当前位置:文档之家› 实验研究光谱非相关激光辐照下光伏型HgCdTe探测器芯片前后表面的温升

实验研究光谱非相关激光辐照下光伏型HgCdTe探测器芯片前后表面的温升

实验研究光谱非相关激光辐照下光伏型HgCdTe探测器芯片前后表面的温升
实验研究光谱非相关激光辐照下光伏型HgCdTe探测器芯片前后表面的温升

拉曼光谱实验报告

拉曼光谱实验 姓名学号 何婷21530100 李玉环21530092 宋丹21530111 [实验目的] 1、了解Raman光谱的原理和特点; 2、掌握Raman光谱的定性和定量分析方法; 3、了解Raman光谱的谱带指认。 4、了解显微成像Raman光谱。 [仪器和装置] 1、显微Raman光谱系统一套,拉曼光谱仪的型号为SPL-RAMAN-785 USB2000+的拉曼光谱仪,自带785nm激光; 2、带二维步进电机平移台一台(有控制器一台); 3、PT纳米线样品; 4、光谱仪软件SpectraSuite; 5、步进电机驱动软件; 6、摄像头(已与显微镜集成在一起)。 [实验内容] 1、使用显微Raman系统及海洋光谱软件对单根或多根纳米线进行显微Raman光谱测量, 对测量的图和标准图进行比较,并通过文献阅读对PT纳米线Raman(测量和标准)的谱峰进行指认。 2、使用显微拉曼扫描系统进行二维样品表面拉曼信号收集,并生成样品表面特定波长处的 拉曼信号强度三维图,模拟样品表面拉曼表征。选择多个拉曼波长对样品形状进行观察。[实验结果及分析]

观察PbTiO3的拉曼散射谱并比对具体的拉曼散射光谱数据进行分析,可以找到以上10个拉曼散射峰,分别位于784.54nm,794.94 nm,798.60 nm,802.90 nm,806.84 nm,811.91 nm,817.10 nm,825.29 nm,832.44 nm,879.69nm附近,对应的Raman Shift分别是-7.46 cm-1 159.28 cm-1 216.94 cm-1 284.00 cm-1 344.82 cm-1 422.21 cm-1 500.44 cm-1 621.90 cm-1 725.97 cm-1 1371.21 cm-1。 (通过Raman Shift=1/λ入射-1/λ散射计算得到) PT纳米线Raman测量的谱峰指认: 分析可知,-7.46 cm-1 159.28 cm-1 216.94 cm-1 284.00 cm-1 344.82 cm-1 422.21 cm-1 500.44 cm-1 621.90 cm-1 725.97 cm-1附近的9个振动模,分别对应于PbTiO3的A1(1TO),E(1LO),E(2TO),B1+E,A1(2TO),E(2LO)+A1(2LO),E(3TO)A1(3TO),A1(3LO)声子模。 位于159.28 cm-1附近的模对应PbTiO3纳米线表面的TiO6八面体相对于Pb的振动;位于500.44 cm-1附近的模分别对应于表面Ti-O或Pb-O键的振动;位于725.97 cm-1附近的模对应于TiO6八面体中Ti-O键的振动。而位于284.00 cm-1的振动模为静模。此外,在725.97 cm-1处PbTiO3还具有额外的Raman振动模,可能与该相中含有大量且复杂的晶胞结构有关。据报道,复杂钙钛矿结构中氧八面体的畸变或八面体内B位离子的移动在某种程度上会破坏平移对称性,引起相邻晶胞不再具有相似的局部电场和极化率。 位于-7.46 cm-1处的拉曼峰强度增强,相比标准PbTiO3纳米线,其余拉曼峰强度均减弱。798nm处样品表面拉曼信号三维强度图:

拉曼光谱

拉曼光谱实验报告 一、实验目的 1. 了解拉曼光谱的基本原理、主要部件的功能; 2. 了解拉曼光谱对所观察与分析样品的要求; 3. 了解拉曼光谱所观察材料的微观组织结构和实际应用; 4. 初步掌握制样技术和观察记录方法 二、实验仪器原理 1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线,频率较大的成分υ0+υ1又称为反斯托克斯线。靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利线的两侧出现的谱线称为大拉曼光谱。瑞利散射线的强度只有入射光强度的10-3,拉曼光谱强度大约只有瑞利线的10-3。小拉曼光谱与分子的转动能级有关,大拉曼光谱与分子振动-转动能级有关。拉曼光谱的理论解释是,入射光子与分子发生非弹性散射,分子吸收频率为υ0的光子,发射υ0-υ1的光子(即吸收的能量大于释放的能量),同时分子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为υ0的光子,发射υ0+υ1的光子(即释放的能量大于吸收的能量),同时分子从高能态跃迁到低能态(反斯托克斯线)。分子能级的跃迁仅涉及转动能级,发射的是小拉曼光谱;涉及到振动-转动能级,发射的是大拉曼光谱。与分子红外光谱不同,极性分子和非极性分子都能产生拉曼光谱。激光器的问世,提供了优质高强度单色光,有力推动了拉曼散射的研究及其应用。拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。 拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。用虚的上能级概念可以说明了拉曼效应: 设散射物分子原来处于基电子态,当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态(Virtual state),虚能级上的电子立即跃迁到下能级而发光,即为散射光。设仍回到初始的电子态,则有如图所示的三种情况。因而散射光中既有与入射光频率相同的谱线,也有与入射光频率不同的谱线,前者称为瑞利线,后者称为拉曼线。在拉曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。

激光拉曼实验报告

激光拉曼及荧光光谱实验 一、实验目的 1、 了解激光拉曼的基本原理和基本知识以及用激光拉曼的方法鉴别物质成分和分子结构的原理; 2、 掌握LRS – II 激光拉曼/荧光光谱仪的系统结构和操作方法; 3、 研究四氯化碳CCL 4、苯C 6H 6等物质典型的振动—转动光谱谱线特征。 二、实验原理 2.1 基本原理 分子有振动。原子分双子的振动按经典力学的观点可以看成是简谐振子,其能量为 A 是振幅,k 是力常数。按照量子力学,简谐振子的能量是量子化的, t=0,1,2,3,···,是振动量子数,f 是振子的固有振动频率。如果在同一电子态中,有振动能级的跃迁,那么产生的光子能量 hf t t E E h )('12-=-=ν 波数为 CO 在红外部分有4.67微米、2.35微米、1.58微米等光谱带,其倒数之比近似为1: 2:3。当Δt=1时,测得的ν ~反映了分子键的强弱。 分子有转动。双原子分子的转动轴是通过质心而垂直于联接二原子核的直线的。按照经典力学,转动的动能是 式中P 是角动量,I是转动惯量, 222211r m r m I += 可以证明 I P I E 2212 2= =ω2 2 2 121r r m m m m I μ=+= 2222 1212 1 kA kx mv E =+ = 2 12 1m m m m m += hf t E )2 1(+=m k f π21= ,3,2,)(1 ~12ωωωωλ ν =?=-'=-= =t c f t t hc E E

上式中r1,r2和r分别代表两原子到转轴的距离及两原子之间的距离,μ称为约化质量。按照量子力学,角动量应等于 代入上式得 此式可以从量子力学直接推得,J称为转动量子数。当J=0,1,2,3,···等值时,相应的J(J+1)=0,2,6,12,···,所以能级的间隔是I h 228π的2,4,6,8,···倍。 实验和理论都证明纯转动能级的跃迁只能在邻近能级之间,就是ΔJ=±1。所得 光谱的波长应该有下式表达的值: 谱线波数(ν ~)的间隔是相等的。HCL 分子远红外吸收谱中,曾观察到很多条吸收线,这些线的波数间隔应该是2B,实验测得:B=10.34厘米 -1 ,所以由此求得 转动惯量I,进而求得HCL 分子中原子之间的核间距这一重要数据。 多原子分子的转动可以近似地看作刚体的转动,这涉及到多个转轴的不同的转动惯量。其谱线结构较为复杂,只有直线型的分子和对称高的分子转动曾研究出一些结果。在分析化学领域中提供了一些分析样品的标准特征谱线可供实验参照。 光通过透明的物体时,有一部分被散射。如果入射光具有线状谱,散射光的光谱中 除有入射光的谱线外,还另有一些较弱的谱线,这些谱线的波数ν '~等于入射光某一波数0~ν加或减一个数值,即10~~~ννν±='。新出现谱线的波数与入射光的波数之差发现与光源无关,只决定于散射物。如果换一个光源,0~ν不同了,但如果散射物不变换,那么0~~νν-'还是等于原来的1~ν,散射光的波数变动反映了散射物的性质。由于散射光的波数等于入射光的波数与另一数值1 ~ν组合的数值,所以这样的散射称作组合散射。 可以在紫外或可见区观测分子的振动和转动能级,通过选择波长在可见光波段的激 ,2,1,0,2) 1(=+=J h J J P π ) 1(82 2+= J J I h E πIc h B J BJ J J J J Ic h hc E E 2''''2'8, ,3,2,12)]1()1([8~1 ππνλ= ==+-+=-==

激光拉曼光谱实验报告

激光拉曼光谱实验报告 摘要:本实验研究了用半导体激光器泵浦的3Nd + :4YVO 晶体并倍频后得到的532nm 激 光作为激发光源照射液体样品的4CCL 分子而得到的拉曼光谱,谱线很好地吻合了理论分析的4CCL 分子4种振动模式,且频率的实验值与标准值比误差低于2%。又利用偏振片及半波片获得与入射光偏振方向垂直及平行的出射光,确定了各振动的退偏度,分别为、、、,和标准值0和比较偏大。 关键词:拉曼散射、分子振动、退偏 一, 引言 1928年,印度物理学家拉曼()和克利希南()实验发现,当光穿过液体苯时被分子散射的光发生频率变化,这种现象称为拉曼散射。几乎与此同时,苏联物理学家兰斯别而格()和曼杰尔斯达姆()也在晶体石英样品中发现了类似现象。在散射光谱中,频率与入射光频率0υ相同的成分称为瑞利散射,频率对称分布在0υ两侧的谱线或谱带01υυ±即为拉曼光谱,其中频率较小的成分01υυ-又称为斯托克斯线,频率较大的成分01υυ+又称为反斯托克斯线。这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。 拉曼效应是单色光与分子或晶体物质作用时产生的一种非弹性散射现象。拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 20世纪60年代激光的问世促进了拉曼光谱学的发展。由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。它提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。拉曼光谱的分析方向有定性分析、结构分析和定量分析。

硬母线温升计算

硬母线温升计算 请教各位,低压成套开关设备垂直母线额定短时耐受电流如何选取? 在论坛一直潜水,学习帕版及各位老师的帖子,受益匪浅。本人有一事不明白,低压成套开关设备垂直母线的额定短时耐受电流如何选取? 对于2500kVA,阻抗电压6%的变压器,主母线选择额定短时耐受电流85kA/1S,垂直母线应如何选取?垂直母线上的断路器的分断能力是否应于母线相匹配? 另,帕版经常提到的“MNS Engineering Guide-line ”式中下载不到,可否提供以下?谢谢 楼主的问题是: 对于2500kVA,阻抗电压6%的变压器,主母线选择额定短时耐受电流85kA/1S,垂直母线应如何选取?垂直母线上的断路器的分断能力是否应于母线相匹配? 我们先来计算一番: 因为:Sn=√3UpIn,所以In=2500x103/(1.732x400)=3609A 因为:Ik=In/Uk,所以Ik=3609/0.06=60.15kA 对于断路器而言,选择断路器的极限短路分断能力Icu>60.15kA即可,一般取为65kA。但是对于主母线来说,是不是我们也选择它的动稳定性等于65kA 就可以了? 动稳定性的定义是:低压开关柜抵御瞬时最大短路电流电动力冲击的能力。那么60.15kA就是最大短路电流的瞬时值吗? 我们来看下图:

这张图我们看了N遍了。其中Ip就是短路电流的稳态值,也是短路电流的周期分量。在楼主的这个问题中,我们计算得到的60.15kA 就是Ip,它也等于短路电流稳态值Ik。显然,它不是短路电流的最大瞬时值 短路电流的最大瞬时值是冲击短路电流峰值Ipk,Ipk=nIk。根据IEC 61439.1或者GB 7251.1,我们知道当短路电流大于50kA后,n=2.2,于是冲击短路电流峰值Ipk=nIk=2.2x60.15=132.33kA,这才是动稳定性对应的最大短路电流瞬时值 也就是说,对于楼主的这个范例,低压开关柜主母线的峰值耐受电流必须大于132.33kA 我们来看GB 7251.1-2005是如何描述峰值耐受电流与短时耐受电流之间的关系的,如下: 我们发现,对于主母线来说,它的峰值耐受电流与短时耐受电流之比就是峰值系数n

激光拉曼光谱仪实验报告

实验六 激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL 4的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL 4、计算机、打印机 【原 理】 1. 拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射 而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 ⑴ 弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3×105HZ ,在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵ 非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换, 光子转移一部分能量给分子, 或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值21E E E -=?。在光子与分子发生非弹性碰撞过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频率较低的光(即斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能

变压器的温升计算

变压器的温升计算方法探讨 1 引言 我们提出工频变压器温升计算的问题,对高频变压器的温升计算也可以用来借鉴。工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,其实麻雀虽小五脏俱全,再成熟的东西也需要不断创新才有生命力。对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得,拿来主义就可以了,在本企业来说绝对有效,离开了本企业也带不走那么多数据。但冷静的考虑一下,任何一个企业不可能生产全系列变压器,总会有相当多的系列不在你生产的范围内,遇到一些新问题,只能用打样与试验的方法去解决,小铁心不在话下,耗费的工时与材料都不多,大铁心耗费的铁心与线材就要考虑考虑了。老企业可以用这样简单的办法去解决,只不过多花费一些时间罢了,一个新企业或规模不大的企业,遇到这些问题要用打样与试验的方法去解决,就耗时比较多了,有时候会损失商机。进入软件时代,软件的编写者如不能掌握这一问题,软件的用户将会大大减少。下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。 2 热阻法 热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂家提供的热阻数据,简单、实用何乐而不为。高频变压器可采用这一方法。而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。热阻法的具体计算公式如下: 式中, 温升ΔT(℃) 变压器热阻Rth(℃/w) 变压器铜损PW(w) 变压器铁损PC(w) 3 热容量法 源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、

拉曼光谱实验报告

成绩 评定 教师 签名 嘉应学院物理学院近代物理实验 实验报告 实验项目:拉曼光谱 实验地点: 班级: 姓名: 座号: 实验时间:年月日

图2 ν? 0ν ν? 斯托克斯线 瑞利线 反斯托克斯线 一、实验目的: 1、 了解拉曼散射的基本原理 2、 学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二、实验仪器和用具: RBD 型激光拉曼光谱仪 三、实验原理: 按散射光相对于入射光波数的改变情况,可将散射光分为瑞利散射、布利源散射、拉曼散射;其中瑞利散射最强,拉曼散射最弱。在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子内部的运动(转动、振动等)而变化,所以产生拉曼散射。 在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a );在非弹性碰撞过程中光量子与分子有能量交换,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值12E E E ?=-,当光量子把一部分能量交给分子时,频率较低的光为斯托克斯线,散射分子接受的能量转变成为分子的振动或转动能量,从而处于激发态1E ,如图(1b ),这时的光量子的频率为0ννν'=-?;光量子从较大的频率散射,称为反斯托克斯线,这时的光量子的频率为0ννν'=+?。 最简单的拉曼光谱如图2所示,中央的是瑞利散射线,频率为0ν,强度最强;低频一侧的是斯托克斯线,强度比瑞利线的强度弱很多;高频的一侧是反斯托克斯线,强度比斯托克斯线的 图(1a ) 0h ν ()0h νν+? 0h ν ()0h νν-? 图(1b ) (上能态是虚能态,实 际不存在。这样的跃迁 过程只是一种模型实 际并没有发生) 0h ν 0h ν 0h ν 0h ν

变压器的温升计算公式

变压器的温升计算公式 1 引言 工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得。下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。 2 热阻法 热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂家提供的热阻数据,简单、实用何乐而不为。高频变压器可采用这一方法。而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。热阻法的具体计算公式如下: 式中, 温升ΔT(℃) 变压器热阻Rth(℃/w) 变压器铜损PW(w) 变压器铁损PC(w) 3 热容量法 源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、绝缘材料消耗掉。这样引出一个热容量(比热)的概念,就可以利用古人留给我们的比热的试验数据,准确的计算出变压器的温升来。不是所有的变压器都可以利用这一计算公式,唯独只有带塑料外壳的适配器可采用这一方法,这种计算方法准确度犹如瓮中捉鳖十拿九稳。 若适配器开有百叶窗,那就有一部份热量通过对流散发出去,如不存在强迫对流,百叶窗对温升的影响只在百分之三左右。上一代的变压器设计工作者对这一计算方法很熟悉,现在的变压器设计工作者根据此线索,进行考古也会有收获。热容量法的计算模式如下: 式中,温升ΔT(℃)

激光拉曼光谱的原理和应用及拉曼问答总结(整理完毕)

激光拉曼光谱的原理和应用 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会暗原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究 推荐激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。 激光拉曼光谱法的原理是拉曼散射效应。 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。 对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。 这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学 拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物 拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。 生物 拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。拉曼光谱在蛋白质

拉曼光谱实验报告

嘉应学院物理学院近代物理实验 实验报告 实验项目:拉曼光谱 实验地点: 班级: 姓名: 座号:

实验时间:年月日 一、实验目的: 1、了解拉曼散射的基本原理 2、学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二、实验仪器和用具: RBD型激光拉曼光谱仪 三、实验原理: 按散射光相对于入射光波数的改变情况,可将散射光分为瑞利散射、布利源散射、拉曼散射;其利散射最强,拉曼散射最弱。在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子部的运动(转动、振动等)而变化,所以产生拉曼散射。 在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a);在非弹性碰撞过程中光量子与分子有能量交换,从而使它的频率改变,它取自或给

图2 ν?0νν? 斯托克斯线瑞利线反斯托克斯线予散射分子的能量只能是分子两定态之间的差值 12 E E E ?=-,当光量子把一部分能量交 给分子时,频率较低的光为斯托克斯线,散射分子接受的能量转变成为分子的振动或转动能 量,从而处于激发态 1 E,如图(1b),这时的光量子的频率为 ννν '=-?;光量子从较大 的频率散射,称为反斯托克斯线,这时的光量子的频率为 ννν '=+?。 最简单的拉曼光谱如图2所示,中央的是瑞 利散射线,频率为 ν,强度最强;低频一侧的 是斯托克斯线,强度比瑞利线的强度弱很多;高 频的一侧是反斯托克斯线,强度比斯托克斯线的 强度又要弱很多,因此并不容易观察到反斯托克 斯线的出现,但反斯托克斯线的强度随着温度的升高而迅速增大。斯托克斯线和反斯托克斯 线通常称为拉曼线,其频率常表示为 νν ±?,ν?称为拉曼频移。为尽可能地考虑增强入射光的光强和最大限度地收集散射光,又要尽量地抑制和消除主要来自瑞利散射的背景杂散光,提高仪器的信噪比。拉曼光谱仪一般由图3所示的五个部分构成。 仪器的外形示意图见图5所示。仪器配套实验台,各分部件安装于实验台上,实验台结实平稳,满足精度光学实验的要求。 图3 拉曼光谱仪的基本结构

电容器外部温升计算

電容器外部溫升計算公式 :3.1416 :頻率 (Hz ) :損耗因數 tan δ :峰值電流 (A ) :容抗 (Ω) π f DF I rms Xc :電容器外部溫升 (℃) :傳熱系數 MPE Film 1.4×10-3 W/( cm 2×℃) MPP Film 2.5×10-3 W/( cm 2×℃) :電容器表面積 (cm 2) :電容器容量 (F ) :頻率系數 2πf (Hz ) β S C ω 1 β*S I 2 rms*tan δ ω*C )× 1 β*S I 2 rms*DF* )* 2πfC 1 Xc= = ω*C 1 2πfC 1 ω =2πf 1cal/(cm 2?s ?℃)=4.1868 W/(cm 2 × ℃) CAPACITORS HUNG JUNG ELECTRONICS GUANG DONG 1 β*S I 2 rms*tan δ ω*C × 1 β*S =( )×I 2 rms ×DF ×Xc =( )×I 2 rms ×DF × 1 β*S 2πfC 1 MPE Film β :1.4×10 -3 W/(cm 2 × ℃) S :18.16cm 2 (26×18×10mm) I rms :1. 1.20A 2. 2.30A 3. 2.83A DF :0.018 π :3.14 f :50KHz=5×10 4Hz 1. 1.20A =( )×1.22×0.018× =39.3329×0.018×3.1847133×1.22 =2.2547506×1.22 =3.2468408(℃) 1 1.4×10 -3×18.16 1 2×3.14×5×10 4×10 -6 △T 2. 2.30A =2.2547506×2.3 2 =11.92763(℃) △T 3. 2.83A =2.2547506×2.83 2 =18.058072(℃) △T MPP Film β :2.51208×10 -3 W/(cm 2 × ℃) S :19.855cm 2 (26×18.5×11.5mm) I rms :1. 1.20A 2. 2.83A 3. 3.50A DF :0.007 π :3.14 1. 1.20A =( )×1.22×0.007× =20.0491×0.007×3.1847133×1.2 2 =0.4469544×1.2 2 =0.6436143(℃) 1 2.51208×10 -3× 1 2×3.14×5×10 4×10 - 6 △T 2. 2.83A =0.4469544×2.83 2 =3.579613(℃) △T 3. 3.50A =0.4469544×3.50 2 =5.4751914(℃) △T

激光拉曼光谱仪实验报告

实验六激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL、计算机、打印机 【原理】 1.拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 (1)弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3X 105HZ在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换,光子转移一部分能量给分子或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值=E - E2。在光子与分子发生非弹性碰撞 过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频率较低的光(即斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能 量,从而处于激发态Ei,这时的光子的频率为、-- ■'■:■■-(入射光的频率为\ 0);

物理实验实验报告

物理仿真实验——拉曼光谱 一、实验目的: 1.拍摄拉曼光谱并观察; 2.学会推测出分子拉曼光谱的基本概貌,如谱线数目、大致位置、偏振性质和它们的相对强度; 3.从实验上确切知道谱线的数目和每条线的波数、强度及其应对应的振动方式。 4.以上两个方面工作的结合和对比,利用拉曼光谱获得有关分子的结构和对称性的信息。 二、实验原理 (1)拉曼效应和拉曼光谱:当光照射到物质上时会发生非弹性散射,散射光中除有与激发光波长相同的弹性成分(瑞利散射)外,还有比激发光波长长的和短的成分,后一现象统称为拉曼效应。由分子振动、固体中的光学声子等元激发与激发光相互作用产生的非弹性散射称为拉曼散射,一般把瑞利散射和拉曼散射合起来所形成的光谱称为拉曼光谱。 (2)拉曼光谱基本原理: 设散射物分子原来处于基电子态,振动能级如下图所示。 当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态,虚能级上的电子立即跃迁到下能级而发光,即为散射光。

设仍回到初始的电子态,则有如图所示的三种情况。因而散射光中既有与入射光频率相同的谱线,也有与入射光频率不同的谱线,前者称为瑞利线,后者称为拉曼线。在拉曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。 瑞利线与拉曼线的波数差称为拉曼位移,因此拉曼位移是分子振动能级的直接量度。下图给出的是一个拉曼光谱的示意图。 (3)拉曼效应的经典电磁解释:如分子,在激发光的交变场作用下发生感生极化,也就是正负电中心从相合变为相离,成为电偶极子。这感生电偶极子是随激发场而交变的,因此它也就是成了辐射体。简单的与激光同步的发射,就成为瑞利散射。然而分子本身有振动和转动,各有其特种频率。这些频率比激发光的频率低一两个数量级或更多些,于是激发光的每一周期所遇的分子振动和转动相位不同,相应的极化率也不同。 (4)当光入射到样品上时的三种情况: 1.光子同样品分子发生了弹性碰撞,没有能量交换,只是改变了光子的运动方向, 此时散射光频率=入射光频率:hv k =hv 1 ; 2.如频率为v 1的入射光子被样品吸收,样品分子被激发到能量为hv L 的振动能级 L = 1上,同时发生频率为v s=v1-v L的斯托克斯散射;

拉曼光谱常见问题汇总

拉曼光谱问题汇总 问题目录 一、测试了一些样品,得到的是Ramanshift,但是文献是wavenumber,不知道它们之间的转换公式是怎么样的?激光波长632.8nm。 二、如何用拉曼光谱仪测透明的有机物液体,测试时放到了玻璃片上测出来的结果是玻璃的光谱。 三、我们这里有做生物样品的拉曼光谱的,在获得的图里面有很强的荧光,有的说,如果拉曼得不到就用其荧光谱。可我想问一下,在拉曼谱里面得到的荧光背景,是真正的荧光特征谱吗?这和荧光光谱仪里面的荧光图有什么区别? 四、什么是共焦显微拉曼光谱仪? 五、请问,测固体粉末的拉曼图谱时,对于荧光很强的物质,应该如何处理?特别是当荧光将拉曼峰湮灭时,应该怎么办?增加照射时间的方法,我试过,连续照射了4小时,结果还是有很强的荧光。我只有一台532nm的激光器,所以更换激光波长的方法目前我不能用。想问问各位,还有别的方法吗? 六、请问用激光拉曼仪能测量薄膜的厚度、折射率及应力吗?它能对薄膜进行那些方面的测量呢? 七、拉曼做金属氧化物含量的下限是多少? 我有一几种氧化物的混合物,其中MoO3含量只有5%,XRD检测不到,拉曼可以吗? 八、小弟是刚涉足拉曼这个领域,主打生物医学方面。实验中,发现温度不同时,拉曼好像也不一样。不知到哪位能帮忙解释一下这个现象 九、文献上说,拉曼的峰强与物质的浓度是成正比关系,那么比如我配置1mol/L的某溶液,和0.5mol/L的溶液,其峰强度是正好一半的关系吗?应用拉曼,是否能采用峰积分,或者用近红外那样的多元统计的办法来定量吗?准确度怎么样? 十、拉曼峰1640对应的是什么东西啊?无机的 十一、1 红外分析气体需要多高的分辨率? 2 拉曼光谱仪是否可分析纯金属? 3 红外与拉曼联用,BRUKER和NICOLET哪个好些? 十二、我想请问一下这里的高手测定过渡金属络合物水溶液中金属与有机物中的某个原子是否成键可以用拉曼光谱分析吗? 十三、金红石和锐钛矿对紫外Raman的响应差别大不大?同样条件下的金红石和锐钛矿的Raman峰会不会差很多? 十四、什么是3CCD? 十五、请教我所作的实验是用柠檬酸金属盐溶胶拉制成纤维,想做一下拉曼光谱来证明是否有线性分子的存在,可以吗 十六、在测量拉曼光谱仪的灵敏度参数时,有人提出,单晶硅的三阶拉曼峰的强度跟硅分子的取向(什么111,100之类)的有关,使用不同取向的硅使用与其相匹配的激光照射时,其强度严重不一样,是这样吗?不知道大家测量激光拉曼光谱仪的灵敏度时都是怎么测量的 十七、请问如何进行拉曼光谱数据处理? 十八、拉曼系统自检具体是检测哪些硬件?是个什么过程? 十九、请教作激光拉曼测试,样品如何预处理? 二十、请问激光拉曼光谱是什么意思? 二十一、请教喇曼谱实验时,如何选择激发波长,1064nm?还是785nm或633nm? 二十二、拉曼信号对入射角和出射角的响应又是什么样?我的样品是有衬底支持的薄膜样品(膜厚几百纳米--几微米),怎样扣除衬底的影响? 二十三、微区拉曼和普通拉曼有区别吗,尤其在图谱上?多晶,单晶和非晶拉曼有何区别? 二十四、我是做复合材料的研究的,主要是想研究纤维增强复合材料的界面性能? 二十五、学校有一套天津港东的拉曼光谱仪,计划给学生开一个测量固体(或粉末)拉曼光谱的实验。试了几种材料都不明显,各位高人能推荐几种容易找到的象四氯化碳拉曼光谱那么明显的固体,晶体,或者粉末吗? 二十六、我们研究小组新近涉及碳纳米管的领域。由于纳米管的Raman信号很弱,就是要重复不断的测试才能在1600cm-1的附近得到峰。请问具体操作条件应该怎么选。如laser的功率,解析度,扫描数scannumber等等,我们用的Raman仪器是(Brucker, RFS-100/S)。 二十七、激光拉曼光谱仪应该可以实现快速的定量分析,但经过前段时间一些咨询,使我对其是否可进行快速分析颇存疑问,尤其是气体分析。请问,一般来说分析一次样品(气体或固体)的时间是多长

拉曼光谱实验报告

拉曼光谱实验报告 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

实验报告 实验项目:拉曼光谱 实验地点: 班级: 姓名: 座号: 实验时间:年月日 一、实验目的: 1、了解拉曼散射的基本原理 2、学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二、实验仪器和用具: RBD型激光拉曼光谱仪 三、实验原理: 按散射光相对于入射光波数的改变情况,可将散射光分为瑞利散射、布利源散射、拉曼散射;其中瑞利散射最强,拉曼散射最弱。在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子内部的运动(转动、振动等)而变化,所以产生拉曼散 射。

在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a );在非弹性碰撞过程中光量子与分子有能量交换,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值12E E E ?=-,当光量子把一部分能量交给分子时,频率较低的光为斯托克斯线,散射分子接受的能量转变成为分子的振动或转动能量,从而处于激发态1E ,如图(1b ),这时的光量子的频率为0ννν'=-?;光量子从较大的频率散射,称为反斯托克斯线,这时的光量子的频率为0ννν'=+?。 最简单的拉曼光谱如图2所示,中央的是瑞利散射线,频率为0ν,强度最强;低频一侧的是斯托克斯线,强度比瑞利线的强度弱很多;高频的 一侧是反斯托克斯线,强度比斯托克斯线的强度又要弱很多,因此并不容易观察到反斯托克斯线的出现,但反斯托克斯线的强度随着温度的升高而迅速增大。斯托克斯线和反斯托克斯线通常称为拉曼线,其频率常表示为0νν±?,ν?称为拉曼频移。为尽可能地考虑增强入射光的光强和最大限度地收集散射光,又要尽量地抑制和消除主要来自瑞利散射的背

pcb线路温升计算

Temperature Rise in PCB Traces Douglas Brooks UltraCAD Design, Inc. doug@https://www.doczj.com/doc/e29136675.html, https://www.doczj.com/doc/e29136675.html, Reprinted from the Proceedings of the PCB Design Conference, West, March 23-27, 1998? 1998 Miller Freeman, Inc. ? 1998, UltraCAD Design, Inc. Background I built my first “electronic” device over 40 years ago. (I was really young at the time!) Over the intervening years, there have been dramatic changes in technology. Some of these changes include the shift from designing circuits with components to designing systems with IC’s, the shift from high voltage vacuum tube requirements (say 250 volts, or so) to (mostly) low voltage requirements, and the subsequent decline in the relative number of designs where high voltage and high current requirements are an issue. In the 60’s almost all designers had to worry about the current carrying capacity of PCB traces on at least some of their designs. Now, some designers can go through an entire career without having to address this issue at all. As I looked at this I began to understand why the significant investigations into PCB trace temperature-vs-current (T-C) relationships are mostly over 25 years old! The current T-C bible for most of us is the set of charts in IPC-D-275. (IPC) (Footnote 1) Yet there is a nagging concern about them when we use them: Are they current? Are we sure where they came from and can they be trusted? Some people say they were generated with only three or four points and then “French Curves” were used to create smooth lines between the points. Others say they have been redrawn so many times by so many artists that they only somewhat resemble the original data. And you only have to look at the incongruous result from some of them that up to 125 ma of current can flow through a conductor with zero cross-sectional area! (You know, the curves really should go through the origin!) Then I ran across another set of data in an old (1968) copy of “Design News” (DN) (Footnote 2). McHardy and Gandi recently reported on an analysis where they tried to test a theoretical, mathematical model on the IPC and the DN data (Footnote 3) with some limited success. That was when I decided to do the same thing using a different, more analytical (I believe) approach. This paper is a report of that analysis. Defining the Model We can think of a model as a representation of reality. In the context of this paper I will use an equation to “model” the relationship between current and the temperature of a trace. If the model is realistic, then when I substitute variables into the equation, the result will (within reason) reflect the actual result that would be obtained in the physical world. We can “test” a model by looking at actual results, and see if the model would give similar results under the same conditions. It is intuitive that the flow of current through a trace (power) will cause the temperature of the trace to increase. The formula for power is I2*R, so the relationship is probably not simply linear. The resistance of a trace (per unit length) is a function of its cross-sectional area (width times thickness). So the relationship between temperature and current, therefore, is probably a non-linear function of current, trace width, and trace thickness. But the ability of a trace to “shed”, or dissipate, heat is a function of its surface area, or width (per unit length). At the same time the current is heating the trace, the trace is cooling through the combined effects or radiation, convection and conduction through its surface. Therefore, the relative effect of width in the overall model is probably different than thickness.

相关主题
文本预览
相关文档 最新文档