当前位置:文档之家› 弹塑性力学课件

弹塑性力学课件

弹塑性力学课件
弹塑性力学课件

法兰盘连接应力集中降低

受扭空心轴

成果之一;

Ray W Clough

美国两院院士

中国工程院外籍院士

引言

9

费钱、费时、费力

以汽车工业为例:设计一种新型的轿车一般要好几年的时间,制作样车的费用也很高。

10虚拟设计流程

方案比较、设计修改和优化都通过CAE软件完成,大大缩短了设计周期。

14 15

屈曲和稳定性分析

16

Model from FHWA/NHTSA National Crash Analysis Center web site (https://www.doczj.com/doc/ed9124517.html,/archives/model/index.html)

Model courtesy of Alcan Mass Transportation and Fiat Ferroviaria 与试验比较

LS-DYNA模拟

24

25 LS-DYNA模拟

26虚拟设计与虚拟制造

Boeing Commercial Airplane G roup W ichita Division

Manufacturing

Resear ch &

Development METAL FORMING ANALYSIS

USING FINITE ELEMENT

drape form model

Boeing Commercial Airplane G roup Wichita Division

Manufacturing

Resear ch &

Development METAL FORMING ANALYSIS

USING FINITE ELEMENT

, i u u u ββγγα′′′=

2005

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

(完整版)弹塑性力学作业(含答案)(1)

第二章 应力理论和应变理论 2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值 应作何修正。 解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定) 代入材力有关公式得: 代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +2 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。 2—6. 悬挂的等直杆在自重W 作用下(如图所 示)。材料比重为γ弹性模量为 E ,横截面面积为A 。试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。 解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得: c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A A γσγ??===?; 所以离下端为z 处的任意一点c 的线应变εz 为: z z z E E σγε==; 则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为: ()2 2z z z z z z z z y z z l d l d d zd E E E γγ γε=???=??=? = ?= o o o o V ; 显然该杆件的总的伸长量为(也即下端面的位移): ()2 222l l A l l W l l d l E EA EA γγ?????=??= = = o V ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-?? ??+-?? ??--?? 应力单位为kg /cm 2 。 试确定外法线为n i (也即三个方向余弦都相等)的微分斜截面上的总应力n P v 、正应力σn 及剪应力τn 。 解:首先求出该斜截面上全应力n P v 在x 、y 、z 三个方向的三个分量:n '=n x =n y =n z 题图1-3

应用弹塑性力学李同林第四章

应用弹塑性力学李同林第四章 这是变形理论。这个理论首先由亨斯基提出,然后由前苏联的伊留申进一步完善。问题提出得更清楚了,并且给出了使用条件。因此,这个理论也被称为亨奇-伊柳辛理论。伊柳欣的变形理论应该满足几个条件: (1)外载荷(包括体力)成比例增加,变形体处于主动变形过程中(即应力强度无中间卸载); (2)材料所用体积不可压缩,采用泊松比μ = 1/2进行计算;(3)材料的应力-应变曲线具有幂强化形式,即 或者 ; 在变形过程中 (4)满足小弹塑性变形的各种条件,塑性变形和弹性变形大小相同。满足上述条件后,变形理论将给出正确的结果。如果负载没有成比例地增加,则外部负载成比例地增加是简单负载的必要条件。这样不仅不能保证物体内部的简单加载状态,而且物体表面也不能满足简单加载条件。体积不可压缩性和泊松比μ=1/2的假设不仅简化了具体计算,而且与实验结果基本一致,因此变形理论的物理关系主要表现为应力挠度和应变挠度之间的关系,这是令人满意的。 法律。 使用幂强化模型可以避免区分弹性区和塑性区,但实际上该模型对不同材料的限制很小,因为各种材料都可以通过选择公式中常数a的指

数m来拟合拉伸曲线。采用小变形条件是因为平衡方程和几何方程是在小变形条件下推导出来的,物理关系也是小变形条件下的关系。伊柳辛不仅明确规定了亨奇变形理论的适用条件,而且证明了简单加载定理。他提出,在小的弹塑性变形条件下,总应变与应力挠度成正比,即: 如果使用主应力,有 等效应变的表达式为: 从这里 因此,Hench-Ilyushin理论的应力-应变关系可以写成如下: 展开等式(4-84): 根据胡克定律(4-33),弹性应变为: 因为塑性应变是总应变和弹性应变之间的差,所以它由方程(4-85)和(1)获得: 公式(4-86)可以缩写为: 实施例4-3众所周知,具有封闭端的薄壁圆筒的平均半径为R,平均直径为D,壁厚为T,圆筒长度为L,并且承受内压P以产生塑性变形。材料是各向同性的。尝试找到: (1)如果忽略弹性应变,周向、轴向和径向应变之比在圆筒壁上的一点处增加; (2)如果材料是不可压缩的,即μ=1/2,圆柱壁上一点的周向、轴向和径向应变总量之比。 因为t/r1是解,所以可以近似地考虑圆柱壁中每个点的径向应力ζr=0。

弹塑性力学理论及其在工程上的应用

弹塑性力学理论及其在工程上的应用 摘要:弹塑性力学理论在工程中应用十分的广泛,是工程中分析问题的一个重要手段,本文首先是对弹塑性力学理论进行了阐述,然后讨论了它在工程上面的应用。 关键词:弹塑性力学;工程;应用 第一章 弹塑性力学的基本理论 (一)应力理论 1、 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作 用的物体用一平面A 分成A 和B 两部分(图1.1)。如 将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上 的内力矢量为F ?,则内力的平均集度为F ?/S ?, 如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σo ,即 σ=??→?S F S 0lim 2、二维应力状态与平面问题的平衡微分方程式 上节中讨论应力概念时,是从三维受力物体出发的,其中点P 是从一个三维空间中取出来约点。为简单起见,首先讨论平面问题。掌提了平面问题以后.再讨论空间问题就比较容易了。

当受载物体所受的面力和体力以及其应力都与某—个坐标轴(例如z 轴)无 关。平面问题又分为平面应力问题与平面应变问题。 (1) 平面应力问题 如果考虑如图所示物体是一个很薄的 平板,荷载只作用在板边,且平行于板面,即 xy 平面,z 方向的体力分量Z 及面力分量z F 均 为零,则板面上(2/δ±=z 处)应力分量为 0) (2=±=δσz z 0)()(22==±=±=δ δ ττz zy z zx 图2.2平面应力问题 因板的厚度很小,外荷载又沿厚度均匀分布, 所以可以近似地认为应力沿厚度均匀分布。由此, 在垂直于z 轴的任一微小面积上均有 0=z σ, 0==zy zx ττ 根据切应力互等定理,即应力张量的对称性,必然有0==xz yx ττ。因而对于平面应力状态的应力张量为 ???? ??????=00000y yx xy x ij σττσσ 如果z 方向的尺寸为有限量,仍假设0=z σ,0==zy zx ττ,且认为x σ,y σ和xy τ(yx τ)为沿厚度的平均值,则这类问题称为广义平面应力问题。 (2)平面应变问题 如果物体纵轴方向(oz 坐标方向)的尺寸很长,外荷载及体力为沿z 轴均匀分 布地作用在垂直于oz 方向,如图1.4所示的水坝是这类问题的典型例子。忽略端部效应,则因外载沿z 轴方向为一常数,因而可以认为,沿纵轴方向各点的位

应用弹塑性力学习题解答

应用弹塑性力学习题解答 目录 第二章习题答案 设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解求出后,可求出及,再利用关系

可求得。 最终的结果为 已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,, ,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,,

已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得 对,,代入得 对,,代入得 对,,代入得 当时,证明成立。 解 由,移项之得 证得 第三章习题答案 取为弹性常数,,是用应变不变量表示应力不变量。

解:由,可得, 由,得 物体内部的位移场由坐标的函数给出,为, ,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为 ,, 该点处微单元体的转动角度为 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,,,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其 中,可得 则主应变有 解得主应变,,。由最大主应变可得上式只有1个方程式独立的,可解得与轴的夹角为 于是有,同理,可解得与轴的夹角为。 物体内部一点的应变张量为 试求:在方向上的正应变。

弹塑性力学-第1章 绪论

第一章绪论 1.1弹塑性力学的任务 固体力学是研究固体材料及其构成的物体结构在外部干扰(载荷、温度交化等)下的力学响应的科学,按其研究对象区分为不同的学科分支。弹性力学和塑性力学是固体力学的两个重要分支。弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。以及相应的“破坏”准则或失效难则。 以弹性分析为基础的结构设计是假定材料为理想弹性,相应于这种设计观点就以分析结果的实际适用范作为设计的失效准则,即认为应力(严柞地说是应力的某一函数值)到达一定限值(弹性界限),将进入塑性变形阶段时、材料将破坏。结构中如果有一处或—部分材料“破坏”,则认为结构失效(丧失设计所规定的效用)。由于一般的结构都处于非均匀受力状态,当高应力点或高应力区的材料到达弹性界限时,类他的大部分材料仍处于弹性界限之内;而实际材料在应力超过弹性界限以后并不实际发生破坏,仍具有一定的继续承受应力(载荷)的能力,只 不过刚度相对地降低。因此弹性设计方法不能充分发挥材料的潜力,导致材料的某种浪费。实际上、当结构内的局部材料进入塑性变形阶段,在继续增加外载荷时,结构的内力(应力)分布规律与弹性阶段不同,即所谓内力(应力)重分布,这种重分布总的是使内力(应力)分布更趋均匀,使原来处于低应力区的材料承受更大的应力,从而更好地发挥材料的潜力,提高结构的承载能力。显然,以塑性分析为基础的设计比弹性设计更为优越。但是,塑性设计允许结构有更大约变形,以及完全卸载后结构将存在残余变形。因此,对于刚度要求较高及不允许出现残余变

应用弹塑性力学 李同林 第四章

第四章弹性变形·塑性变形·本构方程 当我们要确定物体变形时其内部的应力分布和变形规律时,单从静力平衡条件去研究是解决不了问题的。因此,弹塑性力学研究的问题大多是静不定问题。要使静不定问题得到解答,就必须从静力平衡、几何变形和物性关系三个方面来进行研究。考虑这三个方面,就可以构成三类方程,即力学方程、几何方程和物性方程。综合求解这三类方程,同时再满足具体问题的边界条件,从理论上讲就可使问题得到解答。 在第二、三两章中,我们已经分别从静力学和几何学两方面研究了受力物体所应满足的各种方程,即平衡微分方程式(2-44)和几何方程式(3-2)等。所以,现在的问题是,必须考虑物体的物性,也即考虑物体变形时应力和应变间的关系。应力应变关系在力学中常称之为本构关系或本构方程。本章将介绍物体产生变形时的弹性和塑性应力应变关系。 大量实验证实,应力和应变之间的关系是相辅相成的,有应力就会有应变,而有应变就会有应力。对于每一种具体的固体材料,在一定条件下,应力和应变之间有着确定的关系,这种关系反映了材料客观固有的特性。下面我们以在材料力学所熟知的典型塑性金属材料低碳钢轴向拉伸试验所得的应力应变曲线(如图4-1所示)为例来说明和总结固体材料产生弹性变形和塑性变形的特点,并由此说明塑性应力应变关系比弹性应力应变关系要复杂的多。 在图4-1中,OA段为比例变形阶段。在这一阶段中,应力和应变之间的关系是线性的,即可用虎克定律来表示: ζ=Eε(4-1) 式中E为弹性模量,在弹性变形过程中,E为常数。A点对应的应力称为比例极限,记作ζP。由A点到B 点,已经不能用线性关系来表示,但变形仍是弹性的。B点对应的应力称为弹性极限,记作ζr。对于许多材料,A点到B点的间距很小,也即ζP与ζr数值非常接近,通常并不加以区分,而均以ζr表示,并认为当应力小于ζr时,应力和应变之间的关系满足式(4-1)。在当应力小于ζr时,逐渐卸去载荷,随着应力的减小,应变也渐渐消失,最终物体变形完全得以恢复。若重新加载则应力应变关系将沿由O到B的原路径重现。BF段称为屈服阶段。C点和D点对应的应力分别称为材料的上屈服极限和下屈服极限。应力到达D点时,材料开始屈服。一般来说,上屈服极限受外界因素的影响较大,如试件截面形状、大小、加载速率等,都对它有影响。因此在实际应用中一般都采用下屈服极限作为材料的屈服极限,并记作ζs。有些材料的屈服流动阶段是很长的,应变值可以达到0.01。由E点开始,材料出现了强化现象,即试件只有在应力增加时,应变才能增加。如果在材料的屈服阶段或强化阶段内卸去载荷,则应力应变不会顺原路径返回,而是沿着一条平行于OA线的MO'''(或HO'、KO'')路径返回。这说明材料虽然产生了塑性变形,但它的弹性性质却并没有变化。如果在点O'''(或O'、O'')重新再加载,则应力应变曲线仍将沿着O'''MFG (或O'HEFG、O''KFG)变化,在M点(或H点、K点)材料重新进入塑性变形阶段。显然,这就相当于提高了材料的屈服极限。经过卸载又加载,使材料的屈服极限升高,塑性降低,增加了材料抵抗变形能力的现象,称为强化(或硬化)。

弹塑性力学课件 第三章

R r u A A' x y z Ch3-1 位移与应变几何方程 分量形式: 符号规定:与坐标轴同向为正 刚体位移:各点间相对位置在物体发生位移后依然不变。 刚体位移不会使物体产生变形 n 位移: 定义A 点位移: u =r -R 位移—物体内每一点的空间位置的变化位移场:物体内各点位移矢量的集合 l l l ?′= εα ?=γ0 90A B A B l l ' ' ' x y z A B A B l l ''' C C ' α 90 x y z o 应变:符号规定:正应变—线元伸长为正 剪应变—直角变小为正 物体变形 { 体积改变形状畸变 长度变化,方向改变 O A B C O A B C ' ' ' 'x y z OA OA -A O x ′′= ε OB OB -B O y ′′= ε OC OC -C O z ′′= εA O B yx xy ′ ′′∠?π =γ=γ2B O C zy yz ′ ′′∠?π =γ=γ2C O A zx xz ′ ′′∠?π =γ=γ2 与一点的应力状态相似,可以证明:应变张量决定了一点的应变状态

x u dx u dx x u u x ??= ??? ??????+=εy v dy v dy y v v y ??= ???????????+=εx v dx v dx x v v yx ??= ???+= α)(y u dy u dy y u u xy ??= ???+= α)(xy u v y x γ??= +??dx x u u ??+dx x v v ??+dy y u u ??+dy y v v ??+考虑小变形假定 v αxy αyx x y O A B A'B' O' u x u x ε?= ?y v y ε?= ?xy yx u v y x γγ??== +??z w z ??= εyz zy v w z y γγ??== +??xz zx u w z x γγ??== +??几何方程(小变形): 其他应变分量同理可以得出 z w z ??= εx w z u zx xz ??+??= γ=γy w z v zy yz ??+??= γ=γε εεεε εεεε ε???? =?? ????? ? 1 2ij ij εγ=几何方程张量表示 )(2 1 ,,i j j i ij u u += εCauchy 应变 张量 ??? ???????????? ???+=dx x w dx x v dx x u A'M',, 1??? ???????????????+??=dy y w dy y v dy y u B'M',,1? ??????????? ??+????=dz z w dz z v dz z u C'M'1,,Ch3-2 体积应变 M 点位移,,) u v w (A B C A B C ' ' ' x y z M M ' d z d x d y 变形后各边长沿坐标轴的投影

弹塑性力学简答题

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

弹塑性力学第三章

3. STRAIN 3.1. Deformation and Strain tensor In present chapter we examine the deformation geometry of the deformable solid without regard for the actual forces required to produce it. The most obvious and direct method of describing the motion of a continuum solid is to consider the motion of each and every particle making up the solid. If the relative position of every particle is not changed, there is only rigid moving and rotation, then we may consider it as a rigid displacement. If the relative position of every particle is changed, in the same time the initial shape of the body is distorted, then we called there is a deformation. In the following, we will discuss the deformation of elastic-plastic body. Suppose the distance between two points P o(x o, y o) and P(x,y) is P o P in plane Oxy before deformation. After deformation the two ends of segment P o P moved to P o′(x o′y o′) and P′(x′, y′). Let P o P =s, P o′P′= s ′then the components of vectors s′and s along the x , y axes are: s x′=s x+ s x s y′=s y′+s y The displacement component at point P o is u o =x o′?x o v o =y o′?y o (3.1) Similarly, at point P the displacement component is(Fig.3.1): u =x′– x v =y′– y (3.2) Suppose the displacement u and v are the single-value continuously functions of x and y, then we can expand the displacement at point P in an infinite Taylor series about point P o, that is: u = u o + s x + s y + 0 (s x2, s y2 ) v =v o + s x + s y+ 0(s x2, s y2) (3.3) Because point P is in the neighbourhood of the point P o, therefore the quantity s is sufficiently small, so that we obtain the formula s x =s x′–s x = (x′-x ) – (x o′-x o ) = s x+s y s y =s y′–s y = (y′-y) – (y o′-y o )= s x+ Using the indicial notation and summation convention, these equations

弹塑性力学-第3章 应变状态

第三章 应变状态理论 在外力、温度变化或其他因素作用下,物体内部各质点将产生位置的变化, 即发生位移。如果物体内各点发生位移后仍保持各质点间初始状态的相对位置,则物体实际上只发生了刚体平移和转动,这种位移称为刚体位移。如果物体各质点发生位移后改变了各点间初始状态的相对位置,则物体同时也产生了形状的变化,其中包括体积改变和形状畸变,物体的这种变化称为物体的变形运动或简称为变形,它包括微元体的纯变形和整体运动。应变状态理论就是研究物变形后的几何特性。即给定物体内各点变形前后的位置,确定无限接近的任意两点之间所连矢量因物体变形所引起剧烈变化。这是一个单纯的几何问题,并不涉及物体变形的原因,也就是说并不涉及物体抵抗变形的物理规律。本章主要从物体变形前后的几何变化论述物体内一点的应变状态。 位移与线元长度、方向的变化 坐标与位移 设变形前物体上各点的位置在笛卡尔坐标(Descarter coordinate)系的轴(X 、、Y、Z )上的投影为(z y x ,,),又设物体上各点得到一位移,并在同一坐标轴上的投影为(u 、v 、w ),这些位移分量可看作是坐标(z y x ,,)的函数。于是物体上任点的最终位置由下述坐标值决定。即 ?? ? ?? +=+=+=),,(),,(),,(z y x w z z y x v y z y x u x ζηξ 上式中函数u 、v 、w 以及它们对坐标(z y x ,,)的偏导数假设是连续的,则式确定了变量(z y x ,,)与),,(ζηξ之间的关系。因为物体中变形前各点对应看变形后的各点,因此式是单值的,所以式可看成是坐标的一个变换。 如果在中,假设00,y y x x ==,则由式可得如下三个方程

弹塑性力学总结

应用弹塑性力学读书报告 姓名: 学号: 专业:结构工程 指导老师:

弹塑性力学读书报告 弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。弹塑性力学也是连续介质力学的基础和一部分。弹塑性力学包括:弹塑性静力学和弹塑性动力学。 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。 1 基本思想及理论 1.1科学的假设思想 人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。 1.1.1连续性假定 假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 1.1.2线弹性假定(弹性力学) 假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。

应用弹塑性力学习题解答

应用弹塑性力学习题 解答 Revised on November 25, 2020

应用弹塑性力学习题解答 目录 第二章习题答案 设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。

解求出后,可求出及,再利用关系 可求得。 最终的结果为 已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,,

,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,, 已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得 对,,代入得 对,,代入得 对,,代入得 当时,证明成立。 解 由,移项之得 证得

第三章习题答案 取为弹性常数,,是用应变不变量表示应力不变量。 解:由,可得, 由,得 物体内部的位移场由坐标的函数给出,为, ,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为 ,, 该点处微单元体的转动角度为 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,, ,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其中,可得 则主应变有

我所认识的弹塑性力学知识交流

我所认识的弹塑性力学 弹塑性力学作为固体力学的一门分支学科已有很长的发展历史,其理论与方法的体系基本完善,并在建筑工程、机械工程、水利工程、航空航天工程等诸多技术领域得到了成功的应用。 一绪论 1、弹塑性力学的概念和研究对象 弹塑性力学是研究物体在载荷(包括外力、温度变化或外界约束变动等)作用下产生的应力、变形和承载能力,包括弹性力学和塑性力学,分别用来研究弹性变形和塑性变形的力学问题。弹性变形指卸载后可以恢复和消失的变形,塑性变形时指卸载后不能恢复而残留下的变形。弹塑性力学的研究对象可以是各种固体,特别是各种结构,包括建筑结构、车身骨架、飞机机身、船舶结构等,也研究量的弯曲、住的扭转等问题。其基本任务在于针对实际问题构建力学模型和微分方程并设法求解它们,以获得结构在载荷作用下产生的变形,应力分布及结构强度等。 2、弹塑性简化模型及基本假定 在弹性理论中,实际固体的简化模型为理想弹性体,它的特征是:一定温度下,应力应变之间存在一一对应关系,而与加载过程以及时间无关。在塑性理论中,常用的简化模型为:理想塑性模型和强化模型。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型;强化模型包括线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型。弹塑性力学有五个最基本的力学假定,分别为:连续性假定、均匀性

假定、各向同性假定、小变形假定和无初应力假定。 3、研究方法及其与初等力学理论的联系和区别 一般来说,弹塑性力学的求解方法有:经典方法、数值方法、试验方法和实验与数值分析相结合的方法。经典方法是采用数学分析方法求解,一般采用近似解法,例如,基于能量原理的Ritz法和伽辽金法;数值法常用的有差分法、有限元法及边界条件法;实验法是采用机电方法、光学方法、声学方法等来测定应力应变分布规律,如光弹性法和云纹法。 弹塑性力学与初等理论力学既有联系又有区别,如下表所示:表1、弹塑性力学与初等力学理论的联系和区别

应用弹塑性力学1

弹塑性力学课程总结 主要内容: 1.应力分析 2.应变分析 3.弹性与塑型应力与应变的关系 4.弹性与塑性力学的解题方法 5.旋转圆盘的分析 第一章 应力分析 1.点的应力状态:①定义——合力dP 与面积微元dS 的比值 ②描述方法(3个正应力分量与3个剪应力分量可以描述点 的应力状态); ③分解:意义、方法(m ij ij ij σδσσ+=' )、图示 2.特殊应力: ①主应力(相互正交),含义/求解? '3 '2'1'3 21321,,,,,,I I I I I I ij ij →→→σσσσσ ②最大剪应力 (主应力平面上的剪应力为零;最大剪应力位于坐标 轴分角面上,而三个最大剪应力分别等于三个主应力两两之差的一 半)且最大剪应力为: 23 1max σστ-= ③等倾面上的正应力和剪应力 等倾面即和三个主应力轴成相同角 度的面满足 12 22=++n m l ④ 平均应力(静水压力) 只产生体积缩胀,不产生形变;抑制裂 纹扩展。满足: () 321031 σσσσ++= ⑤应力偏量 ?? ?≠==j i j i ij 当当01δ 从而有 ij ij ij s +=0σδσ 3平衡微分方程:

熟悉35页公式1-39与37页1-40 第二章 应变分析 1.点的应变状态:定义、描述、分解 a 正应变(变形分布均匀) l l l x -= ε b 用位移表示应变的几何关系47页式 (2-8) 柱坐标应变的几何方程48页式 (2-9) 球坐标应变的几何方程50页式 (2-12) 2.应力、应变分析的相似性与差异性(概念、分解、表示、相容性等) 一点的应变状态可以用50页式 (2-13) 3. 应变张量和应变偏量(注意:主应变、主剪应变形式差别) 31max εεγ-= 4. 应变协调方程 见67页式 (2-40) 柱坐标的变形协调方程见68页式 (2-41) 第三章 弹性与塑性应力应变关系 应力与应变的关系是相辅相成的,有应力就会有应变,而有应变就会有应力。 注意复习与掌握5组基本方程: 1. 应力平衡微分方程:含义:表征点的应力之间的关系(基体假设的应用,平面问题的具体形式) 2.几何方程:含义:位移-应变的关系 3.物理方程:广义虎克定律 含义:σ—ε关系 ①公式;②参数含义、关系 ()μ+= 12E G a 胡克定律用应力表示应变见85页式 (3-15) b 胡克定律用应变来表示应力见87页式 (3-18) 4.应变协调方程(相容方程,连续方程):含义,平面问题的相容方程(塑性变形连续方程:) 0321=++p p p εεε a 特雷斯卡屈服条件见90页式 (3-21) b 米泽斯屈服条件见式 (3-23) c 熟悉特雷斯卡条件(1、2、3)与米泽斯条件(1、2、3)的不同处与相同处(1、2) d 塑性应力应变关系(增量理论):莱维-米泽斯本构方程(100)(3-31) 普朗特-罗伊斯本构方程(102)(3-39) (全量理论):亨奇-伊柳辛变形理论 (111)(3-49)

应用弹塑性力学

《应用弹塑性力学》考试试卷 班级_____________ 姓名_____________ 学号______________ 一、简答题(每题5分,共20分) 1试述弹塑性力学中四种常用的简化力学模型及其特点。 2分析特雷斯卡(Tresca )和米泽斯(Mises )屈服条件的异同点。 3 简单论述一下屈服曲面为什么一定是外凸的。 4试述逆解法和半逆解法的主要思想。 二、计算题(1~5题每题10分, 6~7题每题15分,共80分) 1 如图1所示的等截面直杆,截面积为0A ,且b a >,在x a =处作用一个逐渐增加的力P 。该杆材料为理想弹塑性,拉伸和压缩时性能相同,求左端反力N F 和力P 的关系。 F N 图1 2 已知下列应力状态:5383038311ij MPa σ????=?????? ,试求八面体单元的正应力0σ与剪应力0τ。 3 已知物体某点的应力分量,试求主应力及最大剪应力的值。(单位MPa ) (1)x =10σ,y =10σ-,z =10σ,=0xy τ,=0yz τ,=10zx τ-; (2)x =10σ,y =20σ,z =30σ,=5xy τ-,=0yz τ,=0zx τ。 4 当123σσσ>>时,如令21313 2σσσσμσσ--=-,试证明 0max ττ=且该值在0.816~0.943之间。

5已知平面应变状态 1231231230 x y xy z xz yz A A x A y B B x B y C C x C y εεγεγγ=++=++=++=== (1)校核上述应变状态是否满足应变协调方程; (2)若满足应变协调方程,试求位移u 和v 的表达式; (3)已知边界条件 0x y ==,0u =,0v =; x l =,0y =,0v = 确定上述位移表达式中的待定常数。 6 物体中某点的应力状态为100000200000300-????-????-?? MPa ,该物体在单向拉伸时屈服极限为190MPa s σ=,试分别用特雷斯卡(Tresca )和米泽斯(Mises )屈服条件来判断该点是处于弹性状态还是塑性状态。 7已知函数axy ?=,试求:(1)?是否可以作为应力函数;(2)若以?作为应力函数,求出应力分量的表达式;(3)指出在图2所示的矩形板边界上的面力。 图2

新版弹塑性力学简答题-新版.pdf

弹塑性力学简答题 第一章应力 1、什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量 ij 与偏应力张量ij S,试问:两者之间的关系?两者主方向之间的关系? 相同。110 220 330 S S S 。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量 x 、y、xy不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相 互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题, 它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量 x 、y、xy不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程? 为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中 推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程 方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

相关主题
相关文档 最新文档