当前位置:文档之家› 酸液及添加剂

酸液及添加剂

酸液及添加剂
酸液及添加剂

酸盐的反应最快,其次是硅酸盐类,最慢的是石英。常用盐酸和氢氟酸的混合物来解除上述物质的堵塞或进行砂岩油、气层的酸化处理。

氢氟酸与盐酸联合使用其原因在于:

(1) 当氢氟酸与硅酸盐类以及碳酸盐反应时,会生成不少难溶性物质重新堵塞储层,如CaF2等。由于CaF2在低pH值时为溶解状态,pH值高时会沉淀堵塞孔道,而当酸液中存在盐酸时,则可抑制或减少CaF2的沉淀。

(2) 与其它成份的反应相比,氢氟酸与碳酸盐的反应速度最快。如果单独使用氢氟酸,氢氟酸大部分先消耗在与碳酸盐的反应上,既不能充分发挥氢氟酸溶蚀泥质成份的作用,又可能产生不溶性物质堵塞储层。混合液中的盐酸先溶蚀掉碳酸盐后,氢氟酸可充分发挥其溶蚀泥质等成分的作用,以节约成本较高的氢氟酸,同时也减少难溶性物质CaF2的数量,降低重新堵塞油气层的可能性。

确定土酸的用量和配方后,在配置土酸时,所需浓度的氢氟酸和盐酸的数量,可参照公式(7-50)进行计算得到。

3. 甲酸和乙酸

甲酸(formic acid)和乙酸(acetic acid)均为有机酸,主要优点是反应速度慢、腐蚀性较弱,在高温下易于缓速和缓蚀。它主要用于特殊储层(如高温井)的酸处理以及酸液与油管接触时间较长的带酸射孔等作业,或用于须与镀铝或镀铬部件直接接触的场合。可供使用的有机酸品种很多,但在酸处理中乙酸和甲酸用得较广。

甲酸又名蚁酸,是无色透明的液体,熔点8.4℃,有刺激性气味,易溶于水,水溶液呈弱酸性。我国的工业甲酸浓度在90%以上。

乙酸又名醋酸,我国工业乙酸的浓度在98%以上,因为乙酸在低温时会凝成象冰一样的固态,故俗称为冰醋酸。在有机酸中,乙酸是酸处理中用量最大的一种。酸浓度一般不超过15%(质量),在此浓度下与碳酸盐作用的生成物(醋酸钙、醋酸镁)在残酸中一般呈溶解状态。除了用此作射孔液,用于与易腐蚀金属接触等场合外,醋酸还常与盐酸配成混合酸用于特殊储层酸处理。

甲酸和乙酸电离度小,与同浓度盐酸相比腐蚀性小,反应速度慢几倍到几十倍,有效作用距离大。如果完全与碳酸盐反应,其溶蚀能力较同浓度的盐酸小1.5-2倍。但由于其价格昂贵,欲达到盐酸的溶蚀能力,用酸量大,成本高。另外,酸压时甲酸均匀溶蚀裂缝壁面,裂缝导流能力小。所以,只有在高温(120℃以上)井中,盐酸液的缓速和缓蚀问题无法解决时,才使用它们进行碳酸盐岩储层酸化。

甲酸或乙酸与碳酸盐作用生成的盐类,在水中的溶解度较小。所以,酸处理时采用的浓度不能太高,以防生成甲酸或乙酸钙盐沉淀堵塞渗流通道。一般甲酸浓度不超过10%,乙酸液的浓度不超过l5%。

4. 多组分酸

所谓多组分酸(multicomponent acid)就是由一种或多种有机酸与盐酸组成的混合物。六十年代初,国外一度采用多组分酸来缓速酸化,取得显著效果。

酸-岩反应速度由氢离子浓度而定。因此当盐酸中混掺有离解常数小的有机酸(甲酸、乙酸、氯乙酸等)时,溶液中的氢离子数主要取决于盐酸的氢离子数,根据同离子效应,盐酸的存在极大地降低了有机酸的电离程度,因此当盐酸活性耗完前,甲酸或乙酸几乎不离解,盐酸活性耗完后,甲酸或乙酸才离解起溶蚀作用。所以,盐酸在井壁附近起溶蚀作用,甲酸或乙酸在储层较远处起溶蚀作用,混合酸液消耗时间近似等于盐酸和有机酸反应时间之和,因此可以得到较长的有效距离。

除上述酸液外,还用到诸如乳化酸、稠化酸(胶凝酸)、泡沫酸等酸液,它们都是在上述盐酸体系中分别加入特殊添加剂配制而成,以满足不同的酸化工艺和施工要求,可参见有关酸化专著。

二、酸液添加剂及选择

为了改善酸液性能,防止酸液在储层中产生不利影响,需要在酸液中加入某些化学物质,这些化学物质统称为添加剂。常用添加剂的种类有:缓蚀剂、缓速剂、铁离子稳定剂、表面活性剂等,有时还加入增粘剂、减阻剂、分流剂、破乳剂、杀菌剂等。

对酸液添加剂的总的要求是:(1)效能高,处理效果好;(2)与酸液、储层流体及岩石配伍性好;(3)来源广,价格便宜。

随着酸化工艺技术的发展,国内外采用的酸液添加剂越来越多,类型和品种也在不断改进,本节就常用的主要添加剂类型作简单介绍。

1. 缓蚀剂

无论是盐酸还是氢氟酸对金属都有很强的腐蚀作用。酸处理时,由于酸直接与储罐、压裂设备、井下油管、套管接触,特别是深井井底温度很高,而所用的酸又比较浓时,便会给这些金属设备带来严重的腐蚀。如果不加入有效的缓蚀剂(corrosion inhibitor),不但会损坏设备,缩短使用寿命,甚至造成事故,而且因酸液和钢铁的反应产物被挤入储层,造成储层堵塞而降低酸化处理效果。因此,必须将注入酸液对钢材的腐蚀速度控制在允许的安全标准之内。

1) 缓蚀机理

以盐酸为例说明。盐酸与金属铁的反应为

2HC1+Fe→FeC12+H2

FeC12易溶于水,但当酸的浓度降低到一定程度后,FeC12水解生成Fe(OH)2,其反应为

FeC12+2H2O→Fe(OH)2ˉ+2HCl

Fe(OH)2是絮凝状沉淀,很难把它排出储层,对渗流影响大,为此必须解决防腐问题。

目前酸处理时,采用的缓蚀方法很多。概括来说不外乎三个方面:采用缓蚀酸液、采用缓蚀工艺、添加缓蚀剂。

所谓缓蚀剂是指那些加入酸液中能大大减少金属腐蚀的化学物质。有机缓蚀剂分子由两部分组成,一部分是容易被金属表面吸附的极性基(亲水基),另一部分是疏水的有机原子团。

缓蚀剂是通过物理吸附或化学吸附而吸附在金属表面,从而把金属表面覆盖,酸溶液中的H+难以接近,结果使腐蚀速度降低。因而凡是影响覆盖面积大小(如:缓蚀剂分子的大小、扁平吸附方式还是直立吸附方式等)以及影响吸附难易程度的因素都会对缓蚀效果产生很大影响。

2) 缓蚀剂评价方法

缓蚀剂的室内评价一般是使被保护金属试样与酸液接触,将金属试样插入混合有酸液与缓蚀剂的高压釜内,在一定温度、压力、搅动条件下测定金属的失重,试验方法可参见有关SY5405—95行业标准。试验前后或试验期间定时对试样称重便可确定试样的腐蚀量,缓蚀效果用腐蚀速度[单位时间内与酸液接触的单位面积金属的失重量(g/m2.h)]来衡量。

国外的一般要求是在整个施工过程中,腐蚀总量不超过98g/m2,高温井的腐蚀总量不得超过245g/m2。国内外都规定,在有效缓蚀时间内,不允许产生“点蚀”(或坑蚀)现象。一般认为加缓蚀剂后,缓蚀率应大于98%以上。我国规定在试验压力为7.845MPa,反应时间为4小时的条件下,腐蚀速度不得超过SY5405—95规定的范围,详细资料可参见有关技术手册。

由于酸的类型及浓度,酸液中其它添加剂的存在以及金属种类和反应条件等都对缓蚀剂的性能有影响。因此,必须选择有代表性的钢片试样,严格控制温度、压力和搅拌速度、反应时间,使用加入其它添加剂配制好的酸液来作缓蚀剂的评价试验。

3) 缓蚀剂类型及选择

国内外对盐酸的缓蚀问题进行了大量的研究工作,提供了许多种类的缓蚀剂。综合起来主要可分为两大类:

(1)无机缓蚀剂。如含砷化合物等。

(2)有机缓蚀剂。如砒啶类,炔醇类、醛类、硫脲类、胺类等。

目前国内外有很多商品化的缓蚀剂可供选用,性能和价格各异。一般应根据下列处理条件及井况进行选用:

(1)酸型及浓度;

(2)与酸液接触的金属类型;

(3)最高温度;

(4)酸液与管件的接触时间。

有时也要考虑诸如硫化物引起的强度破坏(如硫化氢产生的氢脆)等其它因素。

为了保险起见,应根据具体使用的酸液配方,储层温度条件等进行试验选择,一般来说,能用于HCl的缓蚀剂,大多也能用于土酸等其它酸液,但最好做试验确定。

此外,研究和应用实践表明:有机缓蚀剂比无机缓蚀剂效能好;同时缓蚀剂存在最佳用量问题,用量大反而不好,其用量应由试验确定;单一缓蚀剂的效果不如复合配方好,应由试验筛选最佳复配配方。

酸化施工时,随着注液过程的进行,井筒温度及井壁附近温度降低幅度大。因此,注液后期选用较便宜的低温缓蚀剂,既扩大其选用范围,也大大节约了成本,对其它添加剂的选择也可采用类似的方法。

2. 表面活性剂

在酸液中加入表面活性剂(surface active agent),其作用是多方面的。按其作用可分为以下几类:

1) 表面张力降低剂

主要采用阴离子型或非离子型表面活性剂及其调配物,将其添加剂加到酸液中以降低酸液和原油之间的表面张力,降低毛管阻力,调整岩石润湿性,帮助残酸返排,提高近井作业效果。

常用的表面活性剂为烷基芳基磺酸盐(阴离子型)或氧化乙基烷基醛(非离子型),可与互溶剂一起使用,以增加表面活性剂进入储层的深度。

2) 破乳剂

在酸液中加入活性剂,可以抵消原油中原有的天然乳化剂(石油酸等)的作用,防止酸与储层原油乳化,此类表面活性剂为破乳剂(demulsifier)。常用的破乳剂有阴离子型活性剂如烷基磺酸钠,非离子型如聚氧乙烯辛基苯酚醚等。

3) 分散剂及悬浮剂

由于在酸化过程中,酸液未溶解的粘土、淤泥等杂质颗粒会从原来的位置上松散下来,形成絮凝团,这些团块移动并可能聚集,以致堵塞储层孔隙。因此应设法使杂质可悬浮在酸液中,随残酸排出,为达到此目的而加入的一种添加剂称为悬浮剂(suspending agent)。使残酸液的杂质颗粒保持分散而不聚集加入的添加剂称为分散剂(dispersant)。常用的悬浮剂和分散剂是非离子型的和阴离子型的表面活性剂复配。

4) 缓速剂

为了延缓酸-岩反应速度,在酸液中加入一种活性剂,其在岩石表面吸附,使岩石具有油湿性。岩石表面被油膜覆盖后,阻止了H+与岩面接触,降低酸-岩反应速度。用于此目的的活性剂称为缓速剂(retardant)。必须指出,岩石吸附了大量活性剂,水湿储层转变为油湿储层后,将会影响油的流动及最终采收率,对油田开发不利。

5) 抗酸渣剂(anti sludge agent)

在酸液中加入阴离子烷基芳香基磺酸盐与非离子表面活性剂的复配物,并添加芳族溶剂以及能在酸性条件下络合铁离子的络合剂,将其加入酸液或前置液中,可防止沥青质原油在酸化时形成酸渣堵塞。常用抗酸渣剂有烷基芳香基磺酸盐、芳香族互溶剂、乙二醇醚类等。其中,烷基芳香基磺酸盐在酸中溶解度非常小,加入非离子表面活性剂可增加其溶解度,此外它与原油接触将产生乳状液,因此还必须加入优良的防乳化剂。

6) 互溶剂(mutual solvent)

主要使用乙二醇类。常用的有乙二醇单丁醚(EGMBE),双乙二醇单丁醚(EGMEB)及丁氧基三乙醇(BOTP)等,将其加入前置液或后置液中,可保持岩石水润湿性,减少酸液中表面活性剂在储层固相颗粒的吸附损失,增强酸中各种添加剂的配伍性。

EGMBE具有降低砂岩酸化处理中的乳化作用,加速返排液溶解能力的作用。

互溶剂多用于砂岩酸化,也可用于碳酸盐岩层,在挤注盐酸前用EGMBE来预洗石灰岩储层,起清洗剂及除油剂的作用,使酸处理效果得到改善。

在酸液中加入粘土稳定剂(clay stabilizer)的作用是防止酸化过程中酸液引起储层中粘土膨胀、分散、运移造成对储层的污染。常用的粘土稳定剂如下:

1) 简单阳离子类粘土稳定剂

主要是K+、Na+、NH4+等氯化物,如KCl、NH4Cl等,添加在酸液中依靠离子交换作用稳定粘土。但其效果不佳,一般已不在酸液中使用,而用在前置液或后置液中。

2) 无机聚阳离子类粘土稳定剂

如羟基铝及锆盐,氢氧化锆可加在酸液中使用,羟基铝在酸处理后的后置液中,能起较好的防止粘土分散、膨胀作用。

3) 聚季铵盐

加在酸液中,兼有稠化和缓速酸液的作用,用于前置液或后置液中,该类粘土稳定剂可用于温度高达200℃的井中,稳定效果好。目前,许多油田均广泛将其用于压裂、酸化施工作业中,取得显著的效果。

其它类型的粘土稳定剂还包括聚胺类粘土稳定剂、季铵盐类等,但因其可使岩石油湿,导致酸后产水量上升,已较少使用。

5. 分流剂

在酸液中加入适当的分流剂(diverting agent),暂时封堵已酸化层(或高渗透层),使后续的酸液转向到另外一层或低渗层(污染严重层),达到均匀进酸、最终实现均匀酸化的目的。要实现分流酸化,分流剂必须满足下列物理和化学要求。物理要求为:(1)足够低的滤饼渗透率:为了获得最大分流效率,分流剂在井壁附近应尽可能形成渗透率小于最致密层或伤害严重层渗透率的滤饼。若滤饼渗透率大于或等于致密层渗透率,则分流效率会降低低甚至失效;(2)低侵入:为了最大限度发挥转向剂的作用和获得最小的清洗问题,不论油层岩石性质如何,都要防止分流剂颗粒侵入油气层深部;(3)分散性好:分流剂颗粒在携带液中必须均匀分散,避免发生凝聚现象。化学要求为:(1)配伍性:分流剂必须与处理液及其添加剂(缓蚀剂、表面活性剂、防膨剂、铁离子稳定剂、稠化剂等)配伍。在处理井温度条件下,分流剂必须对其携带液呈化学惰性。

(2)酸化后彻底清洗:分流剂必须能溶于采出液或注入液。当酸化起到分流作用后,它们能被迅速彻底的清除。

目前采用的分流剂主要有水溶性聚合物(聚乙烯、聚甲醛、聚丙烯酰胺、瓜胶等)、惰性固体(硅粉、岩盐、油溶性树脂等)、萘、苯甲酸颗粒等。这些分流剂也可降低碳酸盐岩储层酸压时酸液沿裂缝壁面滤失的作用,所以,也可以作为酸压时的降滤剂。

6. 增粘剂(viscosity increasing agent)和降阻剂(friction reducer)

由于高粘度酸液能够实现(1)在酸压时增大动态裂缝宽度、降低裂缝的面容比;(2)高粘能够降低H+传质速度;(3)降低酸液滤失等,因而高粘度酸液能够延缓酸-岩反应速度,增大酸液有效作用距离。

在酸液中加入一种能够提高酸液粘度的物质,称为增粘剂或稠化剂。常用的增粘剂为聚丙烯酰胺、羟乙基纤维素和瓜胶。增粘剂同时又是很好的降阻剂,能够在注酸时有效地降低酸液在井筒中的摩阻。虽然许多人造聚合物有降阻的作用,但不一定能够使酸液增粘。

常见的食品添加剂的作用及危害

常见的食品添加剂的作用及危害 1、山梨酸钾(防腐剂): 能有效地抑制霉菌,酵母菌和好氧性细菌的活性,还能防止肉毒杆菌、葡萄球菌、沙门氏菌等有害微生物的生长和繁殖。 推荐:山梨酸钾抗菌力强、毒性较小,可参与体内正常代谢,转化为二氧化碳和水,但价格较贵,不少国家已开始逐步用它取代苯甲酸钠。 2、亚硝酸钠(护色剂): 不仅可以使肉制品色泽红润,还可以抑菌保鲜和防腐,目前还没有其他更为理想的添加剂替代它。 副作用:过量食入可麻痹血管运动中枢、呼吸中枢及周围血管,更可疑的是有一定致癌性。 标准:世界食品卫生科学委员会发布的人体安全摄入亚硝酸钠的标准为0-0.1毫克/千克体重,按此标准使用和食用,对人体不会造成危害。 3、D-异抗坏血酸钠(抗氧化剂): 被中国食品添加剂协会评为“绿色食品添加剂”,可保持食品的色泽,自然风味,延长保质期,主要用于肉制品、水果、蔬菜、罐头、果酱、啤酒、汽水、果茶、果汁、葡萄酒等。它能防止腌制品中致癌物质——亚硝胺的形成。 副作用:基本无害,但是过量摄入会导致一系列的肠道与皮肤疾病。 4、红曲红(着色剂):天然红色素,是微生物发酵的产物,目前并未发现对人体有什么危害。可以用在调制乳、冷冻饮品、果酱、腐乳、糖果、方便米面制品、饼干、腌腊肉制品、醋、酱油、饮料、果冻、膨化食品上,不允许用在生鲜肉或调理肉制品中。 5、糖精钠(甜味剂): 糖精钠是一种人工合成的甜味剂,又称可溶性糖精,是糖精的钠盐(果脯大量含有)。一般认为糖精钠在体内不被分解,不被利用,大部分从尿排出而不损害肾功能。 副作用:致癌的可能性尚未完全排除。 标准:糖精钠的最大使用量是0.15克/千克、婴幼儿食品中不得使用。 6、甜蜜素(甜味剂): 甜蜜素是目前我国使用最多的甜味剂,成分是环己基氨基磺酸钠。调配于清凉饮料,加味水及果汁汽水最适宜。罐头、酱菜、饼干、蜜饯凉果等均有使用。

食品添加剂柠檬酸钠的特性与应用

食品添加剂—柠檬酸钠的特性与应用 以康师傅的茉莉蜜茶为例,其包装上说明了,茉莉蜜茶里需要添加的食品添加剂有食用香精、D-异抗坏血酸钠、六偏磷酸钠、柠檬酸钠、维生素C等。我就其中的一种添加剂—柠檬酸钠简单地阐述其主要的性状特征、使用方法和其相关的工艺。 柠檬酸钠作为一种添加剂,在食品、医药、洗涤剂等方面均有广泛应用。其中作为食品添加剂,主要用作缓冲剂、螯合剂、营养增补剂、乳化剂、调味剂、稳定剂等。在饼干、饮料、冰淇淋、乳制品、罐头等食品中用于改善食品的风味和提高产品的档次。 柠檬酸钠, 别名枸橼酸钠, 化学名为2- 羟基丙三羧酸三钠, 分子式: C6H5O7Na3●2H2O,相对分子质量: 294.10,含有两个分子的结晶水,白色晶体或粒状粉末。无臭,有清凉咸辣味。常温空气中稳定,在湿空气中微有溶解性,在热空气中产生风化现象。加热至150℃失去结晶水。溶于水,不溶于乙醇。水溶液为弱碱性。市售商品有无水柠檬酸钠、二水柠檬酸钠和五水柠檬酸钠。 柠檬酸钠是目前最重要的柠檬酸盐,主要由淀粉类物质经发酵生成柠檬酸,再跟碱类物质中和而产生,具有多种独特的优良性能:1.柠檬酸钠具有安全无毒性能。由于制备柠檬酸钠的原料基本来源于粮食,因而绝对安全可靠,对人类健康不会产生危害。联合国粮农与世界卫生组织对其每日摄入量不作任何限制,可认为该品属于无毒品。2.柠檬酸钠具有生物降解性。柠檬酸钠经自然界大量的水稀释后,部分变成柠檬酸,两者共存于同一体系中。柠檬酸在水中经氧、热、光、细菌以及微生物的作用,很容易发生生物降解。其分解途径一般是经乌头酸、衣康酸、柠康酸酐, 转变为二氧化碳和水。3.柠檬酸钠具有金属离子络合能力。柠檬酸钠对钙离子、镁离子等金属离子具有良好的络合能力,对其他金属离子,如铁离子等离子也有很好的络合能力。4.柠檬酸钠具有极好的溶解性能,并且溶解性随水温升高而增加。5.柠檬酸钠具有良好的pH 调节及缓冲性能。柠檬酸钠是一种弱酸强碱盐,与柠檬酸配伍可组成较强的pH缓冲剂,因此在某些不适宜pH大范围变化的场合有其重要用处。另外,柠檬酸钠还具有优良的缓凝性能及稳定性能。 柠檬酸钠无毒性、具有pH调节性能及良好的稳定性, 因此可用于食品工业。柠檬酸钠用作食品添加剂, 需求量最大, 主要用作调味剂、缓冲剂、乳化剂、膨

食品添加剂有哪些

食品添加剂有哪些?常见的食品添加剂介绍 1漂白剂 常见种类:亚硫酸盐类、过氧化氢。可用于薯片、葡萄酒、干菜、凉果、白糖等,使用范围非常广,媒体相继曝光过一些黑作坊使用工业用品双氧水掩盖肉类、海鲜的腐败变质外观,消除臭味。 2抗氧化剂 常见种类:抗坏血酸(维他命C)、柠檬酸异丙酯、特丁基对苯二酚。可用于食用油或饼干、蛋糕等,防食物变坏,延长保质期。 3增稠剂 常见种类:卡拉胶、海藻酸钠、羧甲基纤维素钠(CMC)。可用于果冻、糖果、面条、牛奶等。可提高食品的黏稠度或形成凝胶,改变食品物理性状。健康饮食网 https://www.doczj.com/doc/e89997285.html, 4代糖(甜味剂) 常见种类:阿斯巴甜、三氯蔗糖。可用于低糖可乐、香口胶、糖尿病人食品、餐桌用糖包。不法商家过量使用糖精钠的现象很普遍,特别在一些劣质的饮料、蜜饯中。 5香精香料 常见种类:各种口味的天然香精、同天然香精和合成香精。可用于汽水、饼干、糖果、果冻、糕饼、鸡精等,改变其口味。有些食品已经过了保质期,但一些小贩又想把它们卖出去,就会添加香精、香料,意图掩盖变质的味道。 6发色剂 常见种类:亚硝酸盐。可用于腌肉、火腿、午餐肉、腊肠等肉类腊味食品,新鲜肉不可添加。 7防腐剂 常见种类:苯甲酸钠、山梨酸钾、二氧化硫等。可用于果酱、蜜饯,碳酸饮料、果汁等饮料,酱油、酱料等调味品,火腿肠等。为了防止各种加工食品、水果和蔬菜等腐败变质,也有不法商人用甲醛和福尔马林等非食品级的工业原料来杀菌。 8着色剂(色素)

常见种类:人工合成色素柠檬黄、胭脂红、天然色素辣椒红、焦糖色素等。可用于火锅飘香剂、辣椒酱、可乐等。今年5月,北京停售了多种存在超量添加了胭脂红等着色剂现象的调味面制食品。今年4月,媒体曝光上海华联超市销售染色“玉米馒头”。

食品添加剂

就在中国老百姓对食品添加剂安全性还一知半解时,瘦肉精、三聚氰胺、苏丹红、吊白块、福尔马林、孔雀石绿……这些原本与食品并不相关的化学物质,却真真切切地出现在我们的饭桌上危害着我们的健康。 在食品添加剂滥用和化学物质非法添加的双重背景下,“食品生化危机”正在逼近每一个中国人。 一根火腿肠可能含有多少生化成分?超市货架上的食品都添加了哪些化学 物质?号称有机食品是否真的安全?我们将目光直接对准口中的食物,一一审视。 食品安全讲究者范志红说,在消费决定生产的时代,消费者的选择决定了生产者的行为。你有“好色之心”,商家给你加色素,你有“怜香之情”,商家就给你加香精,你有“尝鲜之意”,商家就给你加防腐剂??在食品安全问题上,除了商家,消费者也有不可推卸的责任。 个人需要反思,而负有监管责任的政府,已经将食品安全问题摆到重要日程上来。2月28日《食品安全法》正式出台,而在刚结束的全国“两会”上,温总理的《政府工作报告》上写道:将深入开展食品药品安全专项整治,健全并严格执行产品质量安全标准。实行严格的市场准入制度和产品质量追溯制度、召回制度。 你的胃里有多少添加剂 按照超市的分类,我们调研了常见食品的添加剂。下次,你逛超市的时候,别忘了仔细看看食品成分的标签上是否有某些让人不快的名字。 目前我国食品添加剂目录中有1960多种添加剂,共有22类。 分别是(1)防腐剂(2)抗氧化剂(3)发色剂(4)漂白剂(5)酸味剂(6)凝固剂(7)疏松剂(8)增稠剂(9)消泡剂(10)甜味剂(11)着色剂(12)乳化剂(13)品质改良剂(14)抗结剂(15)增味剂(16)酶制剂(17)被膜剂(18)发泡剂(19)保鲜剂(20)香料(21)营养强化剂(22)其他添加剂。 防腐剂——常用的有苯甲酸钠、山梨酸钾、二氧化硫、乳酸等。用于果酱、蜜饯等的食品加工中。 抗氧化剂——与防腐剂类似,可以延长食品的保质期。常用的有维C、异维C等。 着色剂——常用的合成色素有胭脂红、苋菜红、柠檬黄、靛蓝等。它可改变食品的外观,使其增强食欲。 增稠剂和稳定剂——可以改善或稳定冷饮食品的物理性状,使食品外观润滑细腻。他们使冰淇淋等冷冻食品长期保持柔软、疏松的组织结构。

我国汽油辛烷值添加剂的现状及研究进展 贺晓磊

我国汽油辛烷值添加剂的现状及研究进展贺晓磊 发表时间:2018-03-21T15:45:40.040Z 来源:《基层建设》2017年第35期作者:贺晓磊[导读] 国内广大科研工作者经过长期的努力,开发出了一系列高辛烷值汽油添加剂,使我国的清洁汽油有了较大的提高和发展。 内蒙古自治区石油化工监督检验研究院 010010 随着环保法规的日趋严格,世界各国都十分重视汽油质量的提高,推动了汽油产品的更新换代。我国从之前的止销售和使用含铅汽油到降低了车用汽油的烯烃含量。为了保证这些政策的顺利实施,国内广大科研工作者经过长期的努力,开发出了一系列高辛烷值汽油添加剂,使我国的清洁汽油有了较大的提高和发展。 此外现代汽车工业的发展,发动机要向高速、高压缩比的方向改进而低辛烷值的汽油在高压缩比条件下极易产生爆震。爆震的危害很大,普通的爆震可使发动机功率降低、加重积碳导致发动机运转不稳定,造成排放不合格;强烈爆震会使金属变软,极易损毁,因此需用高标号的汽油来避免爆震。提高汽油辛烷值的方法,可以通过发展催化重整及芳构化技术,以及醚化、烷基化、异构化等工艺,调整汽油组成。或者向汽油中添加有效的添加剂即可。由于前者涉及到炼制工艺的改进,存在着工艺复杂,投资巨大的问题,而后者既有效又经济,所以辛烷值添加受到了炼油厂家的青睐。汽油添加剂主要改善燃烧性能,提升辛烷值,防止爆震。目前,我国汽油添加剂产量很少,但随着油品质量的提高以及环保对油品质量要求的提高,汽油添加剂将会有所发展。按照汽油添加剂成分是否含有金属元素,可将其分为金属有灰类和有机无灰类两大类。金属有灰类促进剂能有效提高汽油的抗爆性,如四乙基铅,它的合成工艺简单、成本低廉且抗爆效率高。但四乙基铅有剧毒,含铅的燃烧废气是大气中铅污染的主要来源。而且燃烧后残留物危害发动机缸体,很多国家已经禁止使用,我国已经限制使用。近一段时期以来,汽油辛烷值促进剂的开发研究一直朝着有机无灰类方向发展。有机无灰类添加剂主要是含氧有机化合物和含氮有机化合物,主要分为两部分,醚类汽油添加剂和醇类汽油添加剂。 1.醚类汽油添加剂 20世纪70年代甲基叔丁基醚(MTBE)作为提高辛烷值的调和组分开始被人们注意,后来作为甲基环戊二烯三羰基锰(MMT)和四乙基铅(TEL)的替代品在世界范围内广泛使用。 MTBE作为汽油添加剂已经在全世界范围内普遍使用。它不仅能有效提高汽油辛烷值,而且还能改善汽车性能,降低尾气中一氧化碳含量,同时降低汽油生产成本。MTBE应用至今,需求量、消费量一直处于高增长状态,其生产技术也日趋成熟。但MTBE 极易穿过土壤进入地下饮用水系统,性质稳定、较难分解,还会对人的肠胃、肝脏、肾脏和神经系统以及生态环境等造成一定程度的危害。因此,1996年由于饮用水中MTBE含量超标,美国Santa Monica 市50%的供水系统关闭。1999年美国加利福尼亚空气资源委员会规定从2002年12月31日起禁止加州新配方汽油中使用MTBE,后推迟一年到2003年12月31日起实行,之后纽约州也签署法案规定2004年起禁止使用MTBE。2010年美国已经全面禁用MTBE,禁用后积极推广乙醇汽油,聚异丁烯等。不过,美国发生的对MTBE恐慌,在近期内不会扩散到欧洲和亚洲。迄今,欧洲和亚洲尚无禁用MTBE的任何意向,这些地区将在一定时期内继续采用MTBE作为清洁汽油的主要组分。在亚洲,MTBE 需求量正在快速增加,我国MTBE也处于快速增长状态,特别是我国近期推广使用高辛烷值无铅汽油,并在北京、上海、广州率先执行城市清洁车用无铅汽油新标准,所用辛烷值改进剂主要是MTBE。因此,我国MTBE需求量还将有所增加。随着吉化锦江油化厂、林源炼油厂、前郭炼油厂等MTBE装置的投产,我国现有MTBE装置年总产能力已达62万吨。目前,我国汽油用MTBE年需求量为80万吨,缺口较大。 我国目前对MTBE加量没有限制,但受氧含量限制,一般加量在10%以内,辛烷值提升幅度为1-2。此外被用作抗爆剂的醚类物质还有二异丙醚,叔戊基甲基醚,乙基叔丁基醚等。 2.醇类汽油添加剂醇类用作汽油添加剂由于含有羟基而显示出不良效果,但甲醇、乙醇、丙醇和叔丁醇等低碳醇或其混合物都已用作汽油添加剂。其混合物用作汽油添加剂具有与MTBE相似功能,还有价格优势,且用于高压缩比的汽车发动机可以大大提高其热效率,促辛性能与MTBE相似,尤其是可降低CO,NOx和THC(总碳氢)的排放,具有优良的排放性能,使其用作汽油调合剂具有较大的市场潜力。目前我国正积极推广车用乙醇汽油。其不仅有价格优势,而早在20世纪二三十年代美国和巴西就已经开始推广使用乙醇汽油,是乙醇汽油的两大消费大国。我国从2003年开始陆续在黑龙江、吉林、辽宁、河南、安徽、河北、山东、江苏、湖北等27个城市推广E10乙醇汽油,目前国家已经确定在河南、吉林和黑龙江试点生产和使用乙醇汽油。据报道,一般情况下汽油中加入体积比为10%的乙醇,辛烷值提高2~3个单位,雷德蒸汽压也有明显提高。较低的蒸发热和远低于甲醇的毒性使其具有很大的市场竞争力。据国家汽车研究中心对乙醇汽油所作的发动机台架试验和行车实验结果,在现有发动机不做任何改动前提下,燃烧后产物中CO,碳氢化合物和NOx排放都有减少。但是乙醇汽油有轻微的吸湿性,这使其具有一定的腐蚀性,因此对发动机油有更高要求,且其热值低于普通汽油,因此燃油消耗量大。随着我国汽油无铅化、清洁化进程的加快,近年来我国对MTBE的需求,生产也进入了快速增长的阶段,MTBE在一定时期内仍是我国主要的汽油添加剂。但从长远来看,汽油标准与国际接轨是未来发展的必然趋势。从近年来世界汽油标准的发展来看,很多国家基本上紧随美国,只存在实施时间的差异。随着我国加入WTO,我国汽油标准与国际接轨也是必然趋势。一旦MTBE的毒性明了,我国迟早会采取措施来限制或禁用MTBE。因此扩建MTBE装置应深入研究,统一规划,对新建装置的审批要谨慎对待。法国已经开发出了对现有MTBE,装置稍加改造就可以生产异辛烷,作为MTBE的替代品。因此我们应积极跟踪国外先进的烷基化技术,切实做好引进技术的消化吸收工作。 乙醇汽油和纳米燃料油添加剂在我国还处于试验和发展阶段。在目前的乙醇生产技术条件下,发展乙醇汽油短期内有助于消化国内的陈化粮,提高汽油的辛烷值;但我国人多地少,粮食过剩只是暂时现象,从长远来看,大规模发展乙醇汽油需要经过时间的考验。同时我们应重视乙醇生产新技术的开发,力争通过技术进步来扩大乙醇生产的原料来源,降低生产成本。参考文献:

食品添加剂考试试题

食品添加剂:我国《食品安全国家标准,食品添加剂使用标准》规定:食品添加剂是指为了食品品质和色,香,味以及为防腐,保鲜和加工工艺的需要而加入食品中的人工合成或天然物质。食品防腐剂:是指能够防止食品由微生物所引起的腐败变质,延长食品保藏期的一类食品添加剂。色淀:水溶性着色剂沉淀在允许使的不溶性基质上所制备的特殊着色剂,其着色部分是允许使用的合成着色剂,基质部分多为氧化铝,称之为铝色淀。ADI值:指动物毒性试验确定最大无作用剂量。胶母糖基础剂:是赋予胶姆糖(泡泡糖,口香糖)成泡,增塑,耐咀嚼等作用的一类食品添加剂。食品抗氧化剂:是防止或延缓食品氧化,提高食品稳定性和延长食品贮藏期的食品添加剂。水分保持剂:水分保持剂是指添加子食品中有助于维持食品水分稳定的食品添加剂。食品营养强化剂:是指为增强营养成分而加入食品中的天然的或人工合成的属于天然营养素范围的食品添加剂,也被称为食品强化剂,营养供给剂。食品增稠剂:在水中溶解或分散,能增加流体或半流体食品的黏度,并能保持所在体系的相对稳定的亲水性食品添加剂。食品的护色剂:本身不具有颜色,但能使食品产生颜色或使食品的色泽得到改善具有较强的氧化还原性,能够防肌红蛋白加强或保护食品颜色的一种添加剂。食品的发色助剂:本身无发色功能,但与发色剂配合使用可以明显提高发色效果,同时可以减少发色剂用量而提高食品的安全性。食品乳化剂:指添加于食品后可显著降低油水两界面张力,使互不相溶的油(疏水性物质)和水(亲水性物质)形成稳定乳浊液的食品添加剂。HLB(乳化剂亲水亲油平衡值):表示乳化剂对于水和油相对亲和程度,一般在1~20之间,1表示亲油性最大,20表示亲水性最大。食品疏松剂:指在食品加工过程中加入的,能使产品发起形成致密多孔组织,从而使得制品具有疏松,柔软或酥脆的物质。食品膨松剂:又称膨胀剂,起发粉,面团调节剂,广泛用于焙烤食品(生产面包,饼干,糕点等)。食品稳定剂和凝固剂(组织硬化剂):食品中胶体(果胶,蛋白质等)凝固为不溶性凝胶状态的一类食品添加剂,主要作用于豆制品生产和果蔬加工以及凝胶食品的制造。食品发色剂:又叫护色剂,呈色剂,指本身不具有颜色,但能使食品产生颜色或使食品的色泽得到改善(加强或保护)的食品添加剂。甜味剂:赋予食品甜味的添加剂,常指:人工合成的非常营养甜味剂,糖醇甜味剂和非糖天然甜味剂3类。食品调味剂:口腔内感受味觉的主要是味蕾,味蕾随年龄的增长而减少,人对咸味感觉最快,对苦味的感觉最慢。阈值:感受到某种呈味物质的味觉所需要的该物质的最低浓度。食品增味剂(鲜味剂):补充或增强食品原有风味的物质,使之呈鲜味感的一些物质。酸度调节剂:用以维持或改变食品酸碱度的物质。水分保持剂:指有助于保持食品中的水分而加入的物质。(多指磷酸盐类,甘油,乳酸钾等)抗结剂:是加入颗粒或粉末食品中以防止食品结块,保持其松散或自由流动的物质。 我国在《食品安全国家标准,食品添加剂使用标准》中,将食品添加剂按照功能分为23 类。我国允许使用的水分保持剂主要是磷酸盐类。 第三代食品鲜味剂包括动物蛋白质水解物,植物蛋白质水解物,酵母抽提物。 食品营养强化剂是指为了增加食品的营养成分而加入到食品中的天然或者人工合成的营养物质和其他营养成分。 食品着色剂都是由发色团和助色剂组成的,因此能够呈现出各种不同的颜色。 食品添加剂的英文名称为Food Additives。 JECFA代表FAO/WHO食品添加剂联合专家委员会。 MNL是指最大无作用量,50%Lethal does 是指半数致死量。 卫生部于2012年3月15日正式发布《食品安全国家标准,食品营养强化剂使用标准》该标准于2013 年1 月 1 日正式实施。 为了安全起见,国际上在确定ADI值时,要将最大无作用剂量缩小 100 倍 微生物来源的食品增稠剂包括黄原胶和结冷胶 丙酸及其盐类对防霉菌有良好的效能,故用于面包加工中,延长其保质期

电解液添加剂

试验了电解液中不同添加剂对电池充电接受能力和循环寿命的影响;结果表明:添加0.5%的SnSO4改善了电池的充电接受能力和循环寿命,达到了430次循环,循环寿命比添加Na2SO4的电池提高了40%. 铅酸蓄电池充放电的过程是电化学反应的过程,充电时,硫酸铅形成氧化铅,放电时氧化铅又还原为硫酸铅。而硫酸铅是一种非常容易结晶的物质,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会“抱成”团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会沉淀附着在电极板上,造成了电极板工作面积下降,这一现象叫硫化而无水硫酸钠的作用就是为了解决电池的硫化问题特地加入的一种物质 它的机理是,因为钠比铅活泼,加入少量的硫酸钠,在放电的时候生成的大部分最终物质都是硫酸钠,生成硫酸铅的比较少,且硫酸钠不结晶,充电的时候就没有大块的硫酸铅结晶了,这样就可以减小电池的硫化的产生,延长电池的使用寿命。 硫酸溶液密度是 1.345。调配好以后再加无水硫酸钠(0.8%),加入后密度上升到 1.354左右。是否需要再次加入离子水调节一下到1.345。 0.8%的无水硫酸钠能与0.25的硫酸亚锡一起加入吗?

我们一般所说的酸密度都是指加入无水硫酸钠之前的酸密度,所以之前配好后,再加入无水硫酸钠不需要再调节。 加不加硫酸亚锡是你们公司配方的事,但我认为按10-13g/升,加入无水硫酸钠即可达到功效。 铅酸电池6-DZM-17 等的内电解液怎么配比较好硫酸钠、硫酸钾、和硫酸亚锡的含量怎么定?还有别的什么材料吗? 如果是熟极板的补充电,电解液密度一般在1。32-1。34之间,根据极板情况和期望的电池开路电压来定。硫酸钠、硫酸钾、和硫酸亚锡的作用应该是相同的,为了增加硫酸根,以防止枝晶短路,以硫酸钠为例,一般是每升电解液加10-13G,硫酸钾、和硫酸亚锡可以仿照这个比例,保证硫酸根的摩尔量相同即可。 硫酸钠(脱盐剂)对蓄电池的影响,用作电解液添加剂,可以避免负极硫化.可以防止铅枝晶短路, 按照配制好硫酸的重量1%比例最合适.我们是按100升电解液加入1~1.5kg。关键是添加剂是否一样? 调制比重为1.05的稀硫酸溶液1000ml,加热到60度左右,搅拌,加入12g硫酸亚锡(SnSO4)即可。硫酸钠、硫酸钾、和硫酸亚锡的作用基本相同,主要为增加硫酸根摩尔量,都可按1%比例替代,以保证硫酸根的摩尔量相同。有硫酸亚锡(SnSO4)最好。

食 品 添 加 剂

食 品 添 加 剂 课堂调查 ? 什么是食品添加剂? ? 食品添加剂是否有害? ? 食品添加剂有没有营养价值? ? 食品添加剂是天然的还是人工合成的? 一、定义 为改善食品品质和色、香、味以及为防腐和加工工艺的需要而加入食品中的化学合成或者天然的物质。 二、历史 ◆ 香料:在周朝时已开始使用肉桂增香; ◆ 加工:北魏时期的《食经》、《齐民要术》中亦有用盐卤、石膏凝固豆浆等的记载。 ◆ 护色与防腐:在800年前的南宋时期亚硝酸盐被用于腊肉生产,并于公元13世纪传 入欧洲。 三、安全性 ? 《食品安全法》四十五条:“食品添加剂应当在技术上确有必要且经过风险评估证明 安全可靠,方可列入允许使用的范围” 。这意味着,在国家食品添加剂清单中榜上有名者都是允许使用的,也是安全可靠的。 ? 四十六条:食品生产者应当依照食品安全标准关于食品添加剂的品种、使用范围、 用量的规定使用食品添加剂,不得在食品生产中使用食品添加剂以外的化学物质和其他可能危害人体健康的物质。 食品添加剂安全常识 最大无作用量( MNL 值)Maximum No-effect Level 每日允许摄入量( ADI 值)Acceptable Daily Intake for man 评价食品添加剂毒性的首要指标 添加剂最大用量的确定 1、动物试验 ,确定MNL (mg/kg ) 2、以安全系数推算:ADI = MNL × 3、标准体重者日均用量 A = ADI × 60 (mg ) 4、膳食需要相应食品总量 5、摄入总食品中平均含量 A / C 6、单种食品中某添加剂最大用量 Fi C A E ?=

汽油辛烷值

汽油辛烷值......争论97,93,90汽油好坏 汽车用油主要成分是C5H12~C12H26之烃类混合物,当汽油蒸气在汽缸内燃烧时(活塞将汽油与空气混合压缩后,火星塞再点火燃烧),常因燃烧急速而发生引擎不正常燃爆现象,称为爆震(震爆) 。在燃烧过程中如果火焰传播速度或火焰波之波形发生突变,如引起燃烧室其它地方自动着火(非火星塞点火漫延),燃烧室内之压力突然增高此压力碰击四周机件而产生类如金属的敲击声,有如爆炸,故称为爆震(震爆)。汽油一旦辛烷值过低,将使引擎内产生连续震爆现象,造成机件伤害连续的震爆容易烧坏气门,活塞等机件。 爆震之原因: (1) 汽油辛烷值太低。(2)压缩比过高。(3)点火时间太早。(4)燃烧室局部过热。(5)混合汽温度或压力太高。(6)混合汽太稀。(7)预热。(8)汽缸内部积碳。(9)其他如冷却系或故障等。 减少爆震方法: (1) 提高汽油辛烷值。(2)减低压缩比。(3)校正点火正时。(4)降低进汽温度.(5) 减少燃烧室尾部混合汽量。(6)增加进汽涡流。(7)缩短火焰路程。 (8)保持冷却系作用良好. 辛烷值 爆震时大大减低引擎动力,实验显示,烃类的化学结构在震爆上有极大的影响。燃烧的抗震程度以辛烷值表示,辛烷值越高表示抗震能力愈高。其中燃烧正庚烷CH3(CH2)5CH3的震爆情形最严重,定义其辛烷值为0。异辛烷(2,2,4-三甲基戊烷) 的辛烷值定义为100。辛烷值可为负,也可以超过100。 当某种汽油之震爆性与90%异辛烷和10%正庚烷之混合物之震爆性相当时,其辛烷值定为90。如环戊烷之辛烷值为85,表示燃烧环戊烷时与燃烧85%异辛烷和15%正庚烷之混合物之震爆性相当。 此为无铅汽油标示来源,目前有辛烷值为92,95,98等级之无铅汽油,此类汽油含有高支链成分及更多芳香族成分之烃类,如苯,芳香烃,硫合物等。 例如95无铅汽油的抗震爆强度相当于标准油中含有百分之九十五的异辛烷及百分之五的正庚烷的抗震爆强度。

一些酸化产品及添加剂介绍

国内外酸化产品及添加剂介绍 王宝锋 (石抽勘探开发科学研究院分院压裂酸化中心河北廊坊) 摘要介绍噕国内外近年研究和开发的酸化产品和添加剂,將美国BJ Services、Dowell和Halliburton及加拿大Nowsco公司的产品分成28类逐一介绍,并简单介绍了国内氵由田使用较多的产品及一些研究成果 主题词:酸处理液酸添加剂酸化 酸化是通过溶解或疏通钻井液、完井液或其他阻塞物以清除井眼附近的地层伤害。该处理包括基岩泵速作业、清洗和化学物注入等。酸用于消除钻井、完井和生产过中的伤害,原油、浓缩液、柴油和互溶剂等溶剂和表面活性剂用于改变孔隙流体或地层润湿特 性,清洗用于除去地层、射孔和套管中的垢及其他可分散或可溶的物质 近年来,国外公司在研究和开发新的酸液体系和添加剂产品方面有不少新的成果。中国石油天然气总公司石油勘探开发科学研究院分院和各油田及相关厂家等立足于国内原料,也开发出一些性能指标与国外产品相当甚至更优的产品,在现场应用中取得了好的效果,但与国外产品相比尚有很大差距。为更好地进行对比,将美国BJ Services、Dowell和Halliburton 公司以及拿大Nowsco公司的产品分成28类加以介绍。·水基完井液 ·水基聚合物 ·降阻剂 ·降滤失剂 ·转向剂 ·聚合物堵剂 ·酸缓蚀剂 ·酸缓速剂 ·乳化剂 ·粘土稳定剂 ·表面活性剂 .防乳化剂 ·微粒悬浮剂 ·抗渣剂 ·起泡剂 ·防垢剂 ·铁控制剂 ·除氧剂 ·互溶剂 ·缓蚀剂 ·石蜡控制剂 ·其它产品 ·酸体系 ·缓速酸体系 ·处理泥浆和粘土的特殊 表面活性剂 .土酸与醇混合体系 · SGMA ·缓速氢氟酸 国外户品介堯 表1国外酸化产品和添加剂 BJ Services DoweIl Halliburton NOWSCO ·水基完井液 油基泥浆分散剂MCS-3 ,Versol Il NARS 200&201N-Ver-Sperse O通用型产品 China Academic Journal Electronic Publishing House. All rights reserved.

关于自修复材料的调研

几类自修复材料的研究进展 ———根据不同体系进行分类(未列出催化剂体系)1、无催剂的自修复体系 1、1 胺-环氧修复体系 该体系是利用环氧修复试剂与胺固化剂在伤口处的交联固化反应,从而对材料达到自我修复的效果,胺固化剂的储存在胶囊、中空纤维、微脉管结构里,当胶囊或者纤维在外力作用受损时,释放胺固化剂。 将胺类固化剂包覆在胶囊里面一直是一个难题,直到2009年Kirk et al[1]成功将胺类固化剂包覆在纳米多孔的二氧化硅囊里,但是修复试剂很难流动到伤口处,大多数情况下只能进行局部修复。 Later, Jin et al.[2]在研究中,利用真空渗透技术使得脂肪族胺类固化剂被包覆在PUF囊里,与此同时利用原位聚合的方法将环氧单体包覆在囊里,同时将双组份分散在环氧树脂体系中,利用TDCB观察材料的韧性,当胺胶囊与环氧胶囊的比例为4:6时,修复效率达到了91%,在常温条件下,其修复稳定性较好,能持续6个月。随着修复次数的增加,其修复效率从最高的91%降低到35%。研究中还发现环氧单体的稳定性较好,200℃时仍能稳定存在,但含胺的囊随着温度的增加会逐渐释放胺类固化剂并在修复时会产生过度补偿的现象。在以后的研究中,应该重点放在保护含胺胶囊并提高其热稳定性。在材料收到破坏时,要保证俩种胶囊都能够同时按照比例释放 Pang and Bond[3],利用中空纤维作为载体,环氧树脂修复剂与荧光物质作为芯材,利用荧光物质的来观察整个过程的修复行为。研究中发现,修复试剂的释放速度很快,能很快流动到裂纹处,室温下24h后,其修复效率达到97%。以后的研究中,需要注意的是修复试剂与中空纤维的载体的对应选择,要保证其释放速度要大于其修复速度,尽可能避免在修复试剂抵达裂纹处之前发生修复反应。Toohey et al[4]利用直写技术(direct-write)构建多重的微脉管网状结构并分散在聚合物介质中,这类脉管结构分为俩部分,一部分载有胺类固化剂,另一类载有环氧树脂修复剂,当材料收到破坏,双组份释放到裂纹处交联固化,进行自修复。其修复效率到达了60%以上,对单一裂纹的能进行16次的修复。以后的研究中,需要注意的是1、要确保双组份能稳定的存在于各自的微脉网结构中。2、提高修复效率。3、增加修复次数。 1、2 单组份环氧修复体系 Carlson 等[5]利用聚酰亚胺包裹着含双键的环氧单体修复剂,当材料表面受损时,环氧修复剂释放,流动到裂纹区,在UV光条件下聚合。该文献要收费,所以只是从摘要你们获取信息,文章中未提修复效率,但在UV光照射一分钟后,修复成功。 还有一种方法,是利用具有熔点的环氧树脂作为修复试剂,当涂层收到破坏时,对材料高温加热,使环氧修复试剂能流动到裂纹处,冷却之后填满裂纹,从而达到修复的效果。 单组份环氧其修复效率不高,修复后的性能不能得到保证,且修复条件高温加

(完整版)食品添加剂知识点

食品添加剂知识点 第一章绪论 1、【食品添加剂】为改善食品品质和色、香、味以及为防腐、保鲜和加工工艺的需要而加入食品中的人工合成或者天然物质。 2、食品添加剂在食品加工中意义: (1)有利于提高食品的质量 ①提高食品的贮藏性,防止食品腐败变质 ②改善食品的感官性状; ③保持或提高食品的营养价值 (2)增加食品的品种和方便性 (3)有利于食品加工:面包加工中膨松剂、制糖中加乳化剂、豆腐中凝固剂。 (4)有利于满足不同人群的特殊营养需求:功能性食品添加剂添加食品中,加工成保健食品。 (5)有利于开发新的食品资源:资源丰富,添加各种食品添加剂,以支撑品种丰富、齐全的新型食品,满足人类发展的需要。 3、食品添加剂按来源分为天然食品添加剂和化学合成食品添加剂(有化学合成品与人工合成天然等同物)。按功能分为23类。 4、按安全性评价:分为A、B、C 类 A 类:JECFA 已制定人体每日允许摄入量(ADI )和暂定ADI 值者; A1 类:毒理学资料清楚,已制定出ADI 值或者认为毒性有限无需规定ADI 值者; A2 类:已制定暂定ADI 值,但毒理学资料不够完善,暂定许可用于食品者。 B 类:JECFA 进行过安全性评价,但未建立ADI 值,或者未进行过安全性评价者, B1 类:进行过安全性评价,未制定ADI 值者 B2 类:未进行过安全性评价者 C 类:JECFA 认为在食品中使用不安全或应该严格限制作为某些食品的特殊用途者, C1 类:根据毒理学资料认为在食品中使用不安全者; C2 类:认为应严格限制在某些食品中做特殊应用者。 5、【日允许摄入量(ADI )】人类每日摄入某种食品添加剂直到终生,对健康无任何毒性作用或不良影响的剂量,以每人每日摄入的“ mg/Kg 体重”表示。 【最大无作用剂量(MNL )】指于既定的动物试验毒性试验期间和条件下,动物长期摄入受试物而无任何中毒表现的每日最大摄入量,单位为mg/Kg 。 6、我国食品添加剂的选用原则(判断): (1)使用时应符合基本要求 ①不应对人体产生健康危害 ②不应掩盖食品本身或加工过程中的质量缺陷; ③不应以掩盖食品腐败变质或以掺杂、掺假、伪造为目的而使用食品添加剂; ④不应降低食品本身的营养价值; ⑤在达到预期效果情况下,尽可能降低在食品中的用量; ⑥食品工业用加工助剂一般应在制成成品之前除去,有规定食品中残留量者除外。 (2)可使用食品添加剂的情况 ①保持或提高食品本身的营养价值; ②作为某些特殊膳食食用食品的必要配料或成分; ③提高食品的质量和稳定性,改进其感官特性;

汽油燃烧添加剂

提高汽油燃烧效果添加剂 班级:08化工(2)班姓名:高娟学号:0803022028 汽油是经原油提炼而成的碳氢化合物与各种添加剂的混合物,汽油品质的好坏主要取决于对原油提炼的工艺和精度,添加剂只是辅助作用。汽油添加剂是为了弥补汽油在某些性质上的缺陷并赋予汽油一些新的优良特性,在汽油中要加入的功能性物质。其添加量主流是以1:1000,具有提升动力、清除积炭、清洁油路、节省燃油、防锈等功效。 近年来,各种各样的化合物都被试用作燃料油添加剂。作为燃料添加剂必须具备下列条件: (1)在油品中的添加浓度不大而效果显苔。 (2)能完全燃烧而不产生沉淀。 (3)对燃料其它性质不能有负作用。 (4)要溶于燃料或其组分而难溶于水。 (5)在任何使用温度下在燃料中都是稳定的。 (6)容易得到而且价钱便宜。 汽油添加剂是一种有机化合物,添加汽油添加剂的主要目的不是省油,而是提高汽油的质量,清洁发动机内部。 汽油添加剂功能介绍: 一、清除积碳,清洁燃油系统,新一代汽油添加剂其清净活化因子能促燃油中的胶质物以及发动机积碳等有害物质,连续5次添加洁力神汽油添加剂后,排气管上的积碳明显减少,滤清器、排气阔、燃油系统等均非常清洁。 二、增强动力性能,新一代汽油添加剂中的纳米成份,能吸附、包裹胶质物,在高温作用下在燃烧室产生气体性“微爆”,使燃油二次雾化,引发完全燃烧,提升引擎动力。90%以上车辆首次使用洁力神汽油添加剂后,明显感觉动力增强。特别是车乏力、旧了、载重、远行时感觉更明显。 三、改善雾化,节省燃油,新一代汽油添加剂其凭借纳米分子材料,直接攻击油分子中的长链碳键,在燃油室产生“微爆”,使汽油二次雾化,引发完全燃烧,提高热效率、降低油耗。洁力神汽油添加剂实车对比试验,能节省10~18%燃油。特别是长距离高速行驶,比平时更省,能直观感受到。

常见的食品添加剂种类及简介

常见的食品添加剂种类及简介 防腐剂:碳酸饮料、果泥、果酱、糖渍水果、蜜饯、酱菜、酱油、食醋、果汁饮料、肉、鱼、蛋、禽类食品等,常用的有:苯甲酸、苯甲酸钠、山梨酸、山梨酸钾等。 着色剂:主要用于碳酸饮料、果汁饮料类、配制酒、糕点上的彩装、糖果、山楂制品、腌制小菜、冰淇淋、果冻、巧克力、奶油、速溶咖啡等各类食品等。常使用的有:苋菜红、胭脂红、柠檬黄、日落黄、焦糖色素等人工合成色素。像叶绿素铜钠盐等一些天然食用色素,主要是由植物组织中提取,但它们的色素含量及稳定性一般不如人工合成的色素,另外还有天然等同色素。 甜味剂:是赋予食品以甜味的添加剂。常用的有:糖精钠(也就是人们习惯上称的糖精)、环己基氨基磺酸钠(甜蜜素)、麦芽糖醇、山梨糖醇、木糖醇等。使用甜味剂的食品有很多。像:饮料、酱菜、糕点、饼干、面包、雪糕、蜜饯、糖果、调味料、肉类罐头等几乎日常生活中常见的食品都会加用不同种类的甜味剂。 香料:糖果与巧克力中一般有香精油、香精、粉体香料浸膏几种类型。每一种类型又有无数品种,如在糖果与巧克力中,按香型可分为果香型、果仁香型、乳香型、花香型、酒香型等不同品种。 膨松剂:部分糖果和巧克力制品中,以及一些油炸制品、膨化食品、发酵面制品等。常用的膨松剂有:碳酸氢钠、碳酸氢铵、复合膨松剂等。 酸度调节剂:具有增进食品质量的功能,更普遍用于各类食品中。

相当一部分糖果与巧克力制品采用酸味剂来调节和改善香味效果,尤其是水果型的制品。常用的有:柠檬酸、酒石酸、乳酸、苹果酸。 抗氧化剂:是一种通过给食品中易氧化成分分子中脱氧基团以氢原子、阻止氧化连锁反应,或与其形成络合物,抑制氧化酶类的活性,从而防止和延缓食品表面被氧化变质的一类食品添加剂。 增稠剂:是一类亲水性的高分子化合物,具有稳定、乳化或悬浊状态作用,能形成凝胶或提高食品粘度,故亦称凝胶剂、胶凝剂或乳化稳定剂。 乳化剂:是一种表面活性剂,其分子通常具有亲水基(羟基)和亲油基(烷基),易在水和油界面形成吸附层,从而改变乳化体中各物相之间的表面活性,使之形成均匀的乳化体或分散体,故能改进食品的组织机构、口感、外观等。 膨松剂:是以粮食粉为主要原料的食品在加工时(加热过程中)因产生气体而使组织成为均匀致密的多孔结构状态,而使食品疏松、松脆的一类食品添加剂。 组织改良剂:通过保水、粘结、增塑、稠化和改善流变性能等作用而改进食品外观或触感的一种食品添加剂。 面粉改良剂:提高面粉质量的一类添加剂,可以提高出品率,提高面粉精白度和筋力。 消泡剂:在食品加工过程中,具有消除和抑制液面气泡的能力,使操作得以顺利进行。 抗结剂:防止粉状或晶体状食品聚集、结块。

食品添加剂

食品护色剂及其替代品的研究进展 摘要:肉制品加工过程中适当添加发色剂或护色剂,使其呈现良好的色泽。至今最为广泛使用的是亚硝酸盐,但是亚硝酸盐可导致急性毒性,且副产物亚硝胺具有致癌性.文章简述亚硝酸盐在肉制品加工中的作用、对人体的危害以及亚硝酸盐替代品的研究进展。无毒无害的护色剂替代品,特别是能够强化肉制品营养的添加剂,是现代化食品工业的趋势. 关键词: 亚硝酸盐 ;肉制品 ;作用; 替代品 Abstract: In food industry,some color fixative are usually used to make the meat products more bright—colore.The most frequently used colorant in meat processing is nitrite in recent years,but nitrite can result in acute toxicity and its by-product is carcinogenic.It discussed the function of nitrite in the processing of meat products,the harm of excessive nitrite and the research development of its substitut.Color fixative innocuous alternatives, especially to strengthen the meat nutrition additives, is a modern trend in the food industr y. Key words: nitrite;meat products;function;substitute 护色剂也称发色剂,是指食品加工工艺中为了使果、蔬制品和肉制品等呈现良好的色泽所添加的物质.分为护色剂和护色助剂.发色剂自身是无色的,它与食品中的色素发生反应形成一种新物质.这种新物质,可加强色素的稳定性,从而达到护色的目的.肉制品容易发生色泽变化,有可能是色素蛋白褐变、美拉德反应和焦糖化褐变[1],其中美拉德反应能够形成具有食品特殊风味的化合物和良好的颜色,同时也会产生不良的异味和深褐色素.在肉类加工过程中,作为发色剂普遍使用的有亚硝酸钠、硝酸钠、硝酸钾和亚硝酸钾.这些发色剂一般单独使用,但是多数情况下是与其他发色剂并用.人们在使用发色剂的同时,还常常加入一些能促进发色的还原性物质,常用的发色助剂有L-抗坏血酸及其钠盐、异抗坏血酸及其钠盐、烟酰胺等. 一直以来,在肉制品加工过程中广泛使用硝酸盐、亚硝酸盐用于腌肉颜色的产生,使其呈良好的色泽。因此,护色剂大多是防止肉类物质发生褐变的一类食

辛烷值详解

辛烷值详解 爆震(震爆Knocking) 汽车用油主要成分是C5H12~C12H26之烃类混合物,当汽油蒸汽在气缸内燃烧时(活塞将汽油与空气混合压缩后,火花塞再点火燃烧),常因燃烧急速而发生引擎不正常燃爆现象,称为爆震(震爆) 。在燃烧过程中如果火焰传播速度或火焰波与波形发生突变,如引起燃烧室其它地方自动着火(非火星塞点火漫延),燃烧室内之压力突然增高此压力碰击四周机件而产生类如金属的敲击声,有如爆炸,故称为爆震(震爆)。汽油一旦辛烷值过低,将使引擎内产生连续震爆现象,造成机件伤害连续的震爆容易烧坏气门,活塞等机件。 爆震之原因: (1) 汽油辛烷值太低。(2)压缩比过高。(3)点火时间太早。(4)燃烧室局部过热。(5)混合汽温度或压力太高。(6)混合汽太稀。(7)预热。(8)汽缸内部积碳。(9)其他如冷却系或故障等。减少爆震方法: (1) 提高汽油辛烷值。(2)减低压缩比。(3)校正点火正时。(4)降低进汽温度。(5) 减少燃烧室尾部混合汽量。(6)增加进汽涡流。(7)缩短火焰路程。(8)保持冷却系作用良好。 辛烷值 爆震时大大减低引擎动力,实验显示,烃类的化学结构在震爆上有极大的影响。燃烧的抗震程度以辛烷值表示,辛烷值越高表示抗震能力愈高。其中燃烧正庚烷CH3(CH2)5CH3的震爆情形最严重,定义其辛烷值为0。异辛烷(2,2,4-三甲基戊烷) 的辛烷值定义为100。辛烷值可为负,也可以超过100。 当某种汽油之震爆性与90%异辛烷和10%正庚烷之混合物之震爆性相当时,其辛烷值定为90。如环戊烷之辛烷值为85,表示燃烧环戊烷时与燃烧85%异辛烷和15%正庚烷之混合物之震爆性相当。 此为无铅汽油标示来源,目前有辛烷值为92,95,98等级之无铅汽油,此类汽油含有高支链成分及更多芳香族成分之烃类,如苯,芳香烃,硫合物等。 例如95无铅汽油的抗震爆强度相当于标准油中含有百分之九十五的异辛烷及百分之五的正庚烷的抗震爆强度。 汽油亦可藉再加入其它添加物而提升辛烷值。如普通汽油辛烷值不高(约为50),若再加入四乙基铅(C2H5)4P b时,其辛烷值提高至75左右,此为含铅汽油之来源,为除去铅在引擎内之沉积,再加入二溴乙烷,使产生P b Br2之微粒排放出来,但造成环境之污染。一般无铅汽油不含四乙基铅,改用甲基第三丁基醚,甲醇,乙醇,第三丁醇等添加物。 某一汽油在引擎中所产生之爆震,正好与98%异辛烷及2%正庚烷之混合物的爆震程度相同,即称此汽油之辛烷值为98。此燃油若再渗合其它添加剂,辛烷值可大于98或小于98甚或超过100。 一般所谓的95、92无铅汽油即是指其辛烷值,所以95比92的抗爆性来的好。 辛烷值只是一个相对指标,而不是真的只以正庚烷或异辛烷来混合,所以有些燃油再渗合其它添加剂时的辛烷值可以超过100,可以为负。 若车辆『压缩比』在9.1以下者应以92无铅汽油为燃料;压缩比9.2至9.8使用95无

新型智能材料-自修复复合材料的进展

实验名称:新型智能材料指导教师:殷陶 学院:建筑与城市规划学院专业:风景园林 年级班别:2014级1班学生姓名:梁挚呈 学号:3114009992 论文选题:自修复复合材料的进展 智能材料是指能模仿生命系统,同时具有感知和激励双重功能的材料。自诊断与自修复是智能材料的重要功能。 智能自修复材料的研究是一门新兴的综合科学技术。自修复又称自愈合,是生物的重要特征之一,人们把产生缺陷时在无外界作用的情况下,材料本身自我判断、控制和恢复的能力称为自修复。 材料在使用过程中不可避免地会产生局部损伤和微裂纹,并由此引发宏观裂缝而发生断裂,影响材料正常使用和缩短使用寿命。裂纹的早期修复,特别是自修复是一个现实而重要的问题。 目前,具有自诊断、自修复功能的智能自修复材料已成为新材料领域的研究重点之一,自修复的核心是能量补给和物质补给,其过程由生长活性因子来完成。模仿生物体损伤愈合的原理,使得复合材料对内部或者外部损伤能够进行自修复自愈合,从而消除隐患,增强材料的机械强度,延长使用寿命,在军工、航天、电子、仿生等领域显得尤为重要。 智能自修复材料的自修复原理有分子间相互作用的修复机理、内置胶囊仿生自修复机理、液芯纤维自修复机理、热可逆交联反应修复机理。 热可逆交联反应修复机理是目前最新的技术。近年来,出现了一种高交联度的真正具有自修复能力的透明聚合物材料,这种材料只要施以简单的热处理就可以在材料需要修补的地方形成共价键,并能多次对裂纹进行修复而不需添加额外的单体。文献以呋喃多聚体和马来酰亚胺多聚体进行Diels Alder(DA)热可逆共聚,形成的大分子网络直接由具有可逆性的交联共价键相连,可以通过DA逆反应实现热的可逆性。这种材料的力学性能可与一般的树

相关主题
相关文档 最新文档