当前位置:文档之家› 必修4三角恒等变换两角和与差的余弦公式

必修4三角恒等变换两角和与差的余弦公式

必修4三角恒等变换两角和与差的余弦公式
必修4三角恒等变换两角和与差的余弦公式

3. 1 三角恒等变换两角和与差的正弦、余弦和正切公式

3.1.1 两角和与差的余弦公式

【学习目标】

1.通过让学生探索、猜想、发现并推导“两角差的余弦公式”,了解单角与复角的三角函数之间的内在联系,并通过强化题目的训练,加深对两角差的余弦公式的理解,培养学生的运算能力及逻辑推理能力,提高学生的数学素质.

2.通过两角差的余弦公式的运用,会进行简单的求值、化简、证明,体会化归思想在数学当中的运用,使学生进一步掌握联系的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.

3.通过本节的学习,使学生体会探究的乐趣,认识到世间万物的联系与转化,养成用辩证与联系的观点看问题.创设问题情境,激发学生分析、探求的学习态度,强化学生的参与意识,从而培养学生分析问题、解决问题的能力和代换、演绎、数形结合等数学思想方法. 【重点难点】

教学重点:通过探究得到两角差的余弦公式. 教学难点:探索过程的组织和适当引导. 【学习过程】 预习指导

1.探究cos(α+β)≠cos α+cos β

2.反例:

cos =cos( + )≠cos + cos

问题:cos(α+β),cos α,cos β的关系 3.公式:

余弦的和角公式1:cos(

)cos cos sin sin αβαβαβ+=-,可记为C )(βα

+

注意:①熟悉公式的结构和特点;②此公式对任意α、β都适用;③公式记号C )(βα+ 余弦的差角公式2: cos(

-)cos cos +sin sin αβαβαβ=,(以-β代β)公式记号C (-)

αβ

4.如何正用、逆用、灵活运用C (α-β),C )(βα+公式进行求值计算?

如①cos75°cos45°+sin75°sin45°=? ②cos α =cos(α+β)cos β+sin(α+β)sin β.是否成立

③cos75°cos45°-sin75°sin45°=?

典型例题

例1 利用和与差角余弦公式求下列三角函数值的值.

(1)cos105°

(2)cos15°

(3)cos

(4)cos80°cos20°+sin80°sin20°

(5)cos 215°-sin 2

15°

(6)cos80°cos35°+cos10°cos55°

变式训练

1. 利用差角余弦公式求sin75°,sin15°

的值

2. 利用差角余弦公式求:cos110°cos20°+sin110°sin20°.的值

例2 已知sin α=54,α∈(2π,π),cos β=13

5-,β是第三象限角,求cos(α-β)的值.

变式训练 已知74sin 0cos 2525

πααβ=∈=-,(,),,β是第三象限角,求cos(α+β)的值.

例3 已知cosα=

71,cos(α+β)=1411-,且α、β∈(0, 2

π

),求cosβ的值.

2π3π6π3π6

π10

3sin 5

sin 10

3cos 5

ππ

π

π

-

11cos(2),sin(2),0,147424cos()πππαβαβαβαβ-=--=<<<<+已知且变式训练求:的值.

课后练习

1.求cos75°的值

2.计算:cos65°cos125°+sin65°sin125°

3.计算:-cos70°cos20°+sin110°sin20°

4.sin α-sin β=- ,cos α-cos β= , α∈(0, ), β∈(0, ),求cos(α-β)的值.

5.已知锐角α,β满足cos α= ,cos(α-β)= ,求cos β.

6.已知cos(α-β)= ,求(sin α+sin β)2+(cos α+cos β)2

的值.

7.已知1

3

sin 0cos 3

2

5

π

ααβ=∈=-

,(,), ,β是第二象限角,求cos(α-β)及cos(α+β)的值.

8. 已知3cos

+5αβ=(),12cos 13β=,且2παπ<<,-02

π

β<<. (Ⅰ)求sin()αβ+,sin β的值;

(Ⅱ)求cos +2αβ()的值.

2

1

2

1π253

13

53

12

π

简单三角恒等变换典型例题

简单三角恒等变换复习 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )s i n (s i n c o s c o s s i n βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )c o s (s i n s i n c o s c o s βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )t a n t a n 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα22 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 c o s 2c o s 12αα=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12 =+】 α α αααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2 s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2s i n 24c o s 12 =- 或 αα2s i n 2 4c o s 12=-】

三角恒等变换公式大全

三角函数 cos (a+ B)=CoS a'-cos B - sin a - sin B cos (a-B)=cos a-cos B + sin a - sin B sin (a+ B)=S in a'-cos B cos a - sin B sin (a-B)=sin a-cos B - cos ,a?sin B tan (a+ B)=(ta n a+ta n B)/ (1-tan a - tan B) tan (a-B)=(ta n a-ta n B)/ (1+ta n a - tan B) 二 倍 角 sin (2a) =2sin a - cos a =2tan (a) /[1-ta门(a)] cos (2 a) =cosA2 (a) -si 门八2 (a) =2cosA2 (a)-1=1-2si nA2 (a)=[1-ta 门 八(a)]/[1+tanA2 (a)] tan (2a) =2tan a /[1 -ta门八2 (a)] 三倍角 sin3 a =3sin a -4sinW (a) C0S3 a =4COS A3 (a) - 3C0S a tan3 a = (3tan a -ta门八3 (a))*( 1-3ta门八2 (a)) sin3 a =4sin aX sin ( 60- a) sin (60+a) C0S3 a =4cos aX COS ( 60- a) C0s ( 60+a) tan3 a =tan aX tan ( 60- a) tan (60+a) 半角公式 sin A2 (a /2 )= (1-cos a) /2 cosA2 (a /2 )= (1+cos a) /2 tan A2 (a /2 )= (1-CoS a) / ( 1+cos a) tan ( a /2 ) =sin a / ( 1+cos a) = ( 1- CoS a) /si n a 半角变形 sinA2 (a /2 ) = (1-cos a) /2 sin(a/2 ) =V[ (1-cos a) /2] a/2 在一、二象限 =-V[ (1-cos a) /2] a/2 在三、四象限 C0SA2 (a /2 ) = (1+cos a) /2 cos(a/2 ) =V[ (1+cos a) /2] a/2 在一、四象限 =-V[ (1+cos a) /2] a/2 在二、三象限 tan A2 (a 12 ) = ( 1-COS a) / ( 1+COS a) tan (a /2 ) =S in a / ( 1+COS a) =( 1- COS a) /si n a =V[ ( 1-COS a) / ( 1+COS a)] a/2在一、三象限 =-V [ ( 1- COS a) / ( 1+COS a) ] a/2 在二、四象限

两角和与差的余弦公式证明

两角和与差的余弦公式的五种推导方法之对比 沈阳市教育研究院王恩宾 两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式 基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往 往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同 的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、 解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法 设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β. 过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β 的正弦、余弦的线段来表示OM. 过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂 足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB +CP=OA cosα+AP sinα=cosβcosα+sinβsinα. 综上所述,. 说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推 导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推 广问题. 方法二:应用三角形全等、两点间的距离公式推导差角公式的方法

设P1(x1,y1),P2(x2,y2),则有|P1P2 |= . 在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、. ∵,且, ∴,∴, ∴ , ∴, ∴,. 说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点, 建立起等式关系,通过将等式的化简、变形就可以得到符合要求 的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.

(整理)《两角和与差的余弦公式》教学设计.

《两角和与差的余弦公式》教学设计 一、教材地位和作用分析: 两角和与差的正弦、余弦、正切是本章的重要内容,是正弦线、余弦线和诱导公式等知识的延伸,是后继内容二倍角公式、和差化积、积化和差公式的知识基础,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有重要的支撑作用。本课时主要讲授平面内两点间距离公式、两角和与差的余弦公式以及诱导公式。 二、教学目标: 1、知识目标: ①、使学生了解平面内两点间距离公式的推导并熟记公式; ②、使学生理解两角和与差的余弦公式和诱导公式的推导; ③、使学生能够从正反两个方向运用公式解决简单应用问题。 2、能力目标: ①、培养学生逆向思维的意识和习惯; ②、培养学生的代数意识,特殊值法的应用意识; ③、培养学生的观察能力,逻辑推理能力和合作学习能力。 3、情感目标: ①、通过观察、对比体会公式的线形美,对称美; ②、培养学生不怕困难,勇于探索的求知精神。 三、教学重点和难点: 教学重点:两角和与差的余弦公式的推导及运用。 教学难点:两角和与差的余弦公式的灵活运用。 四、教学方法: 创设情境有利于问题自然、流畅地提出,提出问题是为了引发思考,思考的表现形式是探索尝试,探索尝试是思维活动中最有意义的部分,激发学生积极主动的思维活动是我们每节课都应追求的目标。给学生的思维以适当的引导并不一定会降低学生思维的层次,反而能够提高思维的有效性。从而体现教师主导作用和学生主体作用的

和谐统一。 由此我决定采用以下的教学方法:创设情境----提出问题----探索尝试----启发引导----解决问题。 学法指导: 1、要求学生做好正弦线、余弦线、同一坐标轴上两点间距离公式,特别是用角的余弦和正弦表示终边上特殊点的坐标这些必要的知识准备。(体现学习过程中循序渐进,温故知新的认知规律。) 2、让学生注意观察、对比两角和与差的余弦公式中正弦、余弦的顺序;角的顺序关系,培养学生的观察能力,并通过观察体会公式的对称美。 五、教学过程

三角恒等变换~最全的总结·学生版

三角恒等变换---完整版 三角函数------三角恒等变换公式: 考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。“互补两角正弦相等,余弦互为相反数。互余两角的正余弦相等。”(2)二倍角公式的灵活应用,特别是降幂、和升幂公式的应用。(3)结合同角三角函数,化为二次函数求最值 (4)角的整体代换 (5)弦切互化 (6)知一求二 (7)辅助角公式逆向应用

(1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。互余两角的正余弦相等。”快速进行逻辑判断。注意构造两角和差因子 1、(二倍角公式)(2007文)下列各式中,值为 3 2 的是( ) A .2sin15cos15 B .2 2 cos 15sin 15- C .2 2sin 151- D .22 sin 15cos 15+ 2、(二倍角公式+平方差公式)(2008六校联考)(sin 75sin15)(cos15cos 75)-+的值是 A.1 B. 1 2 C. 22 D. 32 3、(两角和差公式+诱导公式)(2009四校联考) 84cos 54sin 6cos 36sin -等于 A .-1 2 B .12 C .- 32 D . 32 4.(两角和差公式)下列各式中值为的是(). A . s in45°cos15°+cos45°sin15° B . sin45°cos15°﹣cos45°sin15° C . cos75°cos30°+sin75°sin30° D . 5、(拆角+两角和差公式)(一中2014届高三10月段考数学(理)试题)化简三角式=- 5 cos 5sin 355cos 2() A . 2 3 B .1 C .2 D .3 6、(补全公式)(2013六校联考回归课本题)cos20°·cos40°·cos60°·cos80°=( ) A . 14 B .18 C .116 D .1 32 常见变式:计算sin 10°sin 30°sin 50°sin 70°的=__. 7、(构造两角和差因子+两式平方后相加)若sin α-sin β=32,cos α-cos β=12,则cos(α-β)的值为()A.1 2 B. 32C.3 4 D .1 8.(诱导公式)【2015高一期末】sin163°sin223°+sin253°sin313°等于 B A .- 12 B. 12 C 33 9、(构造两角和差因子+两边平方)【2015高考,理12】=+ 75sin 15sin .. 10、(逆向套用公式)tan 23°+tan 37°+3tan 23°tan 37°的值是________.

高一数学必修一和必修四的三角函数公式

三角函数公式 (一)同角三角函数的基本关系式 (1)平方形式:sin 2α+cos 2α=1 (2)倒数形式:sinα/cosα=tanα (二)诱导公式 (1)sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α (其中k ∈Z) (2)sin (2k π-α)=-sin α cos (2k π-α)=cos α tan (2k π-α)=-tan α (其中k ∈Z) (3)sin (-α)=-sin α cos (-α)=cosα tan (-α)=-tan α (4)sin (π-α)=sin α cos (π-α)=-cosα tan (π-α)=-tan α (5)sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α (6)sin (π/2-α)=cos α cos (π/2-α)=sin α (7)sin (π/2+α)=cos α cos (π/2+α)=-sin α (8)sin (3π/2+α)=-cos α cos (3π/2+α)=sin α (9)sin (3π/2-α)=-cos α cos (3π/2-α)=-sin α (三) 两角和与差的三角函数公式 (1)sin (α+β)=sin αcosβ+cos αsinβ (2)sin (α-β)=sin αcosβ-cos αsinβ (3)cos (α+β)=cos αcosβ-sin αsinβ (4)cos (α-β)=cos αcosβ+sin αsinβ (5)tan (α+β)= tanα+tanβ1-tanαtanβ (6) tan (α-β)=tanα-tanβ1+tanαtanβ (四)二倍角的正弦、余弦和正切公式 (1)sin2α=2sin αcos α (2)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α (3)tan2α= 2tan α/(1-tan 2α) (五)三角函数的降幂公式 (六)半角的正弦、余弦和正切公式 (七)(辅助角的三角函数的公式) (八)正、余弦定理公式及其变形 ● a sinA =b sinB =c sinC =2R (R 为△ABC 的外接圆的半径) ● a 2=b 2+c 2-2bccosA ● b 2= a 2+ c 2-2accosB ● c 2= b 2+ a 2-2abcosC (ⅰ) sinA=a 2R ,sinB=b 2R ,sinC=c 2R (ⅱ)a=2RsinA b=2RsinB c=2RsinC (ⅲ)a:b:c=sinA: sinB: sinC (ⅳ)asinB=bsinA bsinC=csinB asinC=csinA (九)常用的三角形面积公式 (ⅰ) S=12 absinC=12 acsinB=12 bcsinA (ⅱ)S =12 (a+b+c)r (r 为△ABC 的内切圆的半径) (ⅲ)S=abc 4R (R 为△ABC 的外接圆的半径) (十)利用余弦定理判断三角形的形状 (ⅰ)在△ABC 中,若a 2﹤b 2+c 2,则0°﹤A ﹤90°;反之,若0°﹤A ﹤90°,则a 2﹤b 2+c 2。 (ⅱ)在△ABC 中,若a 2=b 2+c 2,则A=90°;反之,若A=90°,则a 2=b 2+c 2。 (ⅲ)在△ABC 中,若a 2﹥b 2+c 2,则90°﹤A ﹤180°;反之,若90°﹤A ﹤180°,则a 2﹥b 2+c 2。

简单的三角恒等变换(基础)

第20讲:简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力. 【要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-= 要点诠释: 利用二倍角公式的等价变形:2 1cos 2sin 2α α-=,2 1cos 2cos 2 α α+=进行“升、降幂”变 换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换. 要点二:辅助角公式 1.形如sin cos a x b x +的三角函数式的变形: sin cos a x b x + x x ??? 令cos ??= = sin cos a x b x + )sin cos cos sin x x ??+ )x ?+ (其中?角所在象限由,a b 的符号确定,?角的值由tan b a ?= 确定, 或由sin ?= 和cos ?= 2.辅助角公式在解题中的应用 通 过 应 用 公 式 sin cos a x b x + = )x ?+(或 sin cos a x b x + =)α?-),将形如sin cos a x b x +(,a b 不同时为零)收缩为一

三角恒等变换公式

三角恒等变换公式 1.两角和与差的三角函数 和(差)角公式: sin(α±β)=sin αcos β±cos αsin β cos(α±β)=cos αcos β sin αsin β tan(α±β)= β αβαtan tan 1tan tan ± 倍角公式: sin 2α =2sin αcos α cos2α=cos 2α-sin 2α=2cos 2α-1=1 - sin 2α tan2α=αα2tan 1tan 2- 2.和差化积与积化和差公式 积化和差公式: 2sin αcos β=sin(α+β)+sin(α-β) 2cos αsin β= sin(α+β)-sin(α-β) 2cos αcos β= cos(α+β)+cos(α-β) -2sin αsin β=cos(α+β)-cos(α-β) 和差化积公式: sin α+ sin β=2sin 2βα+cos 2 β α- sin α- sin β=2cos 2βα+sin 2 βα- cos α+ cos β=2cos 2βα+cos 2 βα- cos α- cos β=-2sin 2βα+sin 2βα- 3.万能公式与半角公式 万能公式:

sin α=2tan 12tan 22 αα+ cos α=2tan 12tan 12 2 αα+- tan α=2tan 12tan 22 αα- 半角公式: sin 2 cos 12αα -±= cos 2 cos 12αα+±= tan ααα cos 1cos 12+-± ==ααsin cos 1-=ααcos 1sin + 其他: cos 2 2cos 12αα+= sin 22cos 12αα-= 1+cos2α=2cos α2 1-cos2α=2sin α2

必修4三角函数公式大全(经典)

三角函数 公式大全 姓名: 1、两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) = tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 2、倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan( 3π+a)·tan(3 π-a) 4、半角公式 sin( 2A )=2cos 1A - cos( 2A )=2 cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 5、和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 6、积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 2 1 [sin(a+b)+sin(a-b)] cosasinb = 2 1 [sin(a+b)-sin(a-b)]

高中数学必修四三角函数重要公式

高中数学必修四三角函数重要公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα

简单的三角恒等变换(讲义)

简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公 式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会 换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理 问题的能力. 要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式: 22 1 cos2 2cos , 1 cos2 2sin 降幂公式: 2 1 cos 2 2 1 cos2 cos , sin 22 要点诠释: 利用二倍角公式的等价变形: 1 cos 2sin 2 , 1 cos 2cos 2 进行“升、降幂”变换,即由左边的 22 “一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为 “降幂”变换. 要点二:辅助角公式 1.形如 asinx b cosx 的三角函数式的变形: asin x bcosx asin x b cosx = a 2 b 2 sin x cos a 2 b 2 sin(x ) (其 中 角所在 象限由 a,b 的 符号确 定, 角的值 由 tan b 确定, 或由 sin b 和 a 确定, 或由 a 2 b 2 a cos 共同确定.) a 2 b 2 2.辅助角公式在解题中的应用 通过应用公式 asinx bcosx = a 2 b 2 sin (x )(或 asinx bcosx = a 2 b 2 cos ( ) ),将形如 asinx bcosx ( a, b 不同时为零)收缩为一个三角函数 a 2 b 2 sin (x )(或 a 2 b 2 cos ( )).这种 恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数, 这样做有利于函数式的化 简、求值等. a a 2 b 2 sinx cosx 令 cos a a 2 b 2 ,sin cosxsin b a 2 b 2 b

两角和与差的正弦余弦公式

《两角和与差的正弦、余弦函数》教学设计 商州区中学秦明伟 一、学情分析 本课时面对的学生是高一年级的学生,数学表达能力和逻辑推理能力正处于高度发展的时期,学生对探索未知世界有主动意识,对新知识充满探求的渴望。在学习本节课之前,学生已经学习了任意角三角函数的概念、平面向量的坐标表示以及向量数量积的坐标表示,这为他们探究两角和与差的正弦、余弦公式建立了良好的知识基础。 二、教学内容分析 本节内容是北师大版教材必修4第三章《三角恒等变换》第二节,推导得到两角差的余弦公式是本章所涉及的所有公式的源头。 由于向量工具的引入,教材选择了两角差的余弦公式作为基础,这样处理使得公式的得出成为一个纯粹的代数运算,大大地降低了思考的难度,也更易于学生接受。 从知识产生的角度来看,在学习了《三角函数》及《平面向量》后再学习由这些知识推导出的新知识也更符合知识产生的规律,符合人们认知的规律。从知识的应用价值来看,重视数学知识的应用,是新教材的显著特点,课本中丰富的生活实例为学生用数学的眼光看待生活、体验生活即数学理念,体验用数学知识解决实际问题,有助于增强学生的数学应用意识。 基于上述分析,本节课的教学重点是引导学生通过合作、交流,探索两角差的余弦公式,进而推导得到其余的和差公式,为后续简单的恒等变换的学习打好基础。

三、教学三维目标 1、知识目标 通过两角差的余弦公式的探究,让学生探索、发现并推导其他和(差)角公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,在初步理解公式的结构及其功能的基础上记忆公式,并用之解决简单的数学问题。 2、能力目标 通过利用向量推导两角和与差的正弦、余弦公式及公式的具体运用,使学生深刻体会联系变化的观点,让学生自觉的利用联系的观点来分析问题,提高学生分析问题、解决问题的能力及学生逻辑推理能力和合作学习能力。 3、情感目标 使学生经历数学知识的发现、创造的过程,体验成功探索新知的乐趣,获得对数学应用价值的认识,激发学生提出问题的意识以及努力分析问题、解决问题的激情。 四、教学重点、难点 重点:探索得到两角差的余弦公式,理解两角和与差的正弦、余弦公式的推导。 难点:探索过程的组织和适当引导,并能灵活运用公式。 五、教学过程 导入新课

数学必修四三角函数公式总结与归纳

数学必修四三角函数公式盘点与归纳 1、诱导公式: sin(2kπ+α)=sinα, cos(2kπ+α)=cosα sin(-α)=-sinα, cos(-α)=cosα sin(2π-α)=-sinα, cos(2π-α)=cosα sin(π-α)=sinα, cos(π-α)=-cosα sin(π+α)=-sinα, cos(π+α)=-cosα sin(+α)=cosα, cos(+α)=-sinα sin(-α)=cosα, cos(-α)=sinα 2、同角三角函数基本关系: sin2α+cos2α=1, =tanα, tanα×cotα=1, 1+tan2α=, 1+cot2α= cosα=, sinα= 3、两角和与差的三角函数: cos(α+β)=cosαcosβ-sinαsinβ, cos(α-β)=cosαcosβ+sinαsinβ, sin(α+β)=sinαcosβ+cosαsinβ,

sin(α-β)=sinαcosβ-cosαsinβ tan(α+β)=, tan(α-β)=, 4、二倍角的三角函数: sin2α=2sinαcosα, cos2α=cos2α-sin2α =1-2sin2α =2cos2α-1, tan2α=, sin=, cos=, tan= = = 5、万能公式: sin2α=, cos2α= 6、合一变式: asinα+bcosα =sin(α+γ)(tanγ=)7、其他公式: sinαcosβ=[sin(α+β)+sin(α-β)], cosαsinβ=[sin(α+β)-sin(α-β)],

cosαcosβ=[cos(α+β)+cos(α-β)],sinαsinβ=[cos(α+β)-cos(α-β)],sinα+sinβ=2sin cos, sinα-sinβ=2cos sin, cosα+cosβ=2cos cos, cosα-cosβ=2sin cos

两角和与差余弦

两角和与差的余弦 (第一课时) 一、教学目标: (一)知识目标: 1、掌握利用平面内两点间的距离公式进行C(α+β)公式的推导; 2、能用赋值法推导C(α-β)公式; 3、初步学会公式的简单应用和逆用公式等基本技能。 (二)能力目标: 1、通过公式的推导,提高学生恒等变形能力和逻辑推理能力; 2、通过公式的灵活运用,培养学生的方程思想和变换能力。 (三)德育目标: 1、公式的推导过程,体现了知识间的内在联系; 2、培养学生利用联系、变化的辨证唯物主义观点去分析问题; 3、通过教师启发引导、培养学生勇于探索的精神和解决问题的优化意识。 (四)美育目标: 公式,发现两角和差的三角函数与单角α、β之间的和通过鉴赏C( α±β) 公谐、轮换结构,让学生感受数学公式的匀称美感。并引导学生领会C( α±β)式的强大功能。 二、教学重难点 1.教学重点:两角和与差的余弦公式的推导与运用。培养学生掌握获取知识,运用知识的一系列的数学方法。 2.教学难点:余弦和角公式的推导以及运用公式进行化简、求值和证明,学会恰当赋值、逆用公式等技能。 三、教学过程: (一)提出问题,产生对公式的需求。 首先让学生通过具体实例消除对“cos(α+β)=cosα+cosβ”的误解,说明两角和(差)的三角函数不能按分配律展开。并鼓励同学对公 式结构的可能情况进行大胆猜想和尝试性探索。

(二)预备知识 1. 通过观看动画演示,形象直观地结合勾股定理简要介绍平面内两点间距 2. (结合以下问题,观看《几何画板》演示) (1)分别指出点P 1、P 、P 2、P 3的坐标? (2)弦P 1P 3的长如何表示? (3)如何构造弦P 1P 3的等量关系? [注]如何让推导公式的思路来得自然一些?课本出于叙述方便,隐去了证明的思路。教师的任务就是要给出一种合理的思路,比如我们要表示α+β的余弦,那么就得作出α、β、α+β的角,当发现|P 1P 3|可以用 cos(α+β)表示时,想到应该寻找与P 1P 3相等的弦,从而才想到作出角 (-β)。这种思路和课本的叙述是不同的,但从思维的角度来讲,也许更具有某种合理性,更能激发同学通过积极思维去探索、发现问题。 (三)公式推导 1.根据“同圆中相等的圆心角所对的弦相等”得到距离等式1324PP P P = 2.将1324PP P P =转化为三角恒等式,逐步变形整理成余弦的和角公式。 [cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2 展开,整理得2-2cos(α+β)=2-2cos αcos β+2sin αsin β 所以cos(α+β)=cos αcos β-sin αsin β. 3.强调公式中α、β是任意角。用-β去代替β导出C (α-β),初步认识用赋 值法推导新公式。要求学生注意公式中:角、函数的排列顺序及式中各项符号,引导学生感受公式和谐、轮换的匀称美感,从鉴赏的角度记忆公式。 (四)公式应用 正因为α、β的任意性,所以赋予C (α+β)公式的强大生命力。 1.请用特殊角分别代替公式中α、β,你会求哪些非特殊角的值呢? 让学生动笔自由尝试、主动探索。有的同学说会求cos15°、cos75°、cos105°、cos(-15°)、cos165°……的值。甚至有的同学会说他验证了

简单三角恒等变换典型例题

简单三角恒等变换 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )cos(sin sin cos cos βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα2 2 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 cos 2cos 12α α=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα 2cos 2 4cos 12=+】 α ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是 2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2 sin 2cos 12α α=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα 2sin 2 4cos 12=-】

高中数学函数、三角函数、三角恒等变换公式

函数、三角函数、三角恒等变换重要公式 1. B A = {|,}x x A x B ∈∈或 ;B A = {|,}x x A x B ∈∈且; {|,}U C A x x U x U =∈?且 2、 当n 为奇数时, a a n n =;当n 为偶数时,a a n n =. 3、 ⑴m n m n a a =()1,,,0*>∈>m N n m a ; ⑵()01 >= -n a a n n ; 4、 运算性质: ⑴()Q s r a a a a s r s r ∈>=+,,0;⑵()()Q s r a a a rs s r ∈>=,,0;⑶()()Q r b a b a ab r r r ∈>>=,0,0. 5、指数函数解析式:()1,0≠>=a a a y x 6、指数函数性质: 7、指数与对数互化式:log x a a N x N =?=; 8、对数恒等式:log a N a N = 9、基本性质:01log =a ,1log =a a . 10、运算性质:当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=;⑵N M N M a a a log log log -=?? ? ??;⑶M n M a n a log log =. 11、换底公式:a b b c c a log log log = ()0,1,0,1,0>≠>≠>b c c a a . 12、重要公式:log log n m a a m b b n = 13、倒数关系:a b b a log 1 log = ()1,0,1,0≠>≠>b b a a .

高中数学必修4重点公式与解题技巧

高中数学必修4重点公式与解题技巧公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα

上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切; 四余弦”。 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。 其他三角函数关系: ⒈同角三角函数的基本关系式 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 六角形记忆法:(参看图片或参考资料链接) 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 (1)倒数关系:对角线上两个函数互为倒数; (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。 (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。 (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和与差的余弦公式的六种推导方法

两角和与差的余弦公式的六种推导方法 沈阳市教育研究院王恩宾 两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下: 方法一:应用三角函数线推导差角公式的方法 设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β. 过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM. 过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP=OA cos α+AP sinα=cosβcosα+sinβsinα. 综上所述,. 说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解.但这种推导方法对于如何能够得到解题思路,存在一定的困难.此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题. 方法二:应用三角形全等、两点间的距离公式推导差角公式的方法

设P1(x1,y1),P2(x2,y2),则有|P1P2 |= . 在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、 . ∵,且, ∴,∴, ∴ , ∴, ∴,. 说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点,

相关主题
文本预览
相关文档 最新文档