当前位置:文档之家› 机械系统动力学作业

机械系统动力学作业

机械系统动力学作业
机械系统动力学作业

式中Q r =dx x U t x f L

r )(),(0? (r=1,2,…)

作用于x=L 处的力P 0sin ωt 可表示为f (x,t )=P 0sin ωt δ(x-L) 式中δ(x-L)为δ函数。

于是杆柱底部载荷激励作用的广义力Q 1r (t)为 Q 1r =dx x U t x f L

r )(),(0? =P 0sin ωt (0.0204sin a

L ωr +0.0094cos

a

L ωr ) 所以q 1r =

2

21

r ωω-r Q = P 0[0.0204sin(0.19ω

r

)+0.0094cos(0.19ωr )]

2

2sin ω

ωω-r t

(r=1,2, …) 基础运动激励作用的力可表示为 f(x,t)=ρA

dt dv =ρA 2

S

ω2cos ωt 于是基础运动激励作用的广义力Q 2r (t )为 Q 2r =dx x U t x f L

r )(),(0?=2S

ρA ω2cos ωt dx x a

x a L r r ?+0cos 0094.0sin 0204.0)(ωω =

2S ρA ω2cos ωt [r 85.105ω+r

ω77

.48sin(0.19ωr )-

r

85

.105ωcos(0.19ωr )]

所以q 2r =

2

22ω

ω-r r Q =2S ρA [r 85.105ω+r ω77

.48sin(0.19ωr )-

r

85

.105ωcos(0.19

ωr )]2

2

r 2

ωωω- cos ωt 所以杆柱底部载荷激励产生的稳态响应

1μ(x,t )=)()(11

r t q x r r ∑∞

=μ=∑∞

=1

r P 0[0.0204sin(0.19ωr )+0.0094cos

(0.19ωr )]2

2r 1

ω

ω-sin(a r ωx+?)sin t ω, (r=1,2, …)

动载荷为P 1=K 1μ(x,t )+C

t

t ??)(,x 1μ 载荷放大系数为 K 1=

AL

t P t t x C t K ρωμμ+??+sin )

,(,x 011)

同理:基础运动激励产生的稳态响应 2μ(x,t )

=)()(21

r t q x U r r ∑∞

==∑∞

=1

r [r

ω03.471+

r

ω03

.217sin(0.19ωr )-

r

ω03

.471cos

(0.19ωr )]2

2r 2

ωωω- sin(a r ωx+?)cos t ω, (r=1,2, …)

动载荷P 2=K 2μ(x,t )+C

t

t ??)(,x 2μ 载荷放大系数为 K 2=AL

t P t t x C

t x K ρωμμ+??+sin ),(),(022

(r=1,2,…)

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

“机械动力学”课程教学大纲

“机械动力学”课程教学大纲 英文名称:Mechanical Dynamics 课程编号:MACH3441 学时:32 (理论学时:32 实验学时:课外学时:2实验) 学分:2 适用对象:机械设计、机械制造及自动化、机械电子工程、流体机械、电机、电器、材料工程等本科生高年级。 先修课程:高等数学、普通物理学、理论力学、材料力学、线性代数使用教材及参考书: [1] 石端伟主编. 机械动力学. 北京:中国电力出版社,2007. [2] 张策主编. 机械动力学.北京:高等教育出版社, 2008. [3] 倪振华主编. 振动力学. 西安交通大学出版社,1988. 一、课程性质和目的 性质:专业课 目的: 1.了解机械动力学的研究内容、发展历史以及最新研究进展。 2.培养机械系统动力学分析的基本能力。 3.了解机械系统动力学分析相关的CAE软件。 4.了解机械系统动态测试有关技术。 5.培养查阅和运用相关科技文献进行动力学分析的初步能力。 6.培养创新思维以及解决工程实际问题的能力。 7.培养科学、严谨的工作作风。

二、课程内容简介 随着现代机械装备朝着高精度、高效、大功率的方向发展,其动态性能指标的优劣越来越受到广泛关注和高度重视。机械动力学已日益成为现代机械设计与制造工程领域不可或缺的基础知识。本课程主要介绍机械系统动力分析的基本理论、分析方法、测试与控制技术以及典型机械系统动力学分析方法。通过课程的学习,培养学生能够在机械系统动力分析方面具有明确的基本概念、必要的专业基础知识、一定的机械系统动力分析能力与计算能力。 三、教学基本要求 1.了解相关机械系统动力学分析的新理论、新方法及发展趋向。 2. 掌握有关机械系统动力学分析的基本概念、基本理论与方法。 3. 了解典型机械系统动力学分析流程,具有进行工程实际问题分析的初步能力。 4. 建立正确的机械系统动力分析的思维方式,理论联系实际,具备一定的科研创新精神; 5. 课后需要查阅文献,并开展讨论,完成作业。 四、教学内容及安排 第一章:绪论 1.熟悉研究机械动力学的意义。 2.熟悉机械动力学的主要研究内容。 教学安排及教学方式

车辆系统动力学解析

汽车系统动力学的发展现状 仲鲁泉 2014020326 摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂直和横向两个方面的动力学内容。介绍车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点介绍了受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学和操纵动力学内容。本文主要讲述的是通过对轮胎和悬架的系统动力学研究,来探究汽车系统动力学的发展现状。 关键词:轮胎;悬架;系统动力学;现状 0 前言 汽车系统动力学是讨论动态系统的数学模型和响应的学科。它是把汽车看做一个动态系统,对其进行研究,讨论数学模型和响应。是研究汽车的力与其汽车运动之间的相互关系,找出汽车的主要性能的内在联系,提出汽车设计参数选取的原则和依据。 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。

matlab机电系统仿真大作业

一曲柄滑块机构运动学仿真 1、设计任务描述 通过分析求解曲柄滑块机构动力学方程,编写matlab程序并建立Simulink 模型,由已知的连杆长度和曲柄输入角速度或角加速度求解滑块位移与时间的关系,滑块速度和时间的关系,连杆转角和时间的关系以及滑块位移和滑块速度与加速度之间的关系,从而实现运动学仿真目的。 2、系统结构简图与矢量模型 下图所示是只有一个自由度的曲柄滑块机构,连杆与长度已知。 图2-1 曲柄滑块机构简图 设每一连杆(包括固定杆件)均由一位移矢量表示,下图给出了该机构各个杆件之间的矢量关系 图2-2 曲柄滑块机构的矢量环

3.匀角速度输入时系统仿真 3.1 系统动力学方程 系统为匀角速度输入的时候,其输入为输出为;。 (1) 曲柄滑块机构闭环位移矢量方程为: (2)曲柄滑块机构的位置方程 (3)曲柄滑块机构的运动学方程 通过对位置方程进行求导,可得 由于系统的输出是与,为了便于建立A*x=B形式的矩阵,使x=[], 将运动学方程两边进行整理,得到 将上述方程的v1与w3提取出来,即可建立运动学方程的矩阵形式 3.2 M函数编写与Simulink仿真模型建立 3.2.1 滑块速度与时间的变化情况以及滑块位移与时间的变化情况 仿真的基本思路:已知输入w2与,由运动学方程求出w3和v1,再通过积分,即可求出与r1。 (1)编写Matlab函数求解运动学方程 将该机构的运动学方程的矩阵形式用M函数compv(u)来表示。 设r2=15mm,r3=55mm,r1(0)=70mm,。 其中各个零时刻的初始值可以在Simulink模型的积分器初始值里设置

M函数如下: function[x]=compv(u) %u(1)=w2 %u(2)=sita2 %u(3)=sita3 r2=15; r3=55; a=[r3*sin(u(3)) 1;-r3*cos(u(3)) 0]; b=[-r2*u(1)*sin(u(2));r2*u(1)*cos(u(2))]; x=inv(a)*b; (2)建立Simulink模型 M函数创建完毕后,根据之前的运动学方程建立Simulink模型,如下图: 图3-1 Simulink模型 同时不要忘记设置r1初始值70,如下图: 图3-2 r1初始值设置

系统动力学复习过程

系统动力学

青少年上网成瘾的原因及对策的基模分析 摘要:随着互联网的快速发展,青少年上网成症成为一个严重的社会问题。从生理和社会心理两方面来分析上网成瘾症的成因,并有针对性地提出切实可行的措施和对策,是网络现象研究的重要课题。 关键词:系统动力学青少年上网成瘾基模 一引言 随着科技的发展,电脑的普及,网络离我们的生活越来越近,每个人都可以通过很多途径上网。网络在给人们带来丰富信息资源的同时,也对一些上网者、尤其是青少年产生了不可忽视的负面影响,出现了不同种类、不同程度的网络迷恋(网瘾)。如:网络游戏迷恋、网络恋情迷恋、网络制作迷恋、网络交际迷恋、网络色情迷恋等。所谓上网成瘾就是指伴随着现代信息技术高度发展而产生的一种对网络过分依赖的行为。据中国互联网信息中心的统计,目前我国网民总数已逾7950万,居世界第二,其中56%的互联网用户年龄在24岁以下。由此可见,青少年是网络重要使用群体。正如赌博、酗酒、吸毒一样,上网成瘾已逐渐成为一种社会问题,严重危害着人们的身心健康,尤其是毒害着青少年的身心健康。 二青少年上网成瘾的原因及对策流率基本入树模型 2.1建立流位流率系 流位:家庭学校教育程度L1(t);流率:家庭学校教育程度改变量R1(t)。 流位:上网玩游戏时间L2(t);流率:上网玩游戏时间改变量R2(t)。 流位:学习成绩L3(t);流率:学习成绩改变量R3(t)。

流位:户外活动时间L4(t);流率:户外活动时间改变量R4(t)。 流位:生活压抑程度L5(t);流率:生活压抑程度改变量R5(t)。 主导结构流位流率系:{(L1(t),R1(t)),(L2(t),R2(t)),(L3(t),R3(t)),(L4(t),R4(t)),(L5(t),R5(t))} 2.2确定流位控制流率的定性分析二部图 1.L1(t)不仅受到国家政策和社会因素影响,同时受到L4(t)及L2(t)和L3(t)的影 响。上网时间越长,那么学生在虚拟世界中的获得的愉悦和成就感就越多,学生在现实中产生的负面情绪就越多,而L3(t)提高和L4(t)的增多以及L2(t)所支配的时间,能够有效通过人际关系和学习成就感影响R1(t)的变化。2.L2(t)增多必然能够在虚拟世界中得到更多的愉悦感和现实中不能得到的 成就感使生活压抑程度降低,并间接的影响学习时间和L3(t)及L4(t)的安排以及L5,L1(t)的教育能够提高学生对人生价值认识,促进学生间的交流,因此R2(t)受到L1(t)、L3(t)、L4(t)、L5的共同影响 3.L1(t)能够提高学生对知识和人生的认知和感悟,促进学生对知识的渴求,主 动增加学习时间提高学习成绩,并通过出上网之外的L2(t)来加强人际关系,并从中得到认可得到尊重,因此R3(t)受到L1(t)、L2(t)、L4(t)、L5(t)的共同影响。

车辆系统动力学发展1

汽车系统动力学的发展和现状 摘要:近年来,随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容。本文通过对汽车系统动力学的的介绍,对这一新兴学科的发展和现状做一阐述。 关键字:汽车系统动力学动力学响应发展历史 Summary:In recent years, with the rapid development of automobile industry, people on the vehicle comfort, reliability and safety are also put forward higher requirements, to achieve these requirements are related to vehicle system dynamics.Vehicle system dynamics is the study of all related to the movement of the car system discipline, it involves the scope is broad, in addition to the effects of dynamic response of vehicle longitudinal motion and its subsystems, and vehicles to and dynamic content crosswise two aspects in the vertical.Based on the vehicle system dynamics is introduced, the development and status of this emerging discipline to do elaborate. Keywords:Dynamics of vehicle system dynamics Dynamic response Development history 0 引言 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 传统的车辆动力学研究都是针对被动元件的设计而言,而采用主动控制来改变车辆动态性能的理念,则为车辆动力学开辟了一个崭新的研究领域。在车辆系统动力学研究中,采用“人—车—路”大闭环的概念应该是未来的发展趋势。作为驾驶者,人既起着控

机械动力学大作业

单自由度杆机构的Adams动力学仿真 摘要:文章分析了单自由度的铰链机构的动力学问题,已知原动件曲柄的转矩,绘制输出件摆杆的运动曲线。首先在Adams软件中构造连杆,添加三个连杆,使其成一定角度,相互连接。再在两杆之间添加转动副,并且头尾连杆与地相连。并在曲柄处加转矩,最后进行仿真,并绘出相应图表。 关键词:铰链机构;Adams仿真 1、机构模型的建立 根据题目要求,选择一个铰链四杆机构——曲柄摇杆机构为模型,其结构简图如图1所示。其中,曲柄1为原动件。 图1曲柄摇杆机构简图 在Adams软件中,建立该曲柄摇杆机构的模型如图2所示。 图2 Adams中的曲柄摇杆机构模型

曲柄摇杆机构各连杆的惯性参数参考表1。杆件的材料均选择钢材(密度ρ=7.801×10-6 kg?mm-3,杨氏模量E=2.07×105 N?mm-2,泊松比μ=0.29)。 表1 传动导杆机构各部件惯性参数 2、利用Adams软件添加约束和力矩 杆1和地之间有转动副,杆1和杆2、杆2和杆3之间有转动副,杆3和地之间有转动副。杆1为原动件,在杆1上添加转矩。转矩大小为30。 图3约束与转矩 3、进行仿真 点击仿真按钮,开始仿真,选择仿真时间为2s,可以观察到该机构各个时间的运动状态如图4和图5所示。

(a)T=0时刻(b)T=1时刻 图4仿真过程中机构模型的运动状态 (a)T=1.2时刻(b)T=2时刻 图5仿真过程中机构模型的运动状态 结论 当原动件曲柄的转矩取为30时,点击“后处理”,可以绘制出输出件摆杆的位移曲线、角速度曲线、加速度曲线分别如图10、图11和图12所示。 图10输出件摆杆的位移曲线

液压伺服 大作业

硕士学位课程考试试卷 考试科目:电液伺服控制 考生姓名:刘双龙 考生学号:20140713189 学院:机械工程学院专业:机械工程 考生成绩: 任课老师(签名) 考试日期:2014年1月20日午时至时

考试主题:电液伺服(比例)系统 考试题目: 1、为什么把液压控制阀称为液压放大元件? 2、什么叫阀的工作点?零位工作点的条件是什么? 3、电液伺服阀由哪几部分组成?各部分的作用是什么? 4、什么是液压固有频率?在阀控缸系统中液压固有频率与活塞位 置有关吗?为什么? 5、为什么电液伺服系统一般都要加校正装置? 6、结合自己研究领域,写一篇液压伺服系统建模、分析的论文, 字数不少于2000字。 注:要求独立完成,不允许抄袭。 交作业时间: 最迟2015年第一个学期的第一周交到7教136,交纸质档。

三自由度平台液压伺服系统建模 摘要: 我的专业是机械工程,主要方向是机械设计,所以本文选择了与我专业方向有关的一个机构进行建模。本文开始对机构进行了说明(采用已有的机构,并非自己设计),然后对其进行运动学分析,从而的到上平台和下平台的速度及加速度,和雅可比矩阵及液压缸速度。然后对驱动机构进行电液伺服系统建模。其中 一:自由度运动平台系统简介 本文所研究的三自由度运动平台类似与六自由度平台是由一个上平台(动平台)、地基(下平台)、三个支杆、三个线性作动器以及若干关节连接而成的。上平台装有负载,完成既定的位置、速度、加速度运动要求,进而实现刑于道路状况的复现。其结构示意图如图1.1所示。 图 1三自由度运动平台的结构图 该平台的结构如下:上平台与地面之间以三个支杆(strut)来约束并起支撑作用,并以三个液压缸作为驱动部件进行驱动。每个液压缸两端为关节轴承,中间为一个移动副和一个转动副连接;每根支杆两端也是采用关节轴承分别与地面和上平台相连中间一个转动副。通过计算可知每个支杆所在的支路都具有5个自由度,每个支路对上平台提供一个约束;每个液压作动器所在的支路都具有6个自由度,对于上平台没有约束。通过每个分支对上平台的约束很容易计算得出其自由度为3。因此,通过三套液压作动器的驱动,上平台能够实现对于给定运动的跟踪复现。 简单直观的对运动进行分析可得到:由于三根支杆的限制作用,上平台平动受到限制:而转动自由度相对更为自由,运动范围更大。当两竖直作动器差动动

研究生《机械系统动力学》试卷及答案

太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级 课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 题号 一 二 三 四 五 六 七 八 总分 分数 1 圆柱型仪表悬浮在液体中,如图1所示。仪表质量为m ,液体的比重为ρ,液体的粘性阻尼系数为r ,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。(10分) 2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 是均质刚性杆,质量为m 。(10分) 3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。假定梁的 变形曲线为?? ? ?? -=x L y y M 2cos 1π(y M 为自由端的挠度)。(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。(10分) 5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N ,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。(15分) 6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。(15分) 7如图7一提升机,通过刚度系数m N K /1057823?=的钢丝绳和天轮(定滑轮)提升货载。货载重量N W 147000=,以s m v /025.0=的速度等速下降。求提升机突然制动时的钢丝绳最大张力。(15分) 8某振动系统如图8所示,试用拉个朗日法写出动能、势能和能量散失函数。(15分) 太原理工大学研究生试题纸

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

铁道车辆系统动力学作业及试地的题目详解

作业题 1、车辆动力学的具体内容是研究车辆及其主要零部件在各种运用情况下,特别是在高速运行时的位移、加速度和由此而产生的动作用力。 2、车辆系统动力学目的在于解决下列主要问题: ①确定车辆在线路上安全运行的条件; ②研究车辆悬挂装置和牵引缓冲装置的结构、参数和性能对振动及 动载荷传递的影响,并为这些装置提供设计依据,以保证车辆高速、安全和平稳地运行; ③确定动载荷的特征,为计算车辆动作用力提供依据。 3、铁路车辆在线路上运行时,构成一个极其复杂的具有多自由度的振动系统。 4、动力学性能归根结底都是车辆运行过程中的振动性能。 5、线路不平顺不是一个确定量,它因时因地而有不同值,它的变化规律是随机的,具有统计规律,因而称为随机不平顺。 (1)水平不平顺; (2)轨距不平顺; (3)高低不平顺; (4)方向不平顺。 6、车轮半径越大、踏面斜度越小,蛇行运动的波长越长,即蛇行运动越平缓。 7、自由振动的振幅,振幅大小取决于车辆振动的初始条件:初始位移和初始速度(振动频率)。

8、转向架设计中,往往把车辆悬挂的静挠度大小作为一项重要技术指标。 9、具有变摩擦减振器的车辆,当振动停止时车体的停止位置不是一个点,而是一个停滞区。 10、在无阻尼的情况下共振时振幅随着时间增加,共振时间越长,车辆的振幅也越来越大,一直到弹簧全压缩和产生刚性冲击。 11、出现共振时的车辆运行速度称为共振临界速度 12、在车辆设计时一定要尽可能避免激振频率与自振频率接近,避免出现共振。 13、弹簧簧条之间要留较大的间距以避免在振动过程中簧条接触而出现刚性冲击 14、两线完全重叠时,摩擦阻力功与激振力功在任何振幅条件下均相等。 15、在机车车辆动力学研究中,把车体、转向架构架(侧架)、轮对等基本部件近似地视为刚性体,只有在研究车辆各部件的结构弹性振动时,才把他们视为弹性体。 16、簧上质量:车辆支持在弹性元件上的零部件,车体(包括载重)及摇枕质量 17、簧下质量:车辆中与钢轨直接刚性接触的质量,如轮对、轴箱装置和侧架,客车转向架构架,一般是簧上质量。 18、一般车辆(结构对称)的垂向振动与横向振动之间是弱耦合,因此车辆的垂向和横向两类振动可以分别研究。 19、若车体质心处于纵垂对称面上,但不处于车体的横垂对称面上,则车体的浮沉振动将和车体的点头振动耦合起来。

车辆系统动力学-复习提纲

1. 简要给出完整约束与非完整约束的概念2-23,24,25, 1)、约束与约束方程 一般的力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程。 2)、完整约束与非完整约束 如果约束方程只是系统位形及时间的解析方程,则这种约束称为完整约束。 完整约束方程的一般形式为: 式中,qi为描述系统位形的广义坐标(i=1,2,…,n);n为广义坐标个数;m为完整约束方程个数;t为时间。 如果约束方程是不可积分的微分方程,这种约束就称为非完整约束。 一阶非完整约束方程的一般形式为:

式中,qi为描述系统位形的广义坐(i = 1, 2, …,n);为广义坐标对时间的一阶与数;n为广义坐标个数;m为系统中非完整约束方程个数;t为时间。 2. 解释滑动率的概念3-7,8 1.滑动率S 车轮滑动率表示车轮相对于纯滚动(或纯滑动)状态的偏离程度,是影响轮胎产生纵向力的一个重要因素。 为了使其总为正值,可将驱动和被驱动两种情况分开考虑。驱动工况时称为滑转率;被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。

参照图3-2,若车轮的滚动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则车轮滑动率s定义如下: 车轮的滑动率数值在0~1之间变化。当车轮作纯滚动时,即uw=rd ω,此时s=0;当被驱动轮处于纯滑动状态时,s=1。 3. 轮胎模型中表达的输入量和输出量有哪些?3-22,23 轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,即轮胎在特定工作条件下的输入和输出之间的关系,如图3-7所示。 根据车辆动力学研究内容的不同,轮胎模型可分为:

机械系统动力学试题

机械系统动力学试题 一、 简答题: 1.机械振动系统的固有频率与哪些因素有关?关系如何? 2.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 3.简述无阻尼单自由度系统共振的能量集聚过程。 4. 简述线性多自由度系统动力响应分析方法。 5. 如何设计参数,使减振器效果最佳? 二、 计算题: 1、 单自由度系统质量Kg m 10=, m s N c /20?=, m N k /4000=, m x 01.00=, 00=? x ,根据下列条件求系统的总响应。 (a ) 作用在系统的外激励为t F t F ωcos )(0=,其中N F 1000=, s rad /10=ω。 (b ) 0)(=t F 时的自由振动。 2、 质量为m 的发电转子,它的转动惯量J 0的确定采用试验方法:在转子径向R 1的地方附加一小质量m 1。试验装置如图2所示,记录其振动周期。 a )求发电机转子J 0。 b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。 3、 如图3所示扭转振动系统,忽略阻尼的影响 J J J J ===321,K K K ==21 (1)写出其刚度矩阵; (2)写出系统自由振动运动微分方程; (2)求出系统的固有频率; (3)在图示运动平面上,绘出与固有频率对应的振型图。 1 θ(图2)

(图3) 4、求汽车俯仰振动(角运动)和跳振(上下垂直振动)的频率以及振 动中心(节点)的位置(如图4)。参数如下:质量m=1000kg,回转半径r=0.9m,前轴距重心的距离l1=0.1m,后轴距重心的距离l2=1.5m,前弹簧刚度k1=18kN/m,后弹簧刚度k2=22kN/m (图4) 5、如5图所示锻锤作用在工件上的冲击力可以近似为矩形脉冲。已知 工件,铁锤与框架的质量为m1=200 Mg,基础质量为m2=250Mg,弹簧垫的刚度为k1=150MN/m,土壤的刚度为k2=75MN/m.假定各质量的初始位移与速度均为零,求系统的振动规律。

车辆系统动力学第二次作业

第二次作业 柏满飞 1. 设计要求 1.1 汽车参数 1.2 性能要求 2. 牵引电动机量值的设计 2.1参考一些相关资料,可以取如下电动机参数: 2.2电机额定功率值 汽车轮胎半径:0.2794r m = 则齿轮传动的传动比:,max max =3.2930m g n r i V π= 则车辆转动惯量系数:2 121 1.07 g i δ δδ=++=, 式中10.04δ=,20.0025δ= 则电机的额定功率值:()2 2221 77.45235 t f b r f a D f f a M P V V Mgf V C A V kW t δρ= ++ += 取整可以选额定功率值:80t P kW =

2.3电机外特性曲线 由以上参数得该电机的外特性曲线如图2.1所示。 图 2.1 电机外特性曲线 3. 加速性能的检验 基于牵引电机的转矩-转速特性、齿轮传动比以及车辆的参数,可以计算车辆的加速性能即加速时间和距离与车速之间的对应关系。 计算0100/km h -加速时间: 100 2 10.211 2 a p g r a D f M t dV s T i MGf C A V r δ ηρ==--? 满足性能要求。 4. 爬坡能力的检验 应用电机的转矩-转速特性、齿轮传动比,以及车辆的参数,并由行驶过程中汽车驱动力和阻力关系式: p g t T i F r η= ()21 cos sin 2r r a D f F Mg f C A V ααρ=++ 由此可计算得出牵引力和阻力与车速之间的关系,如图4.1所示。从而可计算出车辆的爬坡能力。

车辆系统动力学试题及答案

西南交通大学研究生2009-2010学年第( 2 )学期考试试卷 课程代码 M01206 课程名称 车辆系统动力学 考试时间 120 分钟 阅卷教师签字: 答题时注意:各题注明题号,写在答题纸上(包括填空题) 一. 填空题(每空2分,共40分) 1.Sperling 以 频率与幅值的函数 ,而ISO 以 频率与加速度的函数 评定车辆的平稳性指标。 2.在轮轨间_蠕滑力的_作用下,车辆运行到某一临界速度时会产生失稳的_自激振动_即蛇行运动。 3.车辆运行时,在转向架个别车轮严重减重情况下可能导致车辆 脱轨 ,而车辆一侧全部车轮严重 减重情况下可能导致车辆 倾覆 。 4.在车体的六个自由度中,横向运动是指车体的横移、 侧滚 和 摇头 。 5.在卡尔克线性蠕滑理论中,横向蠕滑力与 横向 蠕滑率和 自旋 蠕滑率呈相关。 6.设具有锥形踏面的轮对的轮重为W ,近似计算轮对重力刚度还需要轮对的 接触角λ 和 名义滚动圆距离之半b 两个参数。 7.转向架轮对与构架之间的 横向定位刚度 和 纵向定位刚度 两个参数对车辆蛇行运动稳定性影 响较大。 8. 纯滚线距圆曲线中心线的距离与车轮 的_曲率_成反比、与曲线的_曲率_成正比。 9.径向转向架克服了一般转向架 抗蛇行运动 和 曲线通过 对转向架参数要求的矛盾。 10.如果两辆同型车以某一相对速度冲击时其最大纵向力为F ,则一辆该型车以相同速度与装有相同缓冲器 的止冲墩冲击时的最大纵向力为_21/2F _,与不装缓冲器的止冲墩冲击时的最大纵向力为_2F_。 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

共2页 第1页 5.什么是稳定的极限环? 极限环附近的内部和外部都收敛于该极限环,则称该极限环为稳定的极限环。 6.轨道不平顺有几种?各自对车辆的哪些振动起主要作用? 方向、轨距、高低(垂向)、水平不平顺。方向不平顺引起车辆的侧滚和左右摇摆。轨距不平顺对轮轨磨耗、车辆运行稳定性和安全性有一定影响。高低不平顺引起车辆的垂向振动。水平不平顺则引起车辆的横向滚摆耦合振动。 三.问答题 (每题15分,共30分) 1.已知:轮轨接触点处车轮滚动圆半径r ,踏面曲率半径R w ,轨面曲率半径R t , 法向载荷N ,轮轨材料的弹性模量E 和泊松比o 。试写出Hertz 理论求解接触椭圆 长短半径a 、b 的步骤。P43-P44 根据车轮滚动圆半径、踏面在接触点处的曲率半径、钢轨在接触点处的曲率半径得到A+B 、B-A ,算得cos β,查表得到系数m 、n ,然后分别根据钢轨和车轮的弹性模量E 和泊松比σ,求得接触常数k ,得出轮轨法向力N ,然后带人公式求得a 、b 。 2. 在车辆曲线通过研究中,有方程式 ()W f r y f w O W μψλ212 1 2 222 * 11=??? ?????+???? ?? 二.简答题 (每题5分,共30分) 1.与传统机械动力学相比,轨道车辆动力学有何特点? 2.轮轨接触几何关系的计算有哪两种方法,各有何优缺点? 解析和数值方法。数值方法可以用计算机,算法简单,效率高,但存在一定误差;解析方法是利用轮轨接触几何关系建立解析几何的方式求解,比较准确,但是计算繁琐,方法难于理解。 3.在车辆系统中,“非线性”主要指哪几种关系? 轮轨接触几何非线性、轮轨蠕滑关系非线性、车辆悬挂系统非线性 4.怎样根据特征方程的特征根以判定车辆蛇行运动稳定性?。 根据求出的特征根实部的正负判断车辆蛇行运动的稳定性,当所有的特征根实部均为负时,车辆系统蛇行运动稳定,存在特征根为零或者负时,车辆系统的蛇行运动不稳定。

重庆大学机器人大作业

IRB 7600大功率机器人运动仿真

摘要 (2) 1引言 (3) 2机器人发展概述 (3) 2.1机器人的三大定律产生 (3) 2.2工业机器人的发展和特点 (3) 2.3工业机器人现状与前景 (5) 3 ABB机器人和大功率机器人的发展概述 (5) 3.1 ABB公司的发展 (6) 3.2 ABB工业机器人的现状 (6) 3.3简述IRB 7600机器人特点 (6) 3.4IRB 7600机器人的主要参数和应用 (7) 4. 基于ADAMS的IRB 7600大功率机器人运动学仿真 (8) 4.1 IRB 7600大功率机器人的运动学分析 (8) 4.1.1分析IRB 7600大功率机器人得到简图,建立方程 (9) 4.1.2 IRB 7600大功率机器人正向运动学解 (11) 4.2ADAMS中的的运动仿真 (12) 4.2.1在ADAMS中建立IRB 7600机器人的模型 (12) 4.2.2运动的施加 (14) 4.2.4运动结果分析 (16) 总结 (19) 参考文献 (20)

摘要 现代机器人技术飞速发展,其中工业机器人的应用也越来越广泛,成为高科技中极为重要的组成部分。本文主要针对ABB机器中的IRB 7600大功率机器人,对其运动进行仿真探究,学习机器人的一般运动方法。 ABB大功率机器人系列开辟了全新的应用领域,该机器人有多种版本,最大承重能力高达650kg。IRB 7600适合用于各行业重载场合,大转矩、大惯性、刚性结构以及卓越的加速性能等优良特性使这款市场主导产品声誉日隆。用于装配、清洁/喷涂、切割/去毛刺、研磨/抛光、机械管理、物料搬运、货盘堆跺、扳弯机管理、点焊,应用前景广。通过对IRB 7600的模型建立,基于ADAMS的点焊机器人运动学仿真,得到了机器人的仿真运动曲线和模型图。对模型和曲线分析,初步的了解到大功率机器人的运动和工作方式。 关键字:IRB 7600、ABB、ADAMS、仿真

机械动力学大作业

机电工程学院有限元分析及应用Ansys软件大作业 学号:S314070061 专业:机械工程 学生姓名:郭海山 任课教师:钟宇光 2014年12月18日

一.题目要求: 采用ADAMS软件或Matlab/Simulink环境,建立简单机械系统的动力学模型,借助软件进行求解计算和结果分析。 建立单自由度杆机构(有无滑块均可)动力学模型,由静止启动,选择一固定驱动力矩,,具体机构及参数自拟。 二.模型及结构分析: 利用ADAMS建立如下图1所示单自由度机构模型: 图1单自由度机构模型 结构简图如下图2: 图2 机构简图 曲柄1长度为24cm,质量为1.69kg 滑块2质量为15.6kg 导杆3长度为80cm,质量为5.19kg

部件的材料都是钢, Material Density: 7.801E-006 kg/mm**3 三.建模: 1.启动adams/view,新建模型model_1。单位设置成MMKS-mm,kg,N,s,deg。存储位置设在桌面。设置工作环境后,利用主工具箱里的基本建模工具,先后建立曲柄1、滑块2和导杆3。 2.曲柄和地面之间,曲柄和连杆之间,连杆和滑块之间,都是转动副。滑块和地面之间是移动副。在A,B,C分别放,再在B点添加进行约束。 3.现在给曲柄一个匀速转动。其值如下图3所示: 图3 最后得到模型如下图4所示: 图4 四.仿真: 标签页 simulation.选择下面图标。修改仿真时间参数如下图5:

图5 完成仿真观察机构运动状况。图6为第0.97S时的仿真图像 图6 图7为第2.91S时的仿真图像 图7 图8为第8.24S时的仿真图像

车辆系统动力学 作业

车辆系统动力学作业 课程名称:车辆系统动力学 学院名称:汽车学院 专业班级:2013级车辆工程(一)班 学生姓名:宋攀琨 学生学号:2013122030

作业题目: 一、垂直动力学部分 以车辆整车模型为基础,建立车辆1/4模型,并利用模型参数进行: 1)车身位移、加速度传递特性分析; 2)车轮动载荷传递特性分析; 3)悬架动挠度传递特性分析; 4)在典型路面车身加速度的功率谱密度函数计算; 5)在典型路面车轮动载荷的功率谱密度函数计算; 6)在典型路面车辆行驶平顺性分析; 7)在典型路面车辆行驶安全性分析; 8)在典型路面行驶速度对车辆行驶平顺性的影响计算分析; 9)在典型路面行驶速度对车辆行驶安全性的影响计算分析。 模型参数为: m 1 = 25 kg ;k 1 = 170000 N/m ;m 2 = 330 kg ;k 2 = 13000 (N/m);d 2 =1000Ns/m 二、横向动力学部分 以车辆整车模型为基础,建立二自由度轿车模型,并利用二自由度模型分析计算: 1) 汽车的稳态转向特性; 2) 汽车的瞬态转向特性; 3)若驾驶员以最低速沿圆周行驶,转向盘转角0sw δ,随着车速的提高,转向盘转角位sw δ,试由 20sw sw u δδ-曲线和0 sw y sw a δ δ-曲线分析汽车的转向特性。 模型的有关参数如下: 总质量 1818.2m kg = 绕z O 轴转动惯量 23885z I kg m =? 轴距 3.048L m = 质心至前轴距离 1.463a m =

质心至后轴距离 1.585b m = 前轮总侧偏刚度 162618/k N rad =- 后轮总侧偏刚度 2110185/k N rad =- 转向系总传动比 20i =

转子动力学大作业

转子动力学大作业 学院: 姓名: 班级: 学号:

目录 一、作业题目介绍 二、转子动力学理论简介 三、参数的选择和计算 四、Ansys分析临固有频率和临界转速 五、失稳转速影响因素及计算

一、大作业题目 1、 计算临界转速; 2、 圆轴承,长颈比为0.8,油膜间隙2‰ 3、 计算失稳转速 注:转子两端各一个轴承,支点在左右两端。 二、转子动力学理论知识 由于制造中的误差,转子各微段的质心一般对回转轴线有微小偏离。因此,当转子转动时,会出现横向干扰,在某些转速下还会引起系统强烈振动,出现这种情况时的转速就是临界转速。为保证系统正常工作或避免系统因振动而损坏,转动系统的转子工作转速应尽可能避开临界转速,若无法避开,则应采取特殊防振措施。这也是研究临界转速的意义。临界转速和转子不旋转时横向振动的固有频率相同,也就是说,临界转速与转子的弹性和质量分布当圆盘不装在两支撑的中点而偏于一边时,转轴变形后,圆盘的转轴线与两支点A 和B 的连线有一夹角ψ。设圆盘的自转角速度Ω,极转动惯量为p J ,则圆盘对质心o '的动量矩为p H J =Ω。它与轴线AB 的夹角也应该是ψ,见图1。当转轴有自然振动时,设其频率为n ω,则圆盘中心o '与轴线AB 所构成的平面绕AB 轴有进动角速度n ω。由于进动,圆盘的动量矩H 将不断改变方向。因此有惯性力矩 ()g n n p n M H H J ωωω=-?=?=Ω? 方向与平面o AB '垂直,大小为 sin g p n M J ωψ=Ω 转子结构尺寸示意图

这一惯性力矩称为陀螺力矩或回转力矩。因夹角ψ较小,sin ψψ≈,上式可写作 g p n M J ωψ=Ω。 这一力矩与ψ成正比,相当于弹性力矩。在正进动(0/2ψπ<<)的情况下,它使转轴的变形减小,因而提高了转轴的弹性刚度,即提高了转子的临界角速度。在反进动(/2πψπ<<)的情况下,这力矩使转轴的变形增大,从而降低了转轴的弹性刚度,即降低了转子的临界角速度。通过分析,可知道陀螺力矩对转子临界转速的影响:正进动时,它提高了临界转速;反进动时,它降低了临界转速。 图 1 在大多数情况下,轴承对于转子的动力特性有很明显的影响,轴承往往是阻尼的主要来源,因而控制着转子的响应。同时,轴承的刚度和阻尼又影响着转子的临界转速和稳定性。在深入研究转子动力学问题时,因而必须考虑到轴承的作用。对于一个确定的轴承,当润滑油粘度及进油压已给定时,轴颈中心1o 的静平衡位置e 、?决定于轴颈转速Ω和静载荷W 。当载荷W 的大小或者轴颈转速Ω变化时,1o 位置也相应地变化。当铅垂载荷W 大小变化时,轴颈中心的移动在大多数情况下,并非沿铅垂方向,也即位移并不沿着载荷作用的方向。这正是油膜不同于一般机械元件的一个特点。 记x F 、y F 为油膜力在x 、y 方向的分量。我们定义油膜刚度系数为单位位移所引起的油膜力增量,即 x xx F k x ?=?,0 y xy F k y ?= ?,0 y yx F k x ?= ?,0 y yy F k y ?= ? 定义油膜阻尼系数为单位速度所引起的油膜力增量,即 x xx F c x ?= ? ,0 x xy F c y ?= ? ,0 y yx F c x ?= ? ,0 y yy F c y ?= ? 式中各系数的第一个下标代表力的方向,第二个下标代表位移或速度的方向。油膜刚度系数和阻尼系数统称为油膜动力特性系数。其中xy k ,yx k 和xy c ,yx c 分别称为交叉刚度系数和交叉阻尼系数,它们表示油膜力在两个相互垂直方向的耦合作用,交叉动力系数的大小和正

相关主题
文本预览
相关文档 最新文档