当前位置:文档之家› 高等传热学课件对流换热-第2章-5

高等传热学课件对流换热-第2章-5

高等传热学相变导热解(移动边界)

高等传热学导热理论——相变导热(移动边界问题)讨论 第五讲:相变导热(移动边界问题): 移动边界的导热问题有许多种,本讲只讲固液相变时的导热模型。 5.1 相变换热特点与分类: 特点: (1) 相变处存在一个界面把不同相的物质分成两个区间(实际不是一个面, 而是一个区)。 (2) 相变面随时间移动,移动规律时问题的一部分。 (3) 移动面可作为边界,决定了相变问题是非线性问题。 分类: (1) 半无限大体单区域问题(Stefan Question ) (2) 半无限大体双区域问题(Neumman Question ) (3) 有限双区域问题 5.2 相变导热的数学描述和解: 假定:固液两相内部只有导热,没有对流(适用于深空中相变)。 物性为常量。不考虑密度变化引起的体积变化。 控制方程: 对固相: 2 21s s s t t a x τ ??=?? 对液相: 2 2 1l l l t t a x τ ??= ?? 初值条件:0:s l t t t τ∞=== 边界条件: 0:::s l w l s l s x t ort t x t ort or x t ort t ∞ ===∞≠∞ =?= 在相变界面,热量守恒,温度连续,Q l 为相变潜热: ()():s l s l l l s l p t t d x Q and t t t x x d δτδτλλρτ ??==+==?? 5.2.1 半无限大体单区域问题(Stefan Question )的简化解: 以融解过程为例: 忽略液相显热, 2 210l l l t t a x τ ??==??,方程解为一直线,由边界条件得: ()/l w p w t t t t x δ =+- 对固相,忽略温差:w p t t t ∞==,即固相温度恒等于相变温度等于初始温度。 由相变处得换热条件求δ的变化规律:

高等传热学讲义

第2章边界层方程 第一节Prandtl 边界层方程一.边界层简化的基本依据 外:粘性和换热可忽略 )(t δδ , l l t <<<<δδ或内:粘性和换热存在 )(t δδ特征尺寸 —l

二.普朗特边界层方程 常数性流体纵掠平板,层流的曲壁同样适用)。 δ v l u ∞∞ ∞u l v v l u δδ~~,可见,0=??+??y v x u )()((x x R δ>>曲率半径y x u v ∞ ∞T u ,w T ∞ ∞T u ,δ l

)(122 22 y u x u x p y u v x u u ??+??+??-=??+??νρδ δ ∞ ∞ u u l l u u ∞∞ 2 l u ∞ν2 δ ν ∞ u ) (2 l u ∞ 除以无因次化11 Re 12 ) )(Re 1 (δ l

因边界层那粘性项与惯性项均不能忽略,故 项可忽略,且说明只有Re>>1时,上述简化才适用。)(12 2 22y v x v y p y v v x v u ??+??+??-=??+??νρ1~))(Re 1(2 δ l l δ ;可见22 22 x u y u ??>>??δδ 1 ) (2 ∞u l l u l u /)(∞∞δ 2 /)(l u l ∞δ ν2 /)(δδ ν∞u l : 除以l u 2 ∞ )(Re 1l δ))(Re 1(δ l l δ

可见,各项均比u 方程对应项小得多可简化为 于是u 方程压力梯度项可写为。 )(2 2 22y T x T a y T v x T u ??+??=??+??,0=??y p dx dp ρ1-),(l δ 乘了δθδ w u l )(∞l u w θ∞2 l a w θ除以: l u w θ∞Pe /12 )(/1δ l Pe 12δ θw a 1 ) (∞-=T T w w θPr) Re (?====∞∞贝克列数—导热量对流热量w w p l k u c a l u Pe θθρ

高等传热学知识重点(含答案)2019

高等传热学知识重点 1.什么是粒子的平均自由程,Knusen数的表达式和物理意义。 Knusen数的表达式和物理意义:(Λ即为λ,L为特征长度) 2.固体中的微观热载流子的种类,以及对金属/绝缘体材料中热流的贡献。 3.分子、声子和电子分别满足怎样的统计分布律,分别写出其分布函数的表达式 分子的统计分布:Maxwell-Boltzmann(麦克斯韦-玻尔兹曼)分布: 电子的统计分布:Fermi-Dirac(费米-狄拉克)分布: 声子的统计分布:Bose-Eisentein(波色-爱因斯坦)分布; 高温下,FD,BE均化为MB;

4.什么是光学声子和声学声子,其波矢或频谱分布各有特性? 答:声子:晶格振动能量的量子化描述,是准粒子,有能量,无质量; 光学声子:与光子相互振动,发生散射,故称光学声子; 声学声子:类似机械波传动,故称声学声子; 5.影响声子和电子导热的散射效应有哪些? 答:影响声子(和电子)导热的散射效应有(热阻形成的主要原因): ①界面散射:由于不同材料的声子色散关系不一样,即使是完全结合的界面也是有热阻的; ②缺陷散射:除了晶格缺陷,最典型的是不纯物掺杂颗粒的散热,散射位相函数一般为Rayleigh散 射、Mie散射,这与光子非常相似; ③声子自身散射:声子本质上是晶格振动波,因此在传播过程中会与原子相互作用,会产生散射、 吸收和变频作用。

6.简述声子态密度(Density of State)及其物理意义,德拜模型和爱因斯坦模型的区别。答:声子态密度(DOS)[phonon.s/m3.rad]:声子在单位频率间隔内的状态数(振动模式数)Debye(德拜)模型: Einstein(爱因斯坦)模型: 7.分子动力学理论中,L-J势能函数的表达式及其意义。 答:Lennard-Jones 势能函数(兰纳-琼斯势能函数),只适用于惰性气体、简单分子晶体,是一种合理的近似公式;式中第一项可认为是对应于两体在近距离时以互相排斥为主的作用,第二项对应两体在远距离以互相吸引(例如通过范德瓦耳斯力)为主的作用,而此六次方项也的确可以使用以电子-原子核的电偶极矩摄动展开得到。

浙大高等传热学复习题部分答案

高等传热学复习题 1.简述求解导热问题的各种方法和傅立叶定律的适用条件。 不论如何,求解导热微分方程主要依靠三大方法: 理论法、试验法、综合理论和试验法 理论法:借助数学、逻辑等手段,根据物理规律,找出答案。它又分: 分析法;以数学分析为基础,通过符号和数值运算,得到结果。方法有:分离变量法,积分变换法(Laplace变换,Fourier变换),热源函数法,Green函数法,变分法,积分方程法等等,数理方程中有介绍。 近似分析法:积分方程法,相似分析法,变分法等。 分析法的优点是理论严谨,结论可靠,省钱省力,结论通用性好,便于分析和应用。缺点是可求解的对象不多,大部分要求几何形状规则,边界条件简单,线性问题。有的解结构复杂,应用有难度,对人员专业水平要求高。 数值法:是当前发展的主流,发展了大量的商业软件。方法有:有限差分法,有限元法,边界元法,直接模拟法,离散化法,蒙特卡罗法,格子气法等,大大扩展了导热微分方程的实用范围,不受形状等限制,省钱省力,在依靠计算机条件下,计算速度和计算质量、范围不断提高,有无穷的发展潜力,能求解部分非线性问题。缺点是结果可靠性差,对使用人员要求高,有的结果不直观,所求结果通用性差。 比拟法:有热电模拟,光模拟等 试验法:在许多情况下,理论并不能解决问题,或不能完全解决问题,或不能完美解决问题,必须通过试验。试验的可靠性高,结果直观,问题的针对性强,可以发掘理论没有涉及的新规律。可以起到检验理论分析和数值计算结果的作用。理论越是高度发展,试验法的作用就越强。理论永远代替不了试验。但试验耗时费力,绝大多数要求较高的财力和投入,在理论可以解决问题的地方,应尽量用理论方法。试验法也有各种类型:如探索性试验,验证性试验,比拟性试验等等。 综合法:用理论指导试验,以试验促进理论,是科学研究常用的方法。如浙大提出计算机辅助试验法(CA T)就是其中之一。 傅里叶定律向量形式说明,热流密度方向与温度梯度方向相反。它可适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑介质,气、液、固三相的导热问题。 2.定性地分析固体导热系数和温度变化的关系 3.什么是直肋的最佳形状与已知形状后的最佳尺寸? Schmidt假定:如要得到在给定传热量下要求具有最小体积或最小质量的肋的形状和尺寸,肋片任一导热截面的热流密度都应相等。 1928年,Schmidt等提出了一维肋片换热优化理论:设导热系数为常数,沿肋高的温度分布应为一条直线。Duffin应用变分法证明了Schmidt假定。Wikins[3]指出只有在导热系数和换热系数为常数时,肋片的温度分布才是线性的。Liu和Wikins[4]等人还得到了有内热源及辐射换热时优化解。长期以来肋片的优化问题受到理论和应用两方面的重视。 对称直肋最优型线和尺寸的无量纲表达式分析: 假定一维肋片,导热系数和换热系数为常数,我们有对称直肋微分方程(忽略曲 线弧度): yd2θ/dx2+(dy/dx)dθ/dx-θh/λ=0 由Schmidt假定,对任意截面x: dθ/dx=-q/λ=const

高等传热学部分答案.

7-4,常物性流体在两无限大平行平板之间作稳态层流流动,下板静止不动,上板在外力作用下以恒定速度U 运动,试推导连续性方程和动量方程。 解:按照题意 0, 0=??=??=x v y v v 故连续性方程 0=??+??y v x u 可简化为 0=??x u 因流体是常物性,不可压缩的,N-S 方程为 x 方向: )(12222y u x u v y p F y u v x u u x ??+??+??-=??+??ρρ 可简化为 022=??+??-y v x p F x η y 方向 )(12222y v x v v y p F y v v x v u y ??+??+??-=??+??ρρ 可简化为 0=??= y p F y 8-3,试证明,流体外掠平壁层流边界层换热的局部努赛尔特数为 12121 Re Pr x Nu r = 证明:适用于外掠平板的层流边界层的能量方程

22t t t u v a x y y ???+=??? 常壁温边界条件为 0w y t t y ∞ ==→∞时,时,t=t 引入量纲一的温度w w t t t t ∞-Θ= - 则上述能量方程变为22u v a x y y ?Θ?Θ?Θ+=??? 引入相似变量1Re ()y y x x ηδ= == 有 11()(()22x x x ηη ηηη?Θ?Θ?''==Θ-=-Θ??? ()y y ηηη?Θ?Θ?'==???;22()U y x ηυ∞ ?Θ''= Θ? 将上三式和流函数表示的速度代入边界层能量方程,得到 1 Pr 02 f '''Θ+Θ= 当Pr 1时,速度边界层厚度远小于温度边界层厚度,可近似认为温度边界层内 速度为主流速度,即1,f f η'==,则由上式可得 Pr ()2d f d η''Θ'=-'Θ,求解可得 12 12 ()()Pr 2 Pr (0)()erf η ηπ Θ='Θ= 则1212 0.564Re Pr x x Nu = 8-4,求证,常物性不可压缩流体,对于层流边界层的二维滞止流动,其局部努

高等传热学作业要点

1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: →→→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθd r rd t T k q r r sin ???-= ?θθ θθd r dr T r k q sin ???-= (1-3) θ? θ? ?rd dr T r k q ???- =sin 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ?θ?θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2 222222sin )(sin sin )( (1-6)

2-3、一长方柱体的上下表面(x=0,x=δ)的温度分别保持为1t 和2t ,两侧面(L y ±=)向温度为1t 的周围介质散热,表面传热系数为h 。试用分离变量法求解长方柱体中的稳态温度场。 解:根据题意画出示意图: (1)设f f f t t t t t t -=-=-=2211,,θθθ,根据题意写出下列方程组 ????? ??? ?? ?=+??==??======??+??00 000212222θθ λθθθδθθθ θh y L y y y x x y x (2-1) 解上述方程可以把θ分解成两部分I θ和∏θ两部分分别求解,然后运用叠加原理∏+=θθθI 得出最终温度场,一下为分解的I θ和∏θ两部分:

第五章__对流传热分析

第五章 对流换热分析 通过本章的学习,读者应熟练掌握对流换热的机理及其影响因素,边界层概念及其应用,以及在相似理论指导下的实验研究方法,进一步提出针对具体换热过程的强化传热措施。 5.1内容提要及要求 5.1.1 对流换热概述 1.定义及特性 对流换热指流体与固体壁直接接触时所发生的热量传递过程。在对流换热过程中,流体内部的导热与对流同时起作用。牛顿冷却公式w f ()q h t t =-是计算对流换热量的基本公式,但它仅仅是对流换热表面传热系数h 的定义式。研究对流换热的目的是揭示表面传热系数与影响对流换热过程相关因素之间的内在关系,并能定量计算不同形式对流换热问题的表面传热系数及对流换热量。 2.影响对流换热的因素 (1)流动的起因:流体因各部分温度不同而引起密度差异所产生的流动称为自然对流,而流体因外力作用所产生的流动称为受迫对流,通常其表面传热系数较高。 (2)流动的状态:流体在壁面上流动存在着层流和紊流两种流态。 (3)流体的热物理性质:流态的热物性主要指比热容、导热系数、密度、粘度等,它们因种类、温度、压力而变化。 (4)流体的相变:冷凝和沸腾是两种最常见的相变换热。 (5)换热表面几何因素:换热表面的形状、大小、相对位置及表面粗糙度直接影响着流体和壁面之间的对流换热。 综上所述,可知表面传热系数是如下参数的函数 ()w f p ,,,,,,,,h f u t t c l λραμ= 这说明表征对流换热的表面传热系数是一个复杂的过程量,不同的换热过程可能千差万别。 3.分析求解对流换热问题 分析求解对流换热问题的实质是获得流体内的温度分布和速度分布,尤其是近壁处流体内的温度分布和速度分布,因为在对流换热问题中“流动与换热是密不可分”的。同时,分析求解的前提是给出正确地描述问题的数学模型。在已知流体内的温度分布后,可按如下的对流换热微分方程获得壁面局部的表面传热系数 2 x x w ,x W /(m K )t h t y λ??? ?=- ? ???? 由上式可有 2 x x w ,x W /(m K )h y λθ?θ?? ?=- ? ???? 其中θ为过余温度,t t θ=-。

第五章对流换热分析

wton’s law of cooling: ?=W/m 2 dx dt q λ?=

Contents 第一节对流换热概述 Analysis on Convection 第二节对流换热微分方程组 The Convection Heat Transfer Equations 第三节边界层换热微分方程组 Convection Differential Equations of Boundary Layer 第四节边界层换热积分方程(自学) 第五节动量传递和热量传递的类比(自学) 第六节相似理论基础 Basis of similarity theory

Convection is the mode of energy transfer between a solid surface and the adjacent liquid or gas that is in motion, and it involves the combined effects of conduction and fluid motion. (流体与固体壁直接接触时所发生的热量传递过程,称为对流换热) The faster the fluid motion, the greater the convection heat transfer. We will study how to calculate the convection heat-transfer coefficient h in Chapter 5 and Chapter 6.

5-1 Analysis on Convection(对流换热概述) Convection transfer problem

高等传热学导热理论

高等传热学导热理论 参考书:高等传热学 贾力 方肇洪 钱兴华 ?S .K a k a c ,Y .Y e n e r , H e a t C o n d u c t i o n 1985, T K 124/Y K 3 ?G .E .M y e r s , A n a l y t i c a l M e t h o d s i n C o n d u c t i o n H e a t T r a n s f e r ,1971,T K 124/Y M 1 ?M .N .O z i s i k ,H e a t C o n d u c t i o n ,1980,(中译本)O 551.3/A 2 ?俞昌铭,热传导及数值分析,1981,清华大学出版社, O 551.3/Y 2 ?J .E .P a r r o t t ,A .D .S t u c k e s ,T h e r m a l C o n d u c t i o n o f S o l i d s ,1975, O 551.3/Y P 1 ?U .G r i g u l l ,H .S a n d n e r , ,H e a t C o n d u c t i o n ,1984,Y K 124/Y G 3 ?E c k e r t E .R .G ,A n a l y s i s o f H e a t a n d M a s s T r a n s f e r , O 551.3/Y E 1(英), O 551.3/A 3,(中) ?V .C .A r p a c i ,C o n d u c t i o n H e a t T r a n s f e r ,1966, ?钱壬章等,传热分析与计算,高教出版社 ?林瑞泰,热传导理论与方法,天津大学出版社 ?屠传经等,热传导,浙江大学出版社 第一讲 导热规律及其数学描述 导热可发生在物体的各种状态:气态、固态和液态。描述传热规律最基本的规律是傅里叶导热定律: 1. F o u r i e r L a w : dx dt q λ-= 傅里叶定律适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑介质,气、液、固三相的导热问题,但其表现形式上为已知热流方向的一维问题。用起来不方便。在已知温度场的情况,我们把傅里叶定律推广成向量形式: n n t t q ??-=?-=λλ 其中?叫n a b l a 算子,作用于温度叫温度梯度。n 为温度梯度单位方向向量。在 不同的坐标系中,?有不同的表现形式,在直角坐标系中: k z j y i x ??+??+??=? 傅里叶定律向量形式说明,热流密度方向与温度梯度方向相反。它可适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑介质,气、液、固三相的导热问题。 2.各向异性材料,导热系数张量; 许多物体的导热能力与方向有关,如木材。正确描述物体中一点的导热系数需采用二阶张量形式:

高等传热学

高等传热学问题及答案 1. 简述三种基本传热方式的传热机理并用公式表达传热定律;传热问题的边界条件有哪两类? 2. 有限元法求解传热问题的基本思想是什么?基本求解步骤有哪些?同有限差分方法相比其优点是什么? 3. 什么是形函数?形函数的两个最基本特征是什么? 4. 加权余量法是建立有限元代数方程的基本方法,请描述四种常见形式并用公式表达。 5. 特征伽辽金法(CG )在处理对流换热问题时遇到什么困难?特征分离法(CBS )处理对流换热问题的基本思想是什么? 第一题: (1)热传导 传热传导模式是因为从一个分子到另一个分子的能量交换,没有分子的实际运动,如果自由电子存在,也可能因为自由电子的运动。因此,这种形式的热输送在很大程度上取决于介质的性质,如果存在温度差,热传导发生在固体,液体和气体。 书上补充: 当两个物体有温差,或者物体内部有温度差时,在物体各部分之间不发生相对位移的情况下,物体微粒(分子,原子或自由电子)的热运动传递了热量。 (2)热对流 ()a w T T h q -=(牛顿冷却定律) 存在于液体和气体中的分子具有运动的自由,它们随身携带的能量(热量),从热区域移动到冷区域。由于在液体或气体的宏观运动,热量传递从一个地区到另一个地方 ,加上流体内的热传导能量传递,称为对流换热。对流可能是自然对流、强制对流,或混合对流。 百度补充: 对流仅发生于流体中,它是指由于流体的宏观运动使流体各部分之间发生相对位移而导致的热量传递过程。由于流体间各部分是相互接触的,除了流体的整体运动所带来的热对流之外,还伴生有由于流体的微观粒子运动造成的热传导。在工程上,常见的是流体流经固体表面时的热量传递过程,称之为对流传热。 (3)辐射 4w T q εσ=(斯蒂藩-玻耳兹曼定律)

高等传热学

能源与机械类研究生用教材 高等传热学 Advanced Heat Transfer 编著:李菊香 南京工业大学能源学院 二○○四年八月

绪论 传热是一种最常见的自然物理现象。当物体内部或物体与物体之间存在温度差异时,就会发生热量从温度较高区域传输到温度较低区域的能量传递过程,这就是通常所说的“传热”,因而由于温差或温度梯度的存在而传递的能量就定义为“热”。 在所有的工程领域,几乎都有传热问题。如动力工程、冶金工程、化学工程、石油工程、核反应堆等等,都有热量传递的问题,另外,在机械、纺织、宇航、电子、农业、环保、生物等领域同样也有许多传热问题。学习传热的目的在于理解传热的基本概念,掌握传热的基本规律,了解传热的计算方法,以及探索传热学中的一些新领域,以解决工程技术中的各种传热问题,在各种传热工程中选择合理的传热方式,优化各种参数,使用合理的设备结构,以达到取得最大的经济效益。 传热问题归纳起来有两大类型:一类是着眼于传热速率的大小及其控制的问题,如采用强化传热以缩小传热设备的尺寸,或削弱传热以减少能量损失。另一类是着眼于温度分布及其控制的问题,如采用何种手段保持物体上的温度分布不变或怎么变化。这两类问题是相互联系的,从它们的本质上说,实际是同一类问题。 有必要将热力学和传热学之间的区别和联系加以说明,热力学研究的是平衡体系,应用热力学定律可以预计一个体系从一种平衡状态转变为另一种平衡状态有多少能量输出或输入,但不能指出这一变化过程需要多长时间,因为在变化过程中体系是不平衡的。而传热学可以在给定的具体条件下指出热量将以多大的速率传播。传热学能以确定能量传播速率的基本定律(经验),补充了热力学第一定律和第二定律。例如,一根灼热的钢棒在一桶水中冷却,热力学可以预算出钢棒与水这一体系最终的平衡温度,但不能告知需要多长时间才能达到这个平衡温度,或者在到达这个平衡状态之前的每一个瞬间钢棒的温度情况,而传热学就可以预计出钢棒和水的温度随着时间的变化关系。传热过程必然遵循热力学第一定律和热力学第二定律,因为这两个热力学定律是自然定律,但传热的过程是一个典型的不可逆过程,还有传热自身的规律。所以也可以说,传热学是对热力学的一个补充, 从学科的角度来看,传热学是工程热物理技术学科的一个分支,工程热物理学科是由热力学、传热传质学、气动热力学、流体力学与燃烧学等组成。 从传热学单独形成一门系统的科学至今,只有两个多世纪的历史。但是随着原子能、宇宙航行等尖端技术的发展,不断地出现新的传热问题,促使传热学得到了迅速的发展。电子计算机和测试技术的发展,更加丰富了研究传热学的手段,使得传热学的研究范围不断扩大,研究方法不断更新,理论分析也不断完善。目前各种传热学的分支学科如“计算传热学”、“纳米尺度传热学”、“微通道流体的传热”、“分子传热学”、“传热优化设计”等也在不断地发展。

高等传热学肋片分析

高等传热学导热理论 第三讲肋片导热分析 肋片(伸(延、扩)展面、):从壁面扩展出的换热面。 肋片的作用: 增加传热面积,改变换热条件和增加表面传热系数。 目的:强化传热,调整温度,减小体积及流阻,减轻重量。 肋的种类:直肋,环肋,异形肋等: 一维肋片的条件(假定): (1)稳定导热,无内热源。 (2)连续均质,各向同性。 (3)表面传热系数h为常量。 不变。 (4)环境换热温度t f (5)导热系数λ为常量 (6)肋基温度均匀。 (7)δ《H,温度变化与宽度无关。 (8)肋基与壁面间无接触热阻 (无温差) 3.1一维对称直肋传热的通用微分方程: 对沿x方向一维传热,设传热面积A,由F o u r i e r定律和热力学第一定律,应用微元分析法,当λ=常量时, )d x=0 有:-dΦ-h U(t-t f

d(λA d t/d x)-h U(t-t f)d x =(λA d2t/d x)+λ(d A/d x)d t-h U(t-t f )d x=0 λA d2t/d x2+λ(d A/d x)d t/d x-h U(t-t f )=0 导热面A矩形时A=2l y,U=2(l+2y), 取l=1,2y<

《高等传热学》教学大纲

《高等传热学》教学大纲 课程性质:选修学分:3.0 参考学时:48 适用专业:研究生大纲执笔人:梁金国教研室主任: 一、教学目的 高等传热学的教学目的是在本科传热学基础上对传热学知识的加深和拓宽:深化理论基础和方法,拓宽知识面,为今后的教学和科学研究打下坚实深厚的理论基础。 二、教学内容 主要分三部分,即热传导、对流换热和辐射换热。 第一篇热传导 第一章热传导理论和热传导方程 热传导的概念、热传导的基本定律、热传导方程(微分形式)、热传导方 程(积分形式)、热传导方程(双曲线型)、边界表面的对流换热第二章导热系致 引言、导热系数的性质 第三章稳定热传导 稳定条件下简单热传导方程的解、绝缘的临界厚度、细杆、带肋片的受 热面、具有热源的壁、埋设的电缆、渗透性平板中的热传导、热传导的 概率方法 第四章不稳定热传导 瞬态热传导:分析方法、瞬态热传导:近似方法、周期性热传导第五章具有运动边界的热传导 熔解和凝固时的热传导

第二篇对流换热 引言、边界层及紊流 第六章守恒方程的推导 连续方程、动量方程、能量方程、边界层的连续方程及动量方程、边界 层能量方程 第七章层流强迫对流 层流边界层方程、层流边界层的相似解、边界层动量积分方程、层流边 界层能量方程、温度为常数的乎板上的换热、楔型流的换热、边界层能 量方程的近似解 第八章紊流强迫对流 紊流剪切层中的动量方程和速度型、紊流剪切流中的能量方程和换热第三篇热辐射 第十四章热辐射的基本概念和关系式 辐射密度与辐射压力、黑体辐射 第十七章组合传热过程;温度测量 温度测量中的辐射误差、高温测量法 三、教学重点 传热学的一般理论和方法,特别注重基本概念、技巧和前沿动态的教学。 四、教材 E. R. G. Eckert, R. M. Drake, Analysis of Heat and Mass Transfer, McGraw-Hill Inc., 1972 E. R. G. 埃克特, R. M. 德雷克著,航青译,传热与传质分析,科学出版社,1983 五、主要参考书 1.M.. Ν. 奥齐西克著,俞昌铭主译,热传导,高等教育出版社,1984

对流换热与准则数

单相流体对流换热及准则关联式部分 一、基本概念 主要包括对流换热影响因素;边界层理论及分析;理论分析法(对流换热微分方程组、边界层微分方程组);动量与热量的类比;相似理论;外掠平板强制对流换热基本特点。 1、由对流换热微分方程知,该式中没有出现流速,有人因此得出结论:表面传热系数h与流体速度场无关。试判断这种说法的正确性? 答:这种说法不正确,因为在描述流动的能量微分方程中,对流项含有流体速度,即要获得流体的温度场,必须先获得其速度场,“流动与换热密不可分”。因此表面传热系数必与流体速度场有关。 2、在流体温度边界层中,何处温度梯度的绝对值最大?为什么?有人说对一定表面传热温差的同种流体,可以用贴壁处温度梯度绝对值的大小来判断表面传热系数h的大小,你认为对吗? 答:在温度边界层中,贴壁处流体温度梯度的绝对值最大,因为壁面与流体间的热量交换都要通过贴壁处不动的薄流体层,因而这里换热最剧烈。由对流换

热微分方程,对一定表面传热温差的同种流体λ与△t均保持为常数,因而可用绝对值的大小来判断表面传热系数h的大小。 3、简述边界层理论的基本论点。 答:边界层厚度δ、δt与壁的尺寸l相比是极小值; 边界层内壁面速度梯度及温度梯度最大; 边界层流动状态分为层流与紊流,而紊流边界层内,紧贴壁面处仍将是层流,称为层流底层; 流场可以划分为两个区:边界层区(粘滞力起作用)和主流区,温度同样场可以划分为两个区:边界层区(存在温差)和主流区(等温区域); 对流换热热阻主要集中在热边界层区域的导热热阻。层流边界层的热阻为整个边界层的导热热阻。紊流边界层的热阻为层流底层的导热热阻。 4、试引用边界层概念来分析并说明流体的导热系数、粘度对对流换热过程的影响。 答:依据对流换热热阻主要集中在热边界层区域的导热热阻。层流边界层的热阻为整个边界层的导热热阻。紊流边界层的热阻为层流底层的导热热阻。导热系数越大,将使边界层导热热阻越小,对流换热强度越大;粘度越大,边界层(层流边界层或紊流边界层的层流底层)厚度越大,将使边界层导热热阻越大,对流换热强度越小。

高等传热学知识重点2018

高等传热学知识重点 1.固体中的微观热载流子的种类,以及对金属/绝缘体材料中热流的贡献。 2.平均自由程的概念。 3.声子和电子分别满足怎样的统计分布律,分别写出其分布函数的表达式 4.简述热波模型的物理含义。 5.电子和声子满足的量子统计分布规律。 6.分子动力学理论中,典型的势能函数项。 7.简述dual phase lag模型的物理含义 8.热传导的两步模型所反映的物理过程。常用的微尺度温度/热物性测量方法。 9.能够写出金属内部抛物两步模型的热传导公式,并理解其意义。 10.闪光法物性测量方法的假设条件和限制条件。 11.能够绘制出时域热反射(TDTR)实验系统的原理简图,了解交流测量的优势以及锁相放大 器的主要功能。 12.理解并推导3ω谐波探测技术中的3ω。 13.速度边界层和热边界层的定义及区别。 14.熟悉管内层流热边界层分布和自由对流外部热边界层分布。 15.高Pr数和低Pr数管内湍流热边界层分布特点。 16.湍流边界层沿高程分布的定性结构,了解Couette 流动假设。 17.了解热辐射不同的应用背景。 18.热辐射的普朗克定律,维恩位移定律。 19.什么是Stefan-Boltzmann定律,解释什么是发射率,什么是吸收率,什么是黑体,什么是灰体。 20.简述近场辐射的概念及其存在的条件。 21.分析导热和对流的能量方程时,两类方程的主要区别是什么?

22. 能量方程的分析求解过程中,反映过程与周围环境相互作用的条件的第一类、第二类、 第三类边界条件分别是什么? 23. 二维边界层分析中,速度、热和传质的边界层内有哪些关系式? 24. 三个无量纲参数,普朗特数Pr 、施密特数Sc 和刘易士数Le 的定义和区别是什么? 25. 湍流分析过程中,Reynolds 时均的定义是什么? 26. 层流外部边界层的流动和换热的应用背景有哪些? 27. 强迫与自由综合对流或者自由与强迫混合对流在很多工程装置和自然界的传递过程中都 会发生,对于Pr=0.7的助流情况,如何区分流动的状态? 28. 范德瓦尔斯力的性质及其考虑因素。 29. 试简述Hamaker 常数和脱离压的定义和物理含义,Hamaker 常数与表面浸润性的关系。 30. 接触角的含义及Young 方程的表达式,理解接触角与浸润性的关系,及浸润性的影响因 素。 31. 沸腾气泡产生及生长的三个基本条件,气泡生长阶段及其特点。 32. 流动沸腾产生沸腾抑制的原因,流动饱和沸腾的传热机理。 33. 常规尺度和微尺度通道内气液两相流的流型,及产生区别的原因。 34. 理解下列无量纲数或参数的名称和物理意义。 35. 从热力学的角度(最小自由能和熵增原理),理解相变的物理本质(F =E-TS )。 36. 提高沸腾相变换热系数的几种常用方法,临界热流密度产生的机理。 37. 珠状凝结与膜状凝结换热性能的区别,珠状凝结换热的主要热阻。 38. 简述热管的基本传热原理和特点,热管的传热能力受哪些因素的制约?毛细芯设计的基本原则 是什么? 39. 简述(火积)的概念及在传热性能优化中的应用原理。 40. 试用热阻网络法分析槽式聚光吸热器的传热过程,并列出相应的微分方程组及边界条件。 ()l l s v lv c Ja T T h ρρ∞=-/Ca u μσ=2/We u d ρσ =1/2[/()]c l v l g σρρ=-Kn L λ= 22(/)()/d h c l v h Bo D l g D ρρσ ==-

高等传热学考试范围(答案)

1.强迫流动换热如何受热物性影响? 答:强迫对流换热与Re和Pr有关;加热与对流的粘性系数发生变化。 2.强化传热是否意味着增加换热量?工程上强化传热的收益和代价通常是指什么? 答:不一定,强化传热是指在一定条件(如一定的温差、体积、重量或泵功等)下增加所传递的热量。工程上的收益是减小换热器的体积节省材料和重量;提高现有换热器的换热量;减少换热器的阻力,以降低换热器的动力消耗等。代价是耗电,并因增大流速而耗功。 3.传热学和热力学中的热平衡概念有何区别? 答:工程热力学是温度相同时,达到热平衡,而传热学微元体获得的能量等于内热源和进出微元体热量之和,内热源散热是有温差的。 4.表面辐射和气体辐射各有什么特点? 为什么对辐射板供冷房间,无需考虑气体辐射的影响,而发动机缸内传 热气体辐射却成了主角? 答:表面辐射具有方向性和选择性。气体辐射的特点:1.气体的辐射和吸收具有明显的选择性。2. 气体的辐射和吸收在整个气体容器中进行,强度逐渐减弱。空气,氢,氧,氮等分子结构称的双原子分子,并无发射和吸收辐射能的能力,可认为是热辐射的透明体。但是二氧化碳,水蒸气,二氧化硫,氯氟烃和含氯氟烃的三原子、多原子以及不对称的双原子气体(一氧化碳)却具有相当大的辐射本领。房间是自然对流,气体主要是空气。由于燃油,燃煤及然气的燃烧产物中通常包含有一定浓度的二氧化碳和水蒸气,所以发动机缸内要考虑。 5.有人在学完传热学后认为,换热量和热流密度两个概念实质内容并无差别,你的观点是? 答:有差别。热流密度是指通过单位面积的热流量。而换热量跟面积有关。 6.管内层流换热强化和湍流换热强化有何实质性差异?为什么? 答:层流边界层是强化管内中间近90%的部分,层流入口段的热边界层比较薄,局部表面传热系数比充分发展段高,且沿着主流方向逐渐降低。如果边界层出现湍流,则因湍流的扰动与混合作用又会使局部表面传热系数有所提高,再逐渐向于一个定值。而湍流是因为其推动力与梯度变化和温差有关,减薄粘性底层,所以强化壁面。 7.以强迫对流换热和自然对流换热为例,试谈谈你对传热、流动形态、结构三者之间的关联 答:对流换热按流体流动原因分为强制对流换热和自然对流换热。一般地说,强制对流的流速较自然对流高,因而对流换热系数也高。例如空气自然对流换热系数约为5~25 W/(m2?℃),强制对流换热的结构影响了流体的流态、流速分布和温度分布,从而影响了对流换热的效果。流体在管内强制流动与管外强制流动,由于换热表面不同,流体流动产生的边界层也不同,其换热规律和对流换热系数也不相同。在自然对流中,流体的流动与换热表面之间的相对位置,对对流换热的影响较大,平板表面加热空气自然对流时,热面朝上气流扰动比较激烈,换热强度大;热面朝下时流动比较平静,换热强度较小。 8.我们经常用Q=hA·Δt.计算强迫对流换热、自然对流换热、沸腾和凝结换热,试问在各种情况下换热系数与 温差的关联? 答:强迫对流的换热系数与Re,Pr有关但与温差无关,自然对流与Gr的0.25次方有关联,即与温差有关,凝结换热换热系数是温差的-0.25次方。 9.试简述基尔霍夫定理的基本思想 答:一、基尔霍夫第一定律:汇于节点的各支路电流的代数和等于零,用公式表示为: ∑I=0 又被称作基尔霍夫电流定律(KCL)。 二、基尔霍夫第二定律:沿任意回路环绕一周回到出发点,电动势的代数和等于回路各支路电阻(包括电 源的内阻在内)和支路电流的乘积(即电压的代数和)。用公式表示为: ∑E=∑RI 又被称作基尔霍夫电压定律(KVL)。 10.简述沸腾换热与汽泡动力学、汽化核心、过热度这些概念的关联 答:沸腾是指在液体内部以产生气泡的形式进行的气化过程,就流体运动的动力而言,沸腾过程又有大容器沸

《高等传热学》20109811257652

华中科技大学博士研究生入学考试《高等传热学》考试大纲 第一部分考试说明 一、考试性质 全国博士研究生入学考试是为高等学校招收博士研究生而设置的。其中,高等传热学是为热能工程类考生而设置的专业课程考试科目,属招生学校自行命题的性质。它的评价标准是高等学校优秀硕士研究生能达到的及格或及格以上水平,以保证被录取者具有坚实的传热学基本理论知识和较好地分析处理实际传热问题的能力,有利于招生学校在专业上择优选拔。 二、考试的学科范围 应考范围包括:传热学基础、热传导、对流换热问题分析、辐射换热、换热器等四大部分。 三、评价目标 高等传热学考试的目标在于考查考生对传热学的基本概念、基本理论的掌握和研究求解传热问题的能力。考生应能: 1. 准确地把握传热学定义的物理量以及它们的量纲; 2. 正确理解热量传递过程基本概念和基本规律; 3. 掌握以能量守恒定律为基础建立传热现象数学模型的方法,并能分析求解有关问题; 4. 正确应用传热学的基本理论知识分析和计算实际传热问题。 四、考试形式与试卷结构 1. 答卷方式:闭卷,笔试;试卷中的所有题目全部为必答题; 2. 答题时间:180分钟; 3. 试卷分数:满分为100分; 4. 试卷结构及考查比例: 试卷主要分为两大部分,即:基本概念题约50%,理论分析及计算题约50%。 第二部分考查要点 一、传热学基础 温度场、付立叶定律、导热系数、导热微分方程、定解条件。 二、热传导 一维稳态导热过程分析。变截面或变导热系数问题、内热源问题、肋片散热过程分析。一维非稳态导热过程分析。 三、对流换热 对流换热过程的特征、牛顿冷却公式与换热系数。对流换热过程微分方程组及边界层微分方程组。层流边界层对流换热过程分析求解、对流换热计算。有相变的对流换热过程(凝结与沸腾)的简要分析及计算。 四、辐射换热

高等传热学作业

第一章 1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: → →→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθ θθd r dr T r k q sin ???- = (1-3) 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ?θ? θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于 各向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2 222222sin )(sin sin )( (1-6) 第二章 2-3、一长方柱体的上下表面(x=0,x=δ)的温度分别保持为1t 和2t ,两侧面(L y ±=)向温度为1t 的周围介质散热,表面传热系数为h 。试用分离变量法求解长方柱体中的稳态温度场。 解:根据题意画出示意图: (1)设f f f t t t t t t -=-=-=2211,,θθθ,根据题意写出下列方程组

相关主题
文本预览
相关文档 最新文档