当前位置:文档之家› 二次函数专题训练(三角形周长最值问题)含答案

二次函数专题训练(三角形周长最值问题)含答案

二次函数专题训练(三角形周长最值问题)含答案
二次函数专题训练(三角形周长最值问题)含答案

1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.

(1)求抛物线的解析式;

(2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;

(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.

2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.

(1)求直线AD的解析式;

(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;

(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM 为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合部分的面积是?APQM面积的时,求?APQM面积.

3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=.

(1)求抛物线的解析式;

(2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;

(3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.

4.如图(1),抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于点C (0,﹣3),若抛物线的对称轴为直线x=1,且tan∠OAC=3.

(1)求抛物线的函数解析式;

(2 若点D是抛物线BC段上的动点,且点D到直线BC距离为,求点D的坐标

(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0,﹣),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.

5.已知:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为(﹣1,0).

(1)求过A、B、C三点的抛物线的解析式.

(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.

(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.

6.如图,抛物线y=﹣x2+(m﹣1)x+m(m>1)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(0,3).

(1)求抛物线的解析式;

(2)点D和点C关于抛物线的对称轴对称,点你F在直线AD上方的抛物线上,FG⊥AD于G,FH∥x轴交直线AD于H,求△FGH的周长的最大值;

(3)点M是抛物线的顶点,直线l垂直于直线AM,与坐标轴交于P、Q两点,点R在抛物线的对称轴上,使得△PQR是以PQ为斜边的等腰直角三角形,求直线l的解析式.

7.如图,已知抛物线y=﹣x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对

称.

(1)直接写出点D的坐标和直线AD的解析式;

(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;

(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标,若不存在,请说明理由.

8.如图,抛物线y=﹣x2﹣x+3与x轴相交于A、B两点(点A在点B的左侧),交y轴与点D,已知点C(0,),连接AC.

(1)求直线AC的解析式;

(2)点P是直线AC上方的抛物线上一动点,过点P作PE∥y轴,交直线AC于点E,过点P作PG⊥AC,垂足为G,当△PEG周长最大时,在x轴上存在一点Q,使|QP﹣QC|的值最大,请求出这个最大值以及点P 的坐标;

(3)当(2)题中|QP﹣QG|取得最大值时,直线PG交y轴于点M,把抛物线沿直线AD平移,平移后的抛物线y′与直线AD相交的一个交点为A′,在平移的过程中,是否存在点A′,使得点A′,P,M三点构成的三角形为等腰三角形,若存在,直接写出点A′的坐标;若不存在,请说明理由.

9.如图,抛物线y=﹣x2+x+3交x轴于A、B两点,点A在点B的左侧,交y轴于点C.

(1)求直线AC与直线BC的解析式;

(2)如图1,P为直线BC上方抛物线上的一点;

①过点P作PD⊥BC于点D,作PM∥y轴交直线BC于点M,当△PDM的周长最大时,求P点坐标及周长最大值;

②在①的条件下,连接AP与y轴交于点E,抛物线的对称轴与x轴交于点K,若S为直线BC上一动点,T 为直线AC上一动点,连接EK,KS,ST,TE,求四边形EKST周长的最小值;

(3)如图2,将△AOC顺时针旋转60°得到△A′OC′,将△A′OC′沿直线OC′平移,记平移中的△A′OC′为△A″O′C″,直线A″O′与x轴交于点F,将△O′C″F沿O′C″翻折得到△O′C″F′,当△CC″F′为等腰三角形时,求此时F点的坐标.

参考答案与试题解析

1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.

(1)求抛物线的解析式;

(2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;

(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.

【解答】解:(1)把A(﹣1,0),B(3,0)两点坐标代入抛物线y=ax2+bx﹣3,

得到,

解得,

∴抛物线的解析式为y=x2﹣2x﹣3.

(2)如图1中,连接PB、PC.设P(m,m2﹣2m﹣3),

∵B(3,0),C(0,﹣3),

∴OB=OC,

∴∠OBC=45°,

∵PF∥OB,

∴∠PFE=∠OBC=45°,

∵PE⊥BC,

∴∠PEF=90°,

∴△PEF是等腰直角三角形,

∴PE最大时,△PEF的面积中点,此时△PBC的面积最大,

则有S△PBC=S△POB+S△POC﹣S△BOC=?3?(﹣m2+2m+3)+?3?m﹣=﹣(m﹣)2+,

∴m=时,△PBC的面积最大,此时△PEF的面积也最大,

此时P(,﹣),

∵直线BC的解析式为y=x﹣3,

∴F(﹣,﹣),

∴PF=,

∵△PEF是等腰直角三角形,

∴EF=EP=,

∴C△PEF最大值=+.

(3)①如图2中,

当N与C重合时,点N关于对称轴的对称点P,此时思想MNQP是正方形,易知P(2,﹣3).点P横坐标为2,

②如图3中,当四边形PMQN是正方形时,作PF⊥y轴于N,ME∥x轴,PE∥y轴.

易知△PFN≌△PEM,

∴PF=PE,设P(m,m2﹣2m﹣3),

∵M(1,﹣4),

∴m=m2﹣2m﹣3﹣(﹣4),

∴m=或(舍弃),

∴P点横坐标为

所以满足条件的点P的横坐标为2或.

2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E.

(1)求直线AD的解析式;

(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;

(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM 为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM重合部分的面积是?APQM面积的时,求?APQM面积.

【解答】解:(1)令﹣x2+2x+3=0,

解得x1=﹣1,x2=3,

∴A(﹣1,0),C(0,3),

∵点D,C关于抛物线的对称轴对称,

∴D(2,3),

∴直线AD的解析式为:y=x+1;

(2)设点F(x,﹣x2+2x+3),

∵FH∥x轴,

∴H(﹣x2+2x+2,﹣x2+2x+3),

∴FH=﹣x2+2x+2﹣x=﹣(x﹣)2+,

∴FH的最大值为,

由直线AD的解析式为:y=x+1可知∠DAB=45°,

∵FH∥AB,

∴∠FHG=∠DAB=45°,

∴FG=GH=×=

故△FGH周长的最大值为×2+=;

(3)①当P点在AM下方时,如图1,

设P(0,p),易知M(1,4),从而Q(2,4+p),

∵△PM Q′与?APQM重合部分的面积是?APQM面积的,∴PQ′必过AM中点N(0,2),

∴可知Q′在y轴上,

易知QQ′的中点T的横坐标为1,而点T必在直线AM上,故T(1,4),从而T、M重合,

∴?APQM是矩形,

∵易得直线AM解析式为:y=2x+2,

∵MQ⊥AM,

∴直线QQ′:y=﹣x+,

∴4+p=﹣×2+,

解得:p=﹣,

∴PN=,

∴S□APQM=2S△AMP=4S△ANP=4××PN×AO=4×××1=5;

②当P点在AM上方时,如图2,

设P(0,p),易知M(1,4),从而Q(2,4+p),

∵△PM Q′与?APQM重合部分的面积是?APQM面积的,

∴PQ′必过QM中点R(,4+),易得直线QQ′:y=﹣x+p+5,

联立,解得:x=,y=,

∴H(,),∵H为QQ′中点,

故易得Q′(,),

由P(0,p)、R(,4+)易得直线PR解析式为:y=(﹣)x+p,

将Q′(,)代入到y=(﹣)x+p得:=(﹣)×+p,整理得:p2﹣9p+14=0,

解得p1=7,p2=2(与AM中点N重合,舍去),

∴P(0,7),

∴PN=5,

∴S□APQM=2S△AMP=2××PN×|x M﹣x A|=2××5×2=10.

综上所述,?APQM面积为5或10.

3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=.

(1)求抛物线的解析式;

(2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值;

(3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.

【解答】解:(1)∵点A的坐标为(﹣1,0),

∴OA=1.

又∵tan∠ACO=,

∴OC=4.

∴C(0,﹣4).

∵OC=OB,

∴OB=4

∴B(4,0).

设抛物线的解析式为y=a(x+1)(x﹣4).

∵将x=0,y=﹣4代入得:﹣4a=﹣4,解得a=1,

∴抛物线的解析式为y=x2﹣3x﹣4.

(2)∵抛物线的对称轴为x=﹣=,C(0,﹣4),点D和点C关于抛物线的对称轴对称,

∴D(3,﹣4).

设直线AD的解析式为y=kx+b.

∵将A(﹣1,0)、D(3,﹣4)代入得:,解得k=﹣1,b=﹣1,

∴直线AD的解析式y=﹣x﹣1.

∵直线AD的一次项系数k=﹣1,

∴∠BAD=45°.

∵PM平行于y轴,

∴∠AEP=90°.

∴∠PMH=∠AME=45°.

∴△MPH的周长=PM+MH+PH=PM+MP+PM=(1+)PM.

设P(a,a2﹣3a﹣4),M(﹣a﹣1),则PM=﹣a﹣1﹣(a2﹣3a﹣4)=﹣a2+2a+3,∵PM=﹣a2+2a+3=﹣(a﹣1)2+4,

∴当a=1时,PM有最大值,最大值为4.

∴△MPH的周长的最大值=4×(1+)=4+4.

(3)如图1所示;当∠EGN=90°.

设点G的坐标为(a,0),则N(a,a2﹣3a﹣4).

∵∠EGN=∠AOC=90°,

∴时,△AOC∽△EGN.

∴=,整理得:a2+a﹣8=0.

解得:a=(负值已舍去).

∴点G的坐标为(,0).

如图2所示:当∠EGN=90°.

设点G的坐标为(a,0),则N(a,a2﹣3a﹣4).

∵∠EGN=∠AOC=90°,

∴时,△AOC∽△NGE.

∴=4,整理得:4a2﹣11a﹣17=0.

解得:a=(负值已舍去).

∴点G的坐标为(,0).

∵EN在EP的右面,

∴∠NEG<90°.

如图3所示:当∠ENG′=90°时,

EG′=EG××=(﹣1)×=.∴点G′的横坐标=.

∵≈4.03>4,

∴点G′不在EG上.

故此种情况不成立.

综上所述,点G的坐标为(,0)或(,0).

4.如图(1),抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点(x1<0<x2),与y轴交于点C (0,﹣3),若抛物线的对称轴为直线x=1,且tan∠OAC=3.

(1)求抛物线的函数解析式;

(2 若点D是抛物线BC段上的动点,且点D到直线BC距离为,求点D的坐标

(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0,﹣),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.

【解答】解:(1)在Rt△AOC中,tan∠AOC==3,且OC=3,

∴OA=1,则A(﹣1,0),

∵抛物线的对称轴为直线x=1,

则点A(﹣1,0)关于直线x=1的对称点B的坐标为(3,0),

设抛物线的表达式为y=a(x﹣3)(x+1),

将点C(0,﹣3)代入上式得﹣3a=﹣3,

解得:a=1,

∴抛物线的解析式为y=(x﹣3)(x+1)=x2﹣2x﹣3;

(2)∵点B(3,0)、C(0,﹣3),

则BC=3,

∴S△BCD=×3×=3,

设D(x,x2﹣2x﹣3),连接OD,

∴S△BCD=S△OCD+S△BOD﹣S△BOC

=?3?x+?3?(﹣x2+2x+3)﹣×3×3

==3,

解得x=1或x=2,

则点D的坐标为(1,﹣4)或(2,﹣3);

(3)设直线AE解析式为y=kx+b,

将点A(﹣1,0)、E(0,﹣)代入得:,解得:,

则直线AE 解析式为y=﹣x﹣,

AE==,

设P(t,t2﹣2t﹣3),则M(t,﹣t﹣),

∴PM=﹣t﹣﹣(t2﹣2t﹣3)=﹣t2+t+,

作PG⊥MN于G,由PM=PN得MG=NG=MN,

由△PMG∽△AEO得=,即=,

∴MG=PM=NG,

∴C△PMN=PM+PN+MN=PM=(﹣t2+t+)=﹣t2++6=﹣(t﹣)2+,

∴当t=时,C△PMN取得最大值,此时P(,﹣).

5.已知:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为(﹣1,0).

(1)求过A、B、C三点的抛物线的解析式.

(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.

(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.

【解答】解:(1)直线y=﹣x+2与x轴交于B(2,0),与y轴交于C点(0,2),

设过A、B、C的抛物线的解析式为y=ax2+bx+c,

把A(﹣1,0)、B(2,0)、C(0,2)的坐标代入,

∴a=﹣1,b=1,c=2,

∴抛物线的解析式为:y=﹣x2+x+2,

(2)设D(x,﹣x2+x+2),F(x,﹣x+2),

二次函数和三角形面积的综合

二次函数与三角形面积的综合 寻找类 1、重点:中考压轴题的重点在于寻找分析问题,解决问题的思路和方法。能应对这部分题 的关键需要熟练几部分知识点:(1)二次函数与一次函数,反比例函数的解析式(2)勾股定理(3)四边形(4)相似三角形和三角形全等(5)锐角三角函数(6)轴对称和中心对称(7)求交点的方法(8)知识的综合运用 2、难点:寻找联系是这部分内容的一个关键所在,也是一个难点。尤其是遇到二次函数与 三角形面积的综合题的解题思路。运用面积求坐标等等的合理运用,以及运用的重要因素在哪里? 3、易错点:面积中涉及求面积的方法,坐标漏找或错找,坐标与线段长度之间的联系,坐 标在不在二次函数的图像上。这些都是在考试中容易失分的地方。 4、切入点:例如:根据已有条件求坐标,首先要想到平面直角坐标系与锐角三角函数的联 系,尤其是正切的运用。这样直观的可以求出坐标(前提必须建立直角三角形),如果不是直角三角形可以想法构建直角三角形,这是求坐标的最好方法,此方法不通的情况下可以运用勾股定理进行求解,很少运用相似求。掌握了求解方法再做题的时候就知道如何下手了。而次部分求面积的时候要先找到点的坐标的具体位置以及如何通过面积求坐标。 5.求面积常用的方法 a.直接法b。简单的组合c。面积不变同底等高或等底等高的转换 d.相似 e.三角函数f。找面积的最大最小值利用二次函数的性质 (1)直接法若题已经给出或能由已知条件推出个边的长度并且通过坐标能找到对应的

的高,那么三角形的面积能直接用公式算出来。 此题中的三角形的面积就能直接求出。 (2)通过简单的重新组合就能求出面积。 第6题 (2009年贵州安顺市)27、(本题满分12分) 如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。

二次函数最值问题解答题专项练习60题(有答案)

二次函数最值专项练习60题 1.画出抛物线y=4(x﹣3)2+2的大致图象,写出它的最值和增减性. 2.如图,二次函数y=ax2+bx+c的图象经过A(﹣1,0)、B(2,3)两点,求出此二次函数的解析式;并通过配方法求出此抛物线的对称轴和二次函数的最大值. 3.已知二次函数y=x2﹣x﹣2及实数a>﹣2,求 (1)函数在一2<x≤a的最小值; (2)函数在a≤x≤a+2的最小值. 4.已知函数y=x2+2ax+a2﹣1在0≤x≤3范围内有最大值24最小值3,求实数a的值. 5.我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且﹣(a+b)2≤0.据此,我们可以得到下面的推理: ∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0 ∴(x+1)2+2≥2,故x2+2x+3的最小值是2. 试根据以上方法判断代数式3y2﹣6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值.

6.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm). (1)写出?ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围. (2)当x取什么值时,y的值最大?并求最大值. 7.求函数y=2x2﹣ax+1当0≤x≤1时的最小值. 8.已知m,n是关于x的方程x2﹣2ax+a+6=0的两实根,求y=(m﹣1)2+(n﹣1)2的最小值. 9.当﹣1≤x≤2时,求函数y=f(x)=2x2﹣4ax+a2+2a+2的最小值,并求最小值为﹣1时,a的所有可能的值.10.已知二次函数y=x2﹣6x+m的最小值为1,求m的值.

二次函数与三角形最大面积的3种求法(供参考)

二次函数与三角形最大面积的3种求法 一.解答题(共7小题) 1.(2012?广西)已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).(1)求抛物线的解析式; (2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标; (3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由. 2.(2013?茂名)如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标 为(3,0). (1)求a的值和抛物线的顶点坐标; (2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等; (3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由. 3.(2011?茂名)如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴l与x轴相交于点M. (1)求抛物线的解析式和对称轴; (2)点P在抛物线上,且以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由. 4.(2012?黔西南州)如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M. (1)求抛物线对应的函数解析式和对称轴; (2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由. 5.(2013?新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3). (1)求抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由; (3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.6.(2009?江津区)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由; (3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由. 7.如图,已知二次函数y=ax2+bx+c经过点A(1,0),C(0,3),且对称轴为直线x=﹣1. (1)求二次函数的表达式; (2)在抛物线上是否存在点P,使△PAB得面积为10,请写出所有点P的坐标. 二次函数与三角形最大面积的3种求法

二次函数专题训练(三角形周长最值问题)含问题详解

1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式; (2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC于点F,求△PEF周长的最大值; (3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.

2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E. (1)求直线AD的解析式; (2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值; (3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM 重合部分的面积是?APQM面积的时,求?APQM面积.

3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=. (1)求抛物线的解析式; (2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值; (3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.

初中数学二次函数的最值问题--练习题+答案

初中数学二次函数的最值问题--练习题+答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值2 44ac b a -,无最小值. 【例1】当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-. 由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况: 【例3】当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象. 可以看出:当1x =时,min 1y =-,无最大值. 所以,当0x ≥时,函数的取值范围是1y ≥-.

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

苏州市2019年中考《坐标系中三角形周长最小值问题》复习指导

利“刃”在手亿“折”成“直” —例析坐标系中三角形周长最小值问题 在近几年的各地中考中,与线段相关的最值问题频频出现,已然成为一道亮丽的风景线.而其中以平面直角坐标系为载体来设计三角形周长最小值问题,更是中考命题所关注的热点之一本文以近几年中考题为例,归纳其类型与解法,供参考. 1.三角形的三个顶点中仅有一个顶点是动点 例1 (2019年河南省,有改动)如图1,边长为8的正方形OABC 的两边在坐标轴上,以点C 为顶点的抛物线经过点A ,点P 是抛物线上点A 、C 间的一个动点(含端点),过点P 作PF BC ⊥于点F .点D 、E 的坐标分别为(0,6),(-4,0),连接,,PD PE DE .是否存在点P ,使PDE ?的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由. 分析 存在.理由:易求抛物线的解析式为2188y x =- +.设21 (,8)8 P m m -+(80)m -≤≤, 则2221118(8),2888PF m m PD m =--+===+,故2PD PF =+, PDE ?的周长=2DE EP PD DE EP PF ++=+++. 如图2,过E 点作EG BC ⊥于点G .当,,E P F 三点共线,即点P 为EG 与抛物线的交点时, EP PF +的值最小,此时21 4,(4)868 P E P x x y ==-=-?-+=,所以PDE ?周长最小时点P 的坐标为 (-4,6). 点评 本例三角形的三个顶点中,点P 为动点,点,D E 均为定点.由于DE 的长为定值,欲使PDE ?的周长最小,只需满足PD PE +的值最小即可.进而利用“点P 运动的过程中,PD 与PF 的差为定值”这一有力武器,将问题转化为“求定直线BC 上一动点F 与直线外一定点E 的距离的最小值”,最终借助“连结直线外一点与直线上各点的所有线段中,垂线段最短”确定点P 的位置. 例2 (2019年山西省,有改动)如图3,在平面直角坐标系中,抛物线2 23y x x =-++与x 轴交于A 、 B 两点,与y 轴交于点 C ,点 D 是该抛物线的顶点.请在直线AC 上找一点M ,使BDM ?的周长最小, 求出M 点的坐标. 分析 易知(1,0),(3,0),(0,3),(1,4)A B C D -,故4,10AB AC ===,直线AC 的解析式为33y x =+.

二次函数与三角形

二次函数与三角形 抛物线与三角形的结合是抛物线与平面几何结合生成综合性问题的一种重要形式,这类问题以抛物线为背景,探讨是否存在一些点,使其能构成某些特殊图形,有以下常见的形式:(1)抛物线上的点能否构成特殊的线段; (2)抛物线上的点能否构成特殊的角; (3)抛物线上的点能否构成特殊三角形; (4)抛物线上的点能否构成全等三角形、相似三角形; 这类问题把抛物线性质和平面图形性质有机结合,需综合运用待定系数法、数形结合、分类讨论等思想方法。 1、如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D. (1)求抛物线的解析式; (2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标; (3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t 为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

2、如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=x2+bx+c经过A、C两点,与x轴的另一个交点是点D,连接 BD. (1)求抛物线的解析式; (2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标; (3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值. 3、已知函数2 3 2 2 y kx x =-+(k是常数)

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

二次函数及三角形周长,面积最值问答

二次函数与三角形周长,面积最值问题 知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·宜宾)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。

练习 1、如图,已知二次函数24 =-+的图象与坐标轴交于点A(-1,0)和点B(0,-5). y ax x c (1)求该二次函数的解析式; (2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出y x O A B

2、如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC ∥x轴,点A在x轴上,点C在y轴上,且AC=BC. (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由. 例2. (2018?莱芜)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C (0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E. (1)求抛物线的函数表达式; (2)如图1,求线段DE长度的最大值;

练习 1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,1、如图,抛物线y= 2 0). ⑴求抛物线的解析式及顶点D的坐标; ⑵判断△ABC的形状,证明你的结论; ⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值. (4)过点F作FG垂直X轴,并与直线BC交于点H,求FH的最大值。

2018届重庆中考复习:二次函数相关的最值问题练习(含答案)

二次函数相关的最值问题 2 例1.如图,抛物线y = —x —4x+ 5与x轴交于点A、B,与y轴交于点C,点D为抛物线的顶点. 求直线AC的解析式及顶点D的坐标; 若Q为抛物线对称轴上一动点,连接QA QC求|QA—QC|的最大值及此时点Q的坐标; (3)连接CD点P是直线AC上方抛物线上一动点(不与点A、C重合),过P作PE//x轴交直线AC于点 E,作PF//CD交直线AC于点F,当线段PE+ PF取最大值时,求点P的坐标及线段EF的长;

⑷在⑶K,连接0L 3问的条件下,将 KH求线段 (5)在⑶+ P' E'+ E 问的条件下,将线段PE沿着直线B取最小值时点E'的坐标.

针对训练 2 1 .如图,直线y= kx + b(k、b为常数)分别与x轴、y轴交于点A( —4, 0)、B(0 , 3),抛物线y=—x + 2x + 1与y 轴交于点C. ⑴求直线y = kx + b的解析式; (2) 若点P(x , y)是抛物线y = —x2+ 2x+ 1上的任意一点,设点P到直线AB的距离为d,求d关于x 的函数解析式,并求d取最小值时点P的坐标; (3) 若点E在抛物线y = —x2+ 2x + 1的对称轴上移动,点F在直线AB上移动,求CE+ EF的最小值.

2 .如图①,已知抛物线y =—身x2+ ^3~x + 3与x轴交于A, B两点(点A在点B的左侧),与y轴 交于点C,点D是点C关于抛物线对称轴的对称点,连接CD过点D作DH Lx轴于点H,过点A作AEL AC 交DH的延长线于点E. ⑴求线段DE的长度; (2)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为线段PF上方抛物线上的一点,求当△ CPF的周长最小时,△ MPF面积的最大值是多少. ① ②

周长最小值专题(完整版师用)

周长最小值专题(完整版师用) A.线段和最小值 两种基本模型 如图,要在街道旁修建一个奶站P,向居民区A、B提供牛奶,奶站P应建在什么地方,才能使从A,B到它的距离之和最短?为什么? 求线段和最小值的一般步骤: ①选点P所在直线l为对称轴;画出点A的对称点A’ ②连结对称点A’与B之间的线段,交直线l于点P, 点P即为所求的点,线段A’B的长就是AP+BP的最小值。 基本解法::利用对称性,将“折”转“直”

基础训练 1.如图11,梯形ABCD中,AD//BC,AB=CD=AD=1,∠B=60°,直线MN为梯形ABCD的对称轴,P为MN上一点,那么PC+PD的最小值为 A.1 B. C. D.2 试题分析:连接AC,与MN所得交点即为所求P点,因为D与A关于MN对称,的最小值即符合两点之间线段最短,所以AC与MN交点即为所求P点。因为,,所以,所以,所以,此时,所以,即 2. 如图4,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是________。 图4 分析:首先分解此图形,构建如图5模型,因为E、B在直线AC 的同侧,要在AC上找一点P,使PE+PB最小,关键是找出点B或E关于AC的对称点。如图6,由菱形的对称性可知点B和D关于AC对称,连结DE,此时DE即为PE+PB的最小值, 图5 图6

由∠BAD=60°,AB=AD ,AE=BE 知, 322 3DE =?= 故PE+PB 的最小值为 3。 2.如图,已知点A 是半圆上一个三等分点,点B 是弧AN 的中点,点P 是半径ON 上的动点,若⊙O 的半径长为1,则AP+BP 的最小值为___。 P 位于A ′B 与MN 的交点处,AP+BP 的值最小; 作A 关于MN 的对称点A ′,根据圆的对称性,则A ′必在圆上, 连接BA ′交MN 于P ,连接PA ,则PA+PB 最小,此时PA+PB=PA ′+PB=A ′B ,连接OA 、OA ′、OB , B.三角形周长最小值 1.彰州)如图4,∠AOB=45°,P 是∠AOB 一点,PO=10, (彰州)如图4,∠AOB=45°,P 是∠AOB 一点,PO=10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值. 分析:点P 是角部的一个定点,要在角的两边各确定一点使这三点连成的三角形周长最小,只需将这三边的和转化为以两定点为端点的一条折线. 解:分别作点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2, 根据轴对称性易知:OP 1=OP 2=OP=10,∠P 1OP 2=2∠AOB=90°,因而P 1P 2=102, 故△PQR 周长的最小值为102. 2.如图,抛物线y=-x2+bx+c 与x 轴交于A(1,0),B(-3,0)两点, P 2 P 1 O A B P R Q O 图4

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当-1≤x ≤2时,函数y =2x 2-4ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK //AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一

若函数y=4x2-4ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a2-1在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取-1,1,2时,函数y=(k-1)x2 -4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值. 讲义参考答案

二次函数和三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P( x1,y),Q(x2,y) x 1x 2 x 2 (1) 线段对称轴是直线 (2)AB 两点之间距离公式:PQ(x1x2 ) 2( y1 y2 )2 中点公式:已知两点P x 1 , y 1 x1 x 2 , y 1y2 ,Q x2 ,y 2,则线段 PQ的中点 M为22。 Q P G O 2 、两直线的解析式为y k 1 x b 1 与y k 2 x b2 如果这两天两直线互相垂直,则有k1k21 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1L2 :y=k2x+b2 (1)当 k1=k2, b1≠b2,L1∥ L2 (2)当 k1≠ k2,,L1 与 L2 相交 (3)K1×k2= -1时,L1 与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于 45°。判定: 具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三 角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。

判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是 60°的等腰三角形是等 边三角形。 总结:( 1)已知 A、B 两点,通过“两圆一线”可以找到所有满足条件的等腰三角形,要求 的点(不与 A、B 点重合)即在两圆上以及两圆的公共弦上 (2)已知 A、B 两点,通过“两线一圆” 可以找到所有满足条件的直角三角形,要求的点(不与A、B 点重合)即在圆上以及在两条与直径 AB垂直的直线上。 (二)关于等腰三角形找点(作点)和求点的不同, 1、等腰三角形找点(作点)方法:以已知边为边长,作等腰三角形,运用两园一线法,在图 上找出存在点的个数,只找不求。 2、等腰三角形求点方法:以已知边为边长,在抛物线或坐标轴或对称轴上找点,与已知点构 成等腰三角形,先设所求点的坐标,然后根据两点间的距离公式求出三点间的线段长度,然后分 顶点进行讨论, 如:已知两点 A、B,在抛物线上求一点 C,使得三角形 ABC 为等腰三角形 解法:这是求点法:先运用两点间的距离公式分别求出线段AB BC AC的长度, 第二步,作假设,(1)以点 A 为顶点的两条腰相等,即AB=AC(2)以点B为顶点的两条腰相等,即 BA=BC ( 3)以点 C为顶点的两条腰相等,即CA=CB 第三步,根据以上等量关系,求出所求点的坐标 第四步进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。 如:已知两点 A、 B,在抛物线上求一点C,使得三角形 ABC 为等腰三角形 解法:这是求点法:先运用两点间的距离公式分别求出线段AB BC AC的长度, 第二步,作假设,(1)以点 A 为顶点的两条腰相等,即 AB=AC (2)以点 B 为顶点的两条腰相等,即 BA=BC (3)以点 C 为顶点的两条腰相等,即CA=CB 第三步,根据以上等量关系,求出所求点的坐标 第四步,进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。 (三)关于直角三角形找点和求点的方法 1、直角三角形找点(作点)方法:以已知边为边长,作直角三角形,运用两线一园法,在图 上找出存在点的个数,只找不求。所谓的两线就是指以已知边为直角边,过已知边的两个端点分 别作垂线与抛物线或坐标轴或对称轴的交点,就是所求的点;一圆就是以已知边为直径,以已知 边的中点作圆,与抛物线或坐标轴或对称轴的交点即为所求的点。 2、具体方法 ( 1) k1 k21; (2)三角形全等(注意寻找特殊角,如 30°、 60°、 45°、 90 °) (3)三角形相似;经常利用一线三等角模型 (4)勾股定理; 当题目中出现了特殊角时,优先考虑全等法三、二 次函数的应用:

二次函数与三角形最大面积3种求法

))))))))) 二次函数与三角形最大面积的3种求法 一.解答题(共7小题) 21.(2012?广西)已知抛物线y=ax+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3). (1)求抛物线的解析式; (2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的 坐标;若不存在,请说明理由. 茂名)如图,抛物线与x轴交于点A和点B,与y2.(2013?轴交于点C,已知点B的坐标为(3,0). (1)求a的值和抛物线的顶点坐标; (2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;(3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理

由. 3.(2011?茂名)如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C (5,0),抛物线对称轴l与x轴相交于点M. (1)求抛物线的解析式和对称轴; (2)点P在抛物线上,且以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由.). ))))))))) ,)5,0,0),C((黔西南州)如图,在平面直角坐标系xOy中,已知抛物线经过点A0,4),B (1.4(2012?.x轴相交于点M抛物线的对称轴l与)求抛物线对应的函数解析式和对称轴;(1为顶点的四边形的四条边的长度为四个连续的PM、)上的一点,若以A、O、(2)设点P为抛物线(x>5 的坐标;正整数,请你直接写出点P的面积最大?若存在,请你求NAC,使△,探索:在直线AC下方的抛物线上是否存在一点N(3)连接AC N的坐标;若不存在,请说明

初中数学二次函数的最值问题专题复习

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值2 44ac b a -,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 【例1】当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-. 由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况: 【例3】当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象. 可以看出:当1x =时,min 1y =-,无最大值.

二次函数和三角形最大面积的3种求法

WORD格式整理版 二次函数与三角形最大面积的3种求法 一.解答题(共7小题) 1.(2012?广西)已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).(1)求抛物线的解析式; (2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标; (3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由. 2.(2013?茂名)如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标 为(3,0). (1)求a的值和抛物线的顶点坐标; (2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等; (3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由. 3.(2011?茂名)如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴l与x轴相交于点M. (1)求抛物线的解析式和对称轴; (2)点P在抛物线上,且以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由.

4.(2012?黔西南州)如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M. (1)求抛物线对应的函数解析式和对称轴; (2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由. 5.(2013?新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3). (1)求抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由; (3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标. 6.(2009?江津区)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.

初中数学:利用二次函数解决距离、利润最值问题练习(含答案) (2)

初中数学:利用二次函数解决距离、利润最值问题练习(含答案) 一、选择题 1.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的函数表达式为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最大的是( ) A.第8秒 B.第10秒 C.第12秒 D.第15秒 2.某民俗旅游村为解决游客的住宿需求,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则租出床位相应地减少10张.如果每张床位每天以20元为单位提高收费,为使租出的床位少且所获租金高,那么每张床位每天最合适的收费是( ) A.140元 B.150元 C.160元 D.180元 二、填空题 3.竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.4.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是________元时,才能在半月内获得最大利润. 5.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如下表:

科学家经过猜想,推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为________℃. 三、解答题 6.小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律: ①该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9-x; ②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10.已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克. (1)求该二次函数的表达式; (2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大,最大平均利润是多少.(注:平均利润=销售价-平均成本) 7.如图K-7-1所示,甲船从A处起以15海里/时的速度向正北方向航行,这时乙船从A 的正东方20海里的B处以20海里/时的速度向正西方向航行,多长时间后,两船的距离最小?最小距离是多少?

二次函数中三角形问题(含问题详解)

二次函数中的三角形 一.与三角形面积 例1:如图,已知在同一坐标系中,直线22 k y kx =+- 与y 轴交于点P ,抛物线k x k x y 4)1(22 ++-=与x 轴交于)0,(),0,(21x B x A 两点。C 是抛物线的顶点。 (1)求二次函数的最小值(用含k 的代数式表示); (2)若点A 在点B 的左侧,且021

二次函数与三角形的面积问题

二次函数与三角形的面积问题 【教学目标】 1.能够根据二次函数中不同图形的特点选择合适的方法解答图形的面积。 2.通过观察、分析、概括、总结等方法了解二次函数面积问题的基本类型,并掌握二次函数中面积问 题的相关计算,从而体会数形结合思想和转化思想在二次函数中的应用。 3.掌握利用二次函数的解析式求出相关点的坐标,从而得出相关线段的长度,利用割补方法求图形的面积。【教学重点和难点】 1.运用 2铅垂高 水平宽? = s; 2.运用y; 3.将不规则的图形分割成规则图形,从而便于求出图形的总面积。 【教学过程】 类型一:三角形的某一条边在坐标轴上或者与坐标轴平行 例1.已知:抛物线的顶点为D(1,-4),并经过点E(4,5),求: (1)抛物线解析式; (2)抛物线与x轴的交点A、B,与y轴交点C; (3)求下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。 解题思路:求出函数解析式________________;写出下列点的坐标:A______;B_______;C_______;求出下列线段的长:AO________;BO________;AB________;OC_________。求出下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。

一般地,这类题目的做题步骤:1.求出二次函数的解析式;2.求出相关点的坐标;3.求出相关线段的长;4.选择合适 方法求出图形的面积。 变式训练1.如图所示,已知抛物线()02 ≠++=a c bx ax y 与x 轴相交于两点A ()0,1x , B ()0,2x ()21x x <,与y 轴负半轴相交于点 C ,若抛物线顶点P 的横坐标是1,A 、 B 两点间的距离为4,且△ABC 的面积为6。 (1)求点A 和B 的坐标; (2)求此抛物线的解析式; (3)求四边形ACPB 的面积。 类型二:三角形三边均不与坐标轴轴平行,做三角形的铅垂高。(歪歪三角形拦腰来一刀) 关于2 铅垂高 水平宽?= ?S 的知识点:如图1,过△ABC 的三个顶点分别作出与水平线垂直的 三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 2 1 =?,即三角形面积等于水平宽与铅垂高乘积的一半. 想一想:在直角坐标系中,水平宽如何求?铅垂高如何求? 例2.如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ?;(3)是否存在一点P ,使S △P AB =8 9 S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 解题思路:求出直线AB 的解析式是为了求出D .点的纵坐标.....D y ; 铅垂高,注意线段的长度非负性;分析P 点在直线AB 的上方还是下方? x A B O C y P B C 铅垂高 水平宽 h a 图1 图-2 x C O y A B D 1 1

相关主题
文本预览
相关文档 最新文档