占我国红铁矿储量的30%,由于矿石嵌布粒度微细,矿石结构为鲕状,含有害杂质磷高,目前尚未开发利用。包头白云鄂博铁矿为大型多金属共生复合铁矿,除铁外,尚有稀土、铌等多种金属,已发现有71种元素、170多种矿物。包钢目前采用弱磁-强磁-浮选回收铁和稀土的工艺流程,这种工艺获得的铁精矿品位低,其主要原因是铁精矿中含有硅酸盐类矿物,尤其是钾钠含量高,严重影响高炉冶炼效果;稀土矿物回收率低,总回收率不足20%,另外其他有价元素没有得到回收。 我国选铁矿石技术进展 菱铁矿石选矿技术

铁矿等矿石选矿工艺流程介绍

铁矿等矿石选矿工艺流程介绍 选矿是利用矿物的物理化学性质的差异,借助各种选矿设备将矿石中的有效矿物和脉石矿分离,矿石中含有有用成分往往还会有有害杂质,比如铁矿石中还有硫、磷等,铝土矿含有硫、硅等,这些有害成分在冶炼前可以使用选矿的方式去除,取出后才能被利用,才能达到合理利用国家矿产资源的目的。 选矿前准备的作业包括破碎筛分与磨矿分级 破碎与筛分是通过不同破碎机的挤压、冲击、劈裂等方式将采来的矿石(一般在1000mm)破碎到5-25mm. 工业运用的破碎机有鄂式破碎机、反击式破碎机、圆锥破碎机等。 筛分是破碎后的产品安粒度分类的一个过程,破碎作业与筛分作业进行联合。 工业用筛分为固定格筛、弧形筛、圆筒筛、振动筛、运动筛等。

磨矿分级是将破碎后的产品进一步的冲击、研磨,使矿山的粒度更精密,磨矿的作业是破碎作业的继续,其目的是将矿石中的有用矿物分为单体解离状态,为下一步分选作业打下基础。 几乎所有的选矿厂都会用到磨矿作业,磨矿作业的生产费用站金属选矿厂总费用的40%,基本上1吨矿石要消耗7-30kw/以上,站选矿厂总耗电量的50%,所以磨矿作业和磨矿设备的操作对选矿厂有很大的作用。 磨矿机的种类有很多主要分为球磨机、棒磨机、半自磨机与自磨机等。 选矿的工艺有多种下面给大家介绍几种常见的选矿工艺,目前常用的选矿方法为:重选、浮选、磁选以及化学选矿法等 重选重选是一种古老的选矿方法,刚开始应用于选金,砂里淘金,重选法处理量大,简单可靠,特别适用于密度较大的氧化矿石,常用方法有重介质选矿、无极限选矿溜槽,重选工艺应用在选前分级,按粒级选用合适的重选设备,有助于提高选矿的效率。 浮选浮选是利用矿物表面物理化学性质的差异,使矿物颗粒选择性对的想气泡附着的选矿方法,浮选的目的是得到粒度适宜的矿粒,一般浮选的方法有正浮选反浮

钛铁矿选矿工艺简介

钛铁矿选矿工艺简介 一钛铁矿矿石概述 1、钛铁矿化学分子式为:FeTiO3,矿物中理论成份FeO47.36%,TiO2为 52.64%,如果矿物中以MgO为主称为镁钛矿,以MnO为主的称红钛 锰矿。矿石中一般还有磁铁矿、硫化物等矿物。 2、钛精矿通常都指的是钛铁矿,一般钛精矿中含TiO2为46%以上。 3、钛精矿深加工多为生产钛白粉,是现代工业广泛使用的白色颜料。它 在涂料、造纸和塑料中作浅色颜料及高级填料,约占钛总消费量的85%以上,另外钛白还作为化学纤维的消光剂,橡胶制品的填料,石油化工的催化剂,以及油墨、陶瓷、玻璃、电焊条、冶金、电工、人造宝石和新兴材料等工业部门。 另外还生产钛金属,做为钛合金的添加剂。钛和钛合金是制造现代超音速飞机、火箭、导弹和航天飞机不可缺少的材料。 4、我国钛铁矿的主要生产基地目前有四川攀枝花、河北承德等。 5、目前钛金属售价为52元/Kg,钛精矿售价为700元/吨。 6、原生矿中的钛铁矿常与磁铁矿、钒钛磁铁矿共生。砂矿中的钛铁矿常 与金红石、锆石、独居石、磷钇矿等共同产出。 7、钛铁矿的一般工业要求为边界品位10Kg/m3,工业品位15Kg/m3, 8、钛铁矿晶体为菱面体,但完整晶形极少见,常呈不规则粒状、鳞片状、 厚板状。多呈自形至它形晶粒散布于其他矿物颗粒间,或呈定向片晶存在于钛磁铁矿、钛赤铁矿、钛普通辉石、钛角闪石等矿物中,为固溶分离产物。颜色铁黑色至钢灰色。条痕钢灰色或黑色,含赤铁矿包

裹体时呈褐色或褐红色。半金属光泽至金属光泽。不透明、无解理。 性脆、贝状至来贝状断口。硬度5-6.5,相对密度4.79,具弱磁性。二钛铁矿选矿工艺 钛铁矿主要的选矿工艺有“重选—强磁选---浮选”和“重选---强磁选---电选(选别前除硫)”两种,选矿过程中要严格按照分粒级入选,采取不同工艺流程。 采用的选矿设备有:斜板浓缩分级箱(按粒度分级)、耐磨螺旋溜槽(抛弃尾矿)、弱磁选机(除强磁矿物)、强磁选机(选钛铁矿)、浮选机(浮硫化物、浮细粒级钛铁矿)、电选机(精选钛铁矿)等。 [选矿用设备简介: 1、GL和BLX耐磨螺旋溜槽:广州有色研究院和长沙矿冶研究院合作研制开发; 2、电选机:长沙矿冶研究院新一代YD31200-23型; 3、选钛厂生产应用过的强磁设备:抚顺隆基立环脉冲高梯度强磁选机、长沙矿冶院研制的SHP仿琼斯强磁机、江西赣州冶金研究所研制的Slon 立环脉动高梯度强磁机等。 4、浮硫药剂制度:以丁基黄药为捕收剂、2#油为起泡剂、硫酸为调整剂的选钛的主流程。目前选钛工艺只能有效回收+0.074 mm粒级,对-0.074 mm 粒级基本上成为尾矿抛掉。 5、细粒级物料回收流程概况:经过国家“七五”、“八五”、“九五”科技攻关,确立了回收微细粒级钛铁矿的工艺流程(强磁一浮选)。在“九五”期间,通过钛业公司与长沙矿冶研究院等单位3年多的共同努力,形成了微细粒级钛铁矿回收的成套技术,开发了具有自主知识产权的ROB、R-2、HO等高效钛铁矿浮选捕收剂,其技术处于国际先进、国内领先水平。] 三主要的选矿工艺流程以下几种:

铁矿的选矿工艺流程

铁矿的选矿工艺流程 ——荥矿机械 对于铁矿的选矿工艺流程,有利于我们在生产的过程中更加熟练的操作设备看,对于我们的生产起到了积极的促进作用。 (一)矿石破碎 我国选矿厂一般采用粗破、中破和细破三段破碎流程破碎铁矿石。粗破多用1.2m或1.5m旋回式破碎机,中破使用2.1m或2.2m标准型圆锥式破碎机,细破采用2.1m或2.2m短头型圆锥式破碎机。通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛分成矿石粒度小于12mm的最终产品送磨矿槽。 (二)磨矿工艺 我国铁矿磨矿工艺,大多数采用两段磨矿流程,中小型选矿厂多采用一段磨矿流程。由于采用细筛再磨新工艺,近年来一些选矿厂已由两段磨矿改为三段磨矿。采用的磨矿设备一般比较小,最大球磨机3.6m×6m,最大棒磨机3.2m×4.5m,最大自磨机5.5m×1.8m,砾磨机2.7m×3.6m。 磨矿后的分级基本上使用的是螺旋分级机。为了提高效率,部分选矿厂用水力旋流器取代二次螺旋分级机。 (三)选别技术 1.磁铁矿选矿 主要用来选别低品位的“鞍山式”磁铁矿。由于矿石磁性强、好磨好选,国内磁选厂均采用阶段磨矿和多阶段磨矿流程,对于粗粒嵌布的磁铁矿采用前者(一段磨矿),细粒、微细粒嵌布的磁铁矿采用后者(二段或三段磨矿)。我国自己研制的系列化的永磁化,使磁选机实现了永磁化。70年代以后,由于在全国磁铁矿选矿厂推广了细筛再磨新技术,使精矿品位由62%提高到了66%左右,实现了冶金工业部提出精矿品位达到65%的要求。 2.弱磁性铁矿选矿 主要用来选别赤铁矿、褐铁矿、镜铁矿、菱铁矿、假象赤铁矿或混合矿,也就是所谓的“红矿”。这类矿石品位低、嵌布粒度细、矿物组成复杂,选别困难。 0年代后,选矿技术方面对焙烧磁选、湿式强磁选、弱磁性浮选和重选等工艺流程、装备和新品种药剂的研究不断改进,使精矿品位、金属回收率不断提高。如鞍钢齐大山选矿厂采用弱磁―强磁―浮选的新工艺流程,获得令人鼓舞的成就。 3.多金属共(伴)生矿选矿 这类矿石成分复杂、类型多样,因此采用的方法、设备和流程也各不相同,如白云鄂博铁矿采用反浮选―多梯度磁选、絮凝浮选、弱磁-反浮选-强磁选、弱磁-正浮选、焙烧磁选等不同的工艺流程,以提高铁的回收率,并综合回收稀土氧化物。攀枝花铁矿通过磁选获得TFe53%左右的钒铁精矿,磁选后的尾矿通过弱磁扫选-强磁选-重选-浮选-干燥电选,获得钛精矿和硫钴精矿,回收钛和钴。大冶铁矿采用弱磁-强磁和浮选,综合回收铁、铜和钴、硫等元素。 (四)烧结球团技术 烧结技术是我国人造富矿的主要手段。1996年共生产人造富矿16095.6万t,其中重点企业9485.9万t,占58.9%,地方国营企业6133.7万t,占38.1%。我国在细精矿烧结的技术上已达到相当水平。鞍钢早在50年代初就在烧结机上成功地把酸性烧结矿制作方法改为碱性烧结矿制作方法,在世界上第一个用消石灰或生石灰作熔剂解决了细精矿烧结问题。 烧结球团的装备水平也有所提高,全国共有烧结机419台,总面积15522m2,其中:130

铁矿石常用的选矿办法

精心整理第一章铁矿石常用的选矿方法 第一节磁铁矿选矿流程? 磁铁矿石主要包括单一磁铁矿矿石、钒钛磁铁矿 矿石、含磁铁矿混合矿石和含磁铁矿多金属共生矿石, 磁铁矿属强磁性产物,在磁铁矿选矿中普遍采用以弱 磁选工艺为主的选别流程: 1、单一弱磁选流程:选别作业采用单一弱磁选工艺,适合于矿物组成简单的易选单一磁铁 矿矿石;可进一步划分为两类:连续磨矿-弱磁选流程、阶段磨矿-阶段选别流程。 1)连续磨矿-弱磁选流程:适用于嵌布粒度较粗或含铁品位较高的矿石。根据铁矿无的嵌布 粒度,可采用一段磨矿或两段连续磨矿,磨矿产品达到选别要求后进行弱磁选。 2)阶段磨矿-阶段选别流程:适用于嵌布粒度较细的低品位矿石。在一段磨矿石进行磁选粗 选,抛弃部分合格尾矿,磁选粗精矿在给入二段磨矿(再磨)进行再磨再选。如果能再粗磨条件下,经过选别丢弃大量尾矿,对于减少后续磨矿和分选作业负荷、降低成本是有利的。 2、弱磁选-反浮选流程:主要针对的是某些铁矿石精矿石品位难以提高、铁精矿中SiO2等 杂质组成偏高的问题,工艺方法包括磁选-阳离子反浮选流程和磁选-阴离子反浮选流程两种。 3、弱磁选-精选流程:这种流程方法是对某些铁矿石精矿品位难以提高、铁精矿石中SiO2 等杂质组分偏高的问题开发出来的。 4、弱磁-强磁-浮选联合流程:主要用于处理多金属共生铁矿石和混合铁矿石,分为三类: 1)弱磁选-浮选流程:主要用于处理伴生硫化物的磁铁矿矿石。根据矿石性质进一步分为先 磁后浮和先浮后磁两种。 2)弱磁-强磁流程:主要用于处理磁性率较低的混合矿石。特点是采用弱磁选首先分离弱磁 性的磁铁矿,弱磁选尾矿再采用强磁选回收赤铁矿等弱磁性矿物。 3)弱磁-强磁-浮选流程:主要用于处理多金属共生铁矿石。

我国铁矿选矿技术的进展及发展方向

我国铁矿选矿技术的进展及发展方向 我国铁矿石资源供给形势 随着我国经济持续高速的发展,钢铁工业迅速发展。国内各钢铁企业对矿石的需求量增长迅猛,国内的矿山生产已远远满足不了需求,不得不依靠国外的优质铁矿石资源。据统计,1985年我国进口铁矿石突破1000万t,2002年突破1亿t,2004年突破2亿t,2005年1~7月份累计进口铁矿石已达2亿t。 国内的铁矿石资源中易选的磁铁矿资源日益减少,充分利用国内的资源,提高钢铁企业矿石的自给率,缓解进口铁矿石的压力,维持优质的铁矿原料供给,必须以科技的进步来推动贫铁矿资源的高效开发与利用。我国铁矿矿床类型多,贮存条件复杂,矿石类型多,硫、磷、二氧化硅等有害组分含量高,多组分共生铁矿石占了很大比重,而且有用组分嵌布粒度细,因此采选难度大、效率低、产品质量差。 几十年来,广大选矿工作者针对我国铁矿资源“贫、细、杂”的特点开展了大量的研究工作,解决了诸多技术难题,使我国铁矿选矿技术得到长足进步和发展,总体水平有很大提高。尤其是近年来,研制并成功应用了新的高效分选设备、新的高效浮选药剂以及新的分选工艺。从而使选矿工艺指标取得了突破性进展。 磁铁矿选矿技术进展 磁铁矿选矿是铁矿石选矿的主体,在国内铁精矿产量中,磁铁矿精矿约占3/4。多年来磁铁矿选矿技术不断发展和进步,磁铁矿选矿厂生产指标有了较大的改善,精矿品位从60%左右提高到65%~67%。目前钢铁工业对原料的要求越来越高,围绕“提铁降硅”国内做了大量的研发工作,磁铁矿精矿品位由65%提高到68.5%,Si02由8%~9%降至4%。新型磁选设备的应用和反浮选工艺的推广是“提铁降硅”的主要方向。 1新型磁选设备的应用 (1)磁团聚重选机 该设备于1985年初试制成功,开始在首钢水厂进行了工业试验并获得了很好的分选效果。设备的整个分选区内形成一个适当的磁场强度分布,比较均匀的弱磁场,磁场梯度小。磁性颗粒与脉石颗粒的分选主要取决于重力和上升水流力大小。磁团聚重选工艺的工业生产实践说明,该设备可提高精矿品位2~3个百分点。另外首钢矿业公司研制了变径磁团聚重选机和电磁聚机,在首钢水厂、大石河铁矿选矿厂得到了应用。 (2)磁选柱 磁选柱是鞍山科技大学研制成功的一种新型高效磁选设备,给入的物料中的磁性部分在弱磁场作用下形成的弱磁聚团在磁力及重力联合作用下向下运动,而夹杂于其中的脉石在上升水流的作用下向上运动,磁聚团在向下运动过程中受多次的淘洗。品位逐渐提高。设备在本钢南芬选矿厂和歪头山选矿厂、吉林板石沟选矿厂得到了应用。东北大学研制成功脉冲振动磁

铁矿选矿技术概述(正式版)

文件编号:TP-AR-L8278 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 铁矿选矿技术概述(正式 版)

铁矿选矿技术概述(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 我国铁矿由于贫矿多(占总储量的97.5%)和 伴(共)生有其他组分的综合矿多(占总储量的1/ 3),所以在冶炼前绝大部分需要进行选矿处理。 1996年全国入选铁矿石21497万t,占全国产铁 矿石原矿25228万t的85.2%。入选铁矿石生产铁 精矿粉8585.7万t,其中重点选矿厂处理原矿10961 万t,生产铁精矿粉4158万t,占全国铁精矿粉产量 的48.4%。 (一)矿石破碎 我国选矿厂一般采用粗破、中破和细破三段破碎 流程破碎铁矿石。粗破多用1.2m或1.5m旋回式破

碎机,中破使用2.1m或2.2m标准型圆锥式破碎机,细破采用2.1m或2.2m短头型圆锥式破碎机。通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛分成矿石粒度小于12mm的最终产品送磨矿槽。 (二)磨矿工艺 我国铁矿磨矿工艺,大多数采用两段磨矿流程,中小型选矿厂多采用一段磨矿流程。由于采用细筛再磨新工艺,近年来一些选矿厂已由两段磨矿改为三段磨矿。采用的磨矿设备一般比较小,最大球磨机3.6m×6m,最大棒磨机3.2m×4.5m,最大自磨机5.5m×1.8m,砾磨机2.7m×3.6m。磨矿后的分级基本上使用的是螺旋分级机。为了提高效率,部分选矿厂用水力旋流器取代二次螺旋分级机。 (三)选别技术

选矿工艺流程

工艺流程试验是为选矿厂设计(或现有选矿厂的技术改造)提供依据,在选矿厂初步设计(或拟定现场技术改造方案)前进行。一般选进行试验室试验,然后在试验室试验的基础上,根据情况决定是否进行半工业或工业试验。 选矿工艺流程试试验内容和必要的资料收集,一般由试验研究单位负责制订,有条件的可由试验、设计和生产部门三结合洽商确定。 一、收集资料的一般内容如下,但具体工程需根据条件的不同,区别对待 (一)了解上级机关下达任务的目地和委托单位提出的要求,例如:选矿厂规模、服务年限;主要有用成分和伴生成综合利用问题;试验阶段的划分;要求试验完成日期;选矿厂处理单一矿床的矿石还是几个矿床、不同类型的矿石;用户对精矿化学成分的特殊要求以及对精矿等级和粒度的要求;建厂地区的水源,选矿药剂,焙烧用燃料等的供应情况和性能分析资料等。 (二)了解有关地质资料,例如:矿床类型;地质储量;矿体产状;矿石类型;品位特征;嵌布特性;围岩脉石等变化情况;远景评价;采样设计等。 (三)了解采矿设计方面的资料,例如:采矿的开拓方案和采矿方法;不同类型矿石的混采、分采;围岩混入率和矿石采出品位;开采设计矿区的矿石类型配比和平均品位;开采设计5-10年内逐年开采的矿石类型配比和平均品位等。 (四)了解选矿方面资料,例如:选矿设计对试验的特殊要求。国内外类似矿石的试验研究和生产实践情况,可能应用的选进技术等。 二、选矿工艺流程试验主要内容有 (一)矿石性质研究 是选择选矿方案和确定选厂设计方案时与类似矿石生产实践作对比分析的依据,其中某些数据是选厂具体设计中必不可少的原始数据。 矿石性质研究包括:光谱定性和半定量,化学全分析,岩矿鉴定,物相分析,粒度分析,磁性分析,重液分析,试金分析,磨矿细度,矿石可磨度,及各种物理性能(比重、比磁化系数、导电率、水分、真比重和假比重、堆积角和摩擦角、硬度、粘度等)。 (二)选矿方法、流程结构,选矿指标和工艺条件 直接关系到选矿厂的设计方案和具体组成,是选厂设计的主要原始资料,必须慎重考虑,要求选矿方法、流程结构合理,选矿指标可靠。

铁矿选矿技术概述

编订:__________________ 审核:__________________ 单位:__________________ 铁矿选矿技术概述 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8054-69 铁矿选矿技术概述 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 我国铁矿由于贫矿多(占总储量的97.5%)和伴(共)生有其他组分的综合矿多(占总储量的1/3),所以在冶炼前绝大部分需要进行选矿处理。 1996年全国入选铁矿石21497万t,占全国产铁矿石原矿25228万t的85.2%。入选铁矿石生产铁精矿粉8585.7万t,其中重点选矿厂处理原矿10961万t,生产铁精矿粉4158万t,占全国铁精矿粉产量的48.4%。 (一)矿石破碎 我国选矿厂一般采用粗破、中破和细破三段破碎流程破碎铁矿石。粗破多用1.2m或1.5m旋回式破碎机,中破使用2.1m或2.2m标准型圆锥式破碎机,细破采用2.1m或2.2m短头型圆锥式破碎机。通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛

褐铁矿选矿工艺现状及发展

褐铁矿选矿工艺的现状及发展 Status and Development of limonite beneficiation process 11级矿物加工工程1班 于浩 201114440101

1.褐铁矿简介 褐铁矿是由针铁矿、纤铁矿、水针铁矿、水纤铁矿以及含水氧化硅、泥质等组成的混合物, 其化学成分不固定,嵌布粒度细,且碎磨过程中易泥化,属于复杂难选铁矿石。目前我国已探明的褐铁矿储量约为 12.3 亿 t,主要分布于云南、广东、广西、山东、贵州、江西、新疆和福建等省[1]。由于受褐铁矿矿石性质 (极易泥化)、强磁选设备 (对-20 μm 铁矿物回收率较差)、浮选药剂制度和磁化焙烧成本高的制约,褐铁矿资源利用率极低,大部分没有有效回收利用,或根本没有开采。 随着铁矿资源贫、细、杂、散趋势越来越严重,以及我国钢铁工业的快速发展,使得铁矿资源供应极度紧张,因此褐铁矿的高效选矿技术已逐渐成为选矿工作者研究的主要方向,并且在褐铁矿选矿技术方面取得了明显的进步。 2.现有的选矿工艺 2.1 强化脱泥-脱硅反浮选工艺 采用强化脱泥 - 多次少量加药、多次浮选工艺,使用新型高效阳离子浮选剂,在高效脱泥措施和分散剂的配合下,通过多级选别的形式,分别对江西、广东和新疆等地的褐铁矿进行选矿试验。结果表明,经过 4~5 次加药选别,得到的铁精矿品位可达到 52% 以上,回收率均大于 76%。该褐铁矿选矿工艺流程简单,药剂种类少,且铁精矿品位和回收率均较高,整体浮选成本低,具有较高的经济推广价值。 单一浮选具有工艺流程简单、对微细颗粒褐铁矿回收效果较好的特点,但由于褐铁矿极易泥化,严重影响浮选效果,因此在浮选前强化脱泥或强化分散矿泥很重要。此外,研究和实践证明,反浮选更适于褐铁矿的提质降杂,但由于褐铁矿颗粒结晶疏松,比表面积较大,在浮选过程中容易大量吸附和消耗药剂,因此宜采用多次少量加药、多次选别的浮选流程。 2.2 阶段磨矿-反浮选工艺

铁矿选矿工艺流程

铁矿选矿工艺流程 ------------------------------------------------------------------------------ (一)矿石破碎 我国选矿厂一般采用粗破、中破和细破三段破碎流程破碎铁矿石。粗破多用1.2m或1.5m旋回式破碎机,中破使用2.1m或2.2m标准型圆锥式破碎机,细破采用2.1m或2.2m短头型圆锥式破碎机。通过粗破的矿石,其块度不大于1m,然后经过中、细破碎,筛分成矿石粒度小于12mm的最终产品送磨矿槽。 (二)磨矿工艺 我国铁矿磨矿工艺,大多数采用两段磨矿流程,中小型选矿厂多采用一段磨矿流程。由于采用细筛再磨新工艺,近年来一些选矿厂已由两段磨矿改为三段磨矿。采用的磨矿设备一般比较小,最大球磨机3.6m×6m,最大棒磨机3.2m×4.5m,最大自磨机5.5m×1.8m,砾磨机2.7m×3.6m。 磨矿后的分级基本上使用的是螺旋分级机。为了提高效率,部分选矿厂用水力旋流器取代二次螺旋分级机。 (三)选别技术 1.磁铁矿选矿 主要用来选别低品位的“鞍山式”磁铁矿。由于矿石磁性强、好磨好选,国内磁选厂均采用阶段磨矿和多阶段磨矿流程,对于粗粒嵌布的磁铁矿采用前者(一段磨矿),细粒、微细粒嵌布的磁铁矿采用后者(二段或三段磨矿)。我国自己研制的系列化的永磁化,使磁选机实现了永磁化。70年代以后,由于在全国磁铁矿选矿厂推广了细筛再磨新技术,使精矿品位由62%提高到了66%左右,实现了冶金工业部提出精矿品位达到65%的要求。 2.弱磁性铁矿选矿 主要用来选别赤铁矿、褐铁矿、镜铁矿、菱铁矿、假象赤铁矿或混合矿,也就是所谓的“红矿”。这类矿石品位低、嵌布粒度细、矿物组成复杂,选别困难。

相关主题
文本预览
相关文档 最新文档