当前位置:文档之家› 我对抽象代数的认识

我对抽象代数的认识

我对抽象代数的认识
我对抽象代数的认识

漫谈抽象代数

你若是没有认真看过代数,你就不能准确地估计数学到底有多么深刻;你若是没有认真看过代数,你也不能明白为什么抽象的理论也能为人类思维所把握——代数中最不可理解的就是,代数竟然是可以理解的。代数的深刻来自数学思想,而不是运算——论运算,微分和积分都比它复杂得多,这就是物理大师Feynman选择矩阵而不是偏微分方程来给低年级本科生讲述量子力学的原因(参阅Feynman物理学讲义卷III,赵凯华的新概念量子物理也用的是这种讲法:因为矩阵和代数运算更接近高中数学,几乎每个读过物理奥赛书的同学都会用行列式求解电路的基尔霍夫方程组——奥赛总是尽量回避微积分,必要的时候就用“小量分析”代替,并且取名为“微元法”、“近似法”,但就是不说这是微积分)。其实,运算的艰深算不得深刻,至多只能算繁琐(譬如电力系统和集成电路,分析和运算极其复杂,但用到的不过是普通物理和固体物理之类的低级知识,根本用不上相对论、量子力学、量子场论这类思想深刻的东西)。它没有几何那么直观(因此许多人不喜欢它,嫌它太抽象),确实(对于物理学家来说),但换个角度来看,这反倒是它的优点:一方面,在它的世界里,你不必担心自己的空间想象能力(和你的同行相比,你的逻辑推理能力恰好可以弥补空间想象能力的不足);另一方面,就数学本身而言,人类总是不可避免要面对一些高维(甚至无限维)的客体,这时,不仅你想象不出来,其他人也想象不出来,这正是代数大显身手的地方。有人说,抽象有什么好,我想象不出来。其实你那是先给自己灌输了一个错误观念,即一个事物只有当它可以想象出来才是真实的,才能接受。为什么非要想象出来呢?只要依循着逻辑一步步严密地推理就足够了,因而这种担心完全是不必要的。所以,你可以把数学看得很神圣,但不要把它看得很神秘——望而生畏会阻碍你的进步。代数的魅力就在于,深刻又易于思考,哪怕你对研究对象一无所知,也能依循着逻辑去思考——它那么简单,简单到只需要逻辑(除此之外再也不需要别的了)就能把握真理(你必须相信,纯理论可以主宰世界);但它的思想又那么深刻,深刻到所有几何都能统一用变换群来描述。现在觉得,几何与代数的特点很像普通物理与理论物理:前者注重说明现象,后者注重说明本质。譬如折射:前者注重折射现象(筷子放入水中后变弯了),后者注重折射定律(不管你变成什么形状了,反正都是nsinθ=n'sinθ')。曾经我很迷恋几何(各种奇妙曲线和曲面),就像当初迷恋普通物理(各种奇妙现象);现在我转向理论物理,更愿意从纯理性的角度去思考一些本质(透过现象看本质),对数学也因而更偏重代数。代数和理论物理的美是内敛的,就像那种内敛的人,长得很抽象,你不去接近她而只是从外部看看,就不会发现她的魅力所在。

抽象有什么好?抽象可以使理论更加普适。什么欧式几何、仿射几何、射影几何、微分几何…林林总总,眼花缭乱。它们之间就没有联系吗?有!不识几何真面目,只缘身在几何中——必须从几何中跳出来,才能旁观者清。这个旁观者就是代数。1872年,德国数学家K lein在Erlangen大学的报告中指出,一种几何学可以用公理化方法来构建,也可以把变换群和几何学联系起来,给几何学以新的定义:给出集合S和它的一个变换群G,对于S中的两个集合A和B,如果在G中存在一个变换f使f(A)=B,则称A和B等价。可以根据等价关系给集合分类,凡是等价的子集属于同一类,不等价的子集属于不同的类。将这一代数理论翻译到几何中,相应的版本便是:集合S叫做空间,S的元素叫做点,S的子集A和B叫做图形,凡是等价的图形都属于同一类(图形等价类)。于是同一类里的一切图形所具有的几何性质必是变换群G下的不变量,因而可用变换群来研究几何学——这就是著名的Erlange n纲领,它支配了自它以来半个世纪的所有几何学的研究。例如,在正交变换群下保持几何性质不变的便是欧式几何,在仿射变换群下保持不变的便是仿射几何,在射影变换群下保持不变的便是射影几何,在微分同胚群下保持不变的便是微分几何。

上面说的是图形等价关系。代数的普遍性在于,它将各种各样的相关的、不相关的事物放在一起比较,然后从这些个性的事物中提炼出共性的东西来,比如等价关系。除了上面提到的图形等价关系,还有各种各样的等价关系(如同“群公理:只要满足能封闭、可结合、有恒元和逆元的集合就是群”一样,只要满足反身、对偶、传递这三条的关系就是等价关系——这样简单的条件当然很容易满足,‘曲不高则和不寡’,所以类似的例子不胜枚举),例如,同余等价关系。我们可以按余数给整数分类,余数相同的归为一类,即同余类。代数对于普遍性的追求在于,发现同余类后并不就此止步,而是精益求精,进一步去提炼更具普遍性的概念。既然等价的图形和等价的余数都可以归为等价类,何不将等价类做成一个集合呢?由此,又发现了商集(即在一个集合中给定了一个等价关系之后相对于这个等价关系而言的等价类所构成的集合,通俗地说就是将每一个等价类中所有点“粘合”为一个点而得到的集合,如M?bius带和Klein瓶)、商空间(以同余类为元素构成的集合)、商群(以陪集为元素构成的集合)等概念。刚才说了等价关系。类似的例子还有很多,再比如说基矢。只要同类的一组元素互不相关,就能充当空间的一组基(将一个量展开为其他量的线性组合,此即泛函分析中的谱定理),哪怕它不是向量(因而生成的不是几何空间)也无所谓,比如它可以是一组函数(由此生成无限维空间,如量子力学中的Hilbert空间)。甚至,它可以是一个不确定(如无穷小量,要多小有多小但又不是零,到底多大只有上帝清楚)的微分元(比如dx、dy、dz,微分几何中用到的外微分形式就是用这些微分元为基矢张成的空间——微分几何运算很复杂,但构成它的理论基础之一Grassmann代数并不是特别复杂)。可见,代数的理论是相当普适的。

代数为什么能普适?因为它总是通过不断的抽象来提炼更加基本的概念。用哲学的话说,便是从具体到抽象,从特殊到一般(例如两个群,不论它们的元素多么地不同,只要运算性质相同,彼此就是同构的,并且可以因此认为是相同的代数对象而不加区别;不论膨胀、收缩、转动、反演…都可以统一起来,那就是指数函数;不论弦振动、声音、流体、电磁波…都可以统一起来,它们在数学中都是双曲型方程)。每一次抽象都是一次“扬弃”(留其精髓,去其平庸)的过程。比如将“距离”概念抽象化而提炼出“单比”概念,进一步将“单比”抽象化而提炼出“交比”概念,于是,从欧式几何中舍弃“距离不变”而保留更普遍的“单比不变”,得到仿射几何;从仿射几何中舍弃“单比不变”而保留更普遍的“交比”,得到一般的射影几何。从欧式空间(长度,夹角)到内积空间(模,不严格的夹角)再到赋范空间(范,完全抛弃夹角)也是如此,不断的改良(抽象、提炼),一改再改,但最终改到不能再改时,就完成了一个革命——甚至连范数(最熟悉因而最不愿抛弃的度量或度规)也抛弃了,从不严格的距离发展到不确定的距离(邻域δ,就像前面提到的无穷小量一样不确定),得到了里程碑式的“拓扑空间”的概念——有史以来最广泛最深刻的革命!

经由欧式空间的连续函数抽象出度量空间的连续映射,一直到抽象出拓扑空间中的同胚映射,在数学史上经历了很长时间才完成。无独有偶,物理学史也是如此。且不说从经典力学到相对论、量子力学(这个过程想必大家都听腻了),单说相对论本身也是如此。Einst ein说:“为什么从狭义相对论发表到广义相对论建立又经历了7年那么长时间?主要原因是,要摆脱坐标必须有直接度量意义这个旧概念是不容易的”。看来,物理学家和数学家都遇到了摆脱“度量”概念的困难,在摆脱旧概念走向新理论这一点上物理学界和数学界是相通的(数学界走向了拓扑学,物理学界走向了广义相对论)。

由于每一次“扬弃”都抛弃了一些非本质特征而提炼出更普适的精髓特征,因而每一次抽象都是在透过现象看本质,每一次提炼都是一次质的飞跃和升华,从而使由此得到的新理论更具普遍性与包容性。例如量子力学不仅能解释经典力学的各种现象,还能解释微观世界里特有的(不能被经典力学或经典电动力学解释的)现象,如AB效应。

当然,尽管新理论更有包容性,但也不能完全取代旧理论。比如拓扑学就不能取代测度论。呵呵,数学界都从“everythere”退到“almost everywhere”,物理学界也不能幻想“theory of everything”吧。记得家树兄的susy物理学笔记中有这么一句经典台词:物理理论是一个无法用模型覆盖的理论流形。果然。

另外,就理论本身而言,彼此也是相通的。例如,拓扑空间中的一些核心概念,像开集、闭集、内部、边界、聚点、覆盖…等,在度量空间(测度论)中也要考虑。呵呵,在地愿为连理枝,毕竟,我们“根,紧握在地下”——我们都是在集合论这片土地上生长起来的。所以,我们应该刚柔互济——你有你的可测函数,像积、像角、也像距;我有我连通的空间,像有界的闭集(紧致),又像连续的一一(同胚映射)。在你面前我常常让着你,有时将自己各部分分开一段距离ρ放你进去,这样,你就得到了精神支柱(有限可加的条件)而获得生命力(定义外测度)。

当然,我的分离不完全为了你,还为了我外孙女——规范场(既然能量动量都是我姐姐——时空平移对称群生成的,那么把数学当成物理的母函数不过分吧)。我先把自己分开一个超级大口子,以至于每一个点的开邻域都没有交集(即得到Hausdorff空间),然后分娩出遍历物理学各个角落的流形(局部同胚于n维欧式空间)。等她长大后,就变成了纤维丛,从而生成规范场(所以我是规范场的外祖母)。

你遇到困难(如自旋、AB效应等)常常求助于我,我总是乐于把我的致命武器——“连通性”借给你。我是这么珍爱自己这件宝贝,以至于不愿意“遗传”给自己的儿子(子集)。不过有时也拒绝你,比如你想去类空间隔,我怕你去了之后变成虚数,就用另一件武器——“紧致性”把超光速的希望变成地平线,就算看得见也永远走不到。

尽管我能七十二变(同伦、同调…),但有时也求助你。比如钻进无底洞——Cantor

三分集。这时你就用p进位表数法将(0,1)中的点表成二进位小数,就像“将(0,1)区间的点与(0,+∞)区间的点1-1对应起来”一样,将Cantor集合中的点和(0,1)区间也1 -1对应起来。

有时,我不小心钻进谢尔宾斯基海绵,这时你也无能为力,我就去找我弟——分形几何。

我期望“弟子不必不如师”的喜剧在我身上重演。目前我最发愁的就是我的徒子徒孙们(四种基本相互作用)总是吵架,希望有一天它们能统一。当然,前面已经说过,数学是物理的母函数,那么没学过我的武功的“民科”们就不要瞎掺合了。必须牢记牛魔王的遗训:如果说我看得更远,那是因为站在巨人的肩膀上。

期待物理学家们能像Klein用变换群统一几何学一样,也提出一个物理学的Erlangen 纲领。可能这个纲领也是变换群,比如SU(3)×SU(2)×U(1)(当然也未必用直积,虽然直积能够构造更大的对称,如SU(5)等);或者跟变换群无关,而是扭结之类的。

参考文献:[1]熊金城,点集拓扑讲义,高等教育出版社

[2]江泽坚,实变函数论,高等教育出版社

[3]葛显良,应用泛函分析,浙江大学出版社

[4]A.W.约什,物理学中的群论基础,科学出版社

[5]侯伯宇、侯伯元,物理学家用微分几何,科学出版社

[6]梅向明,高等几何,高等教育出版社

[7]张贤科、许甫华,高等代数学,清华大学出版社

[8]陈纪修.等,数学分析(下),高等教育出版社

[9]梅向明,黄敬之,微分几何,高等教育出版社

致谢:感谢三位老师:数学系的金燕生老师(高等代数)、信息学院的邢光龙老师(群论)、物理系的吴一东老师(数学物理方法、量子力学);感谢四位学长:文中部分思想引自尤亦庄学长的邮件;用数学研究物理的想法主要受牛家树、潘逸文和李靖阳学长熏陶;感

谢数学系的朋友王新杰、赵春晖给了我走进抽象世界的勇气,尤其春晖,他初中和高中痴迷数学的经历一直激励着我。当然还有其他朋友需要感谢,不一一列举了。

近世代数_杨子胥_第二版课后习题答案

近世代数题解 第一章基本概念 §1. 1 1. 4. 5. 近世代数题解§1. 2 2. 3. 近世代数题解§1. 3 1. 解 1)与3)是代数运算,2)不是代数运算. 2. 解这实际上就是M中n个元素可重复的全排列数n n. 3. 解例如AοB=E与AοB=AB—A—B. 4. 5. 近世代数题解§1. 4 1. 2. 3.解 1)略 2)例如规定 4.

近世代数题解§1. 5 1. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射. 2.略 3. 4. 5. §1. 6 1. 2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性; 3)是等价关系;4)是等价关系. 3. 解 3)每个元素是一个类,4)整个实数集作成一个类. 4. 则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5. 6.证 1)略2) 7. 8.

9. 10. 11. 12. 第二章群 §2. 1 群的定义和初步性质 一、主要内容 1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子. 2.群的初步性质 1)群中左单位元也是右单位元且惟一; 2)群中每个元素的左逆元也是右逆元且惟一: 3)半群G是群?方程a x=b与y a=b在G中有解(?a ,b∈G). 4)有限半群作成群?两个消去律成立. 二、释疑解难 有资料指出,群有50多种不同的定义方法.但最常用的有以下四种: 1)教材中的定义方法.简称为“左左定义法”; 2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”; 3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”; 4)半群G再加上方程a x=b与y a=b在G中有解(?a ,b∈G).此简称为“方程定义法”. “左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续

高中数学教师教学反思(共七篇).

篇一: 高二数学教学反思高二数学教学反思 ——高二文科班教学的感想 我今年所教的是高二(3)、(4)班,这两个班是文科班,感觉到由于学生的基础差,对数学不感兴趣等特点,但好多学生的形象思维能力还是较强,记忆方面大多以机械,形象记忆为主,特别是一些女同学,常常能把课本内容整段背出,有的同学甚至还能把例题的解题过程一字不漏地复述一遍,笔记记得整整齐齐,虽然能把概念,定理整段背出,但理解不深,解题过程虽然全部正确,却不会变通,特别是遇到没有见过的新题型,常常摸不着方向,无从下手,她们思维的广阔性,灵活性,创造性常常不够,特别对于逻辑思维要求较高的数学学科,就必须针对女同学的特点,精心设计思维情境,点燃她们数学想象的“灵气”,激发它们学习数学的兴趣,鼓起她们学习数学的勇气。 这半年来我认真钻研数学中的每一个知识点,精心设计每一节课,虚心向教学经验丰富的教师请教,同时积极主动的学习老教师的实际教学方法,与此同时,我努力做好教学的各个环节,做好学生的课后辅导工作,注意学生的心理素质的提高为了以后更好提高教学效果。经过一番深思,我个人觉得高二数学教学,应该作到夯实“三基”,基本知识、基本概念和基本方法的巩固掌握相当关键。我从中得到的教学反思如下:一、教学定位要合理化,重基础知识、基本方法和基本思想 通过半年来的高二的数学教学,以及考试题研究分析发现,数学考查的多是中等题型,占据总分的百分之八十之多,所以我认为,对于大多数的学生作好这部分题是至关重要的。二、教师指导好学生对教材的合理利用数学考试考查点“万变不离教材”,许多的试题就来源于教材的例题和习题,提高学生对教材的重视的同时,关键做好学生的学习指导工作,对于教材的改造和加工至关重要,先整体把握全教材的章节,再细化具体的内容,用联想的方式,对于详略的处理交代清楚,使学生在自己的头脑中构建知识体系,理解解题思想和知识方法的本质联系,提高实际运用能力非常重要。 三、理解知识网络,构建认识体系 各知识模块之间不是孤立的,我们要引导学生发现知识之间的衔接点,有的在概念外延上相连,有的在应用上相通等。这样,就可以把已有知识连成一个完整的体系,在解决问题时便会左右逢源,如鱼得水。 四、把握教材,注重通性通法的教学、做好学习方法的指导工作 近几年高考数学试题坚持新题不难、难题不怪的命题方向,强调“注意通性通法,淡化特殊技巧”。我们要注意回归课本。回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上。 教学反思是教师对自身教学工作的检查与评定,是教师整理教学效果与反馈信息,适时总结经验教训,常常反思,对数学教师提高自身教学水平,优化课堂教学是行之有效的办法。

近世代数课后习题参考答案(张禾瑞)1

近世代数课后习题参考答案 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c

b b c a a a a a c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 12)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? a b c a a b c b b c a c c a b

抽象代数期末考试试卷及答案

抽象代数试题 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、6阶有限群的任何子群一定不是( )。 A 、2阶 B 、3 阶 C 、4 阶 D 、 6 阶 2、设G 是群,G 有( )个元素,则不能肯定G 是交换群。 A 、4个 B 、5个 C 、6个 D 、7个 3、有限布尔代数的元素的个数一定等于( )。 A 、偶数 B 、奇数 C 、4的倍数 D 、2的正整数次幂 4、下列哪个偏序集构成有界格( ) A 、(N,≤) B 、(Z,≥) C 、({2,3,4,6,12},|(整除关系)) D 、 (P(A),?) 5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有( ) A 、(1),(123),(132) B 、12),(13),(23) C 、(1),(123) D 、S3中的所有元素 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、群的单位元是--------的,每个元素的逆元素是--------的。 2、如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1----------。 3、区间[1,2]上的运算},{min b a b a =ο的单位元是-------。

4、可换群G 中|a|=6,|x|=8,则|ax|=——————————。 5、环Z 8的零因子有 -----------------------。 6、一个子群H 的右、左陪集的个数----------。 7、从同构的观点,每个群只能同构于他/它自己的---------。 8、无零因子环R 中所有非零元的共同的加法阶数称为R 的-----------。 9、设群G 中元素a 的阶为m ,如果e a n =,那么m 与n 存在整除关系为--------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链? 2、S 1,S 2是A 的子环,则S 1∩S 2也是子环。S 1+S 2也是子环吗? 3、设有置换)1245)(1345(=σ, 6)456)(234(S ∈=τ。 1.求στ和στ-1; 2.确定置换στ和στ-1的奇偶性。 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)

近世代数初步_习题解答(抽象代数)

《近世代数初步》 习题答案与解答

引 论 章 一、知识摘要 1.A 是非空集合,集合积A A b a b a A A 到},:),{(∈=?的一个映射就称为A 的一个代数运算(二元运算或运算). 2. 设G 非空集合,在G 上有一个代数运算,称作乘法,即对G 中任意两个元素a,b,有唯一确定的元素c 与之对应,c 称为a 与b 的积,记为c=ab.若这个运算还满足:,,,G c b a ∈? (1),ba ab = (2)),()(bc a c ab = (3)存在单位元e 满足,a ae ea == (4)存在,'G a ∈使得.''e a a aa =='a 称为a 的一个逆元素. 则称G 为一个交换群. (i)若G 只满足上述第2、3和4条,则称G 为一个群. (ii) 若G 只满足上述第2和3条,则称G 为一个幺半群. (iii) 若G 只满足上述第2条,则称G 为一个半群. 3.设F 是至少包含两个元素的集合,在F 上有一个代数运算,称作加法,即对F 中任意两个元素a,b,有唯一确定的元素c 与之对应,c 称为a 与b 的和,记为c=a+b.在F 上有另一个代数运算,称作乘法,即对F 中任意两个元素a,b,有唯一确定的元素d 与之对应,d 称为a 与b 的积,记为d=ab.若这两个运算还满足: I. F 对加法构成交换群. II. F*=F\{0}对乘法构成交换群. III..)(,,,ac ab c b a F c b a +=+∈? 就称F 为一个域. 4.设R 是至少包含两个元素的集合,在R 上有加法和乘法运算且满足: I. R 对加法构成交换群(加法单位元称为零元,记为0;加法单位逆元称为负元). II. R *=R\{0}对乘法构成幺半群(乘法单位元常记为1). III. .)(,)(,,,ca ba a c b ac ab c b a R c b a +=++=+∈? 就称R 为一个环. 5.群G 中满足消去律:.,,,c b ca ba c b ac ab G c b a =?==?=∈?且 6.R 是环,),0(00,,0,==≠∈≠∈ba ab b R b a R a 或且若有则称a 是R 中的一个左(右)零因子. 7.广义结合律:半群S 中任意n 个元a 1,a 2,…,a n 的乘积a 1a 2…a n 在次序不变的情况下可以将它们任意结合. 8.群G 中的任意元素a 及任意正整数n,定义: 321个 n n a aa a ...=,43421个 n n a a a a e a 1 110...,----==. 则由广义结合律知,,,Z n m G a ∈?∈?有 .)(,)(,1m m mn n m n m n m a a a a a a a --+=== (在加法群中可写出相应的形式.)

近世代数学习报告

中国地质大学(武汉) 近世代数学习报告 课程名称:近世代数 学号: 20141002513 姓名:王庆涛 学院:数理学院 专业:数学与应用数学

对近世代数的重要性的认识 抽象代数又称近世代数,它产生于十九世纪。 抽象代数是研究各种抽象的公理化代数系统的数学学科。由于代数可处理实数与复数以外的物集,例如向量、矩阵超数、变换等,这些物集的分别是依它们各有的演算定律而定,而数学家将个别的演算经由抽象手法把共有的内容升华出来,并因此而达到更高层次,这就诞生了抽象代数。抽象代数,包含有群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象代数已经成了当代大部分数学的通用语言。 被誉为天才数学家的伽罗瓦(1811-1832)是近世代数的创始人之一。他深入研究 了一个方程能用根式求解所必须满足的本质条件,他使代数学由作为解方程的科学转变 为研究代数运算结构的科学。他提出的“伽罗瓦域”、“伽罗瓦群”和“伽罗瓦理论”都是 近世代数所研究的最重要的课题。伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。 本学期学习总结 第一章基本概念 1、集合的幂集:以集合A的一切子集为元素构成的集合,记为或2A。(含n个元素的 集合的子集有2n个,即幂集中的元素共有2n个) 2、积(笛卡尔积):A×B={(a,b)|aA,bB}叫A与B的积。(A×B≠B×A) 3、A到B的对应法则为A到B的映射①②③,x的象在B中。 4、若A是含n个元素的集合,则A的映射共有个,一一映射共有n!个。 5、代数运算:一个A×B到D的映射叫做一个A×B到D的代数运算。(o为A×B到D 的代数运算(a,b)A×B,ab有意义,且ab唯一,属于D)。 6、满射:y,设y=(x),求出x(x为y的函数),若x存在且xA,则为满射。(中的每一个元素都有原象);单射:a,bA,若a≠b,则a)≠b)。(元素不同象不同);一一映射:即单又满。(一一映射都有逆映射,若A与B间是一一映射,则A、B有限且元素个数相同) 7、一个A到A的映射叫做A的一个变换;有限集A的一个一一变换,叫做A的一个置换。 8、一个A 到的映射,叫做一个对于代数运算o和来说的,A 到的同态映射,假如满足:a,bA,a,b→则aob→(运算的象=象的运算);A与同态A 与存在同态满射。 9、一个A 到的一一映射,叫做一个对于代数运算o和来说的,A 到的同构映射。(同构映射的逆映射也是同构映射)。 10、若R为法则,若R满足a,bA,要么aRb,要么ab,唯一确定,则称R为A的元间 的一个关系;集合A 的元间的一个关系叫做一个等价关系,假如满足①反射律(aA,

近世代数期末考试试卷与答案

一、单项选择题 ( 本大题共 5 小题,每小题 3 分,共 15 分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设 G 有 6 个元素的循环群, a 是生成元,则 G 的子集()是子群。 A、a B、 a , e 33 C、 e, a D、 e, a , a 2、下面的代数系统( G, * )中,()不是群 A、G为整数集合, * 为加法 B、G为偶数集合, * 为加法 C、G为有理数集合, * 为加法 D、G为有理数集合, * 为乘法 3、在自然数集 N 上,下列哪种运算是可结合的?() A、a*b=a-b B、a*b=max{a,b} C、 a*b=a+2b D、a*b=|a-b| 4、设 1 、 2 、 3 是三个置换,其中 1 =(12)(23)(13),2 =(24)(14),3=( 1324),则3=() A、2 B 、12 D 、2 1 12C 、2 5、任意一个具有 2 个或以上元的半群,它()。 A、不可能是群 B、不一定是群 C、一定是群 D、是交换群 二、填空题 ( 本大题共 10 小题,每空 3 分,共 30 分) 请在每小题的空格中填上正 确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子 ----- 称为整环。 4 3、已知群G中的元素a的阶等于 50,则a的阶等于 ------。 4、a 的阶若是一个有限整数n,那么 G与-------同构。 5、A={1.2.3}B={2.5.6}那么 A∩B=----- 。 6、若映射既是单射又是满射,则称为-----------------。 7 、叫做域F的一个代数元,如果存在F的----- a 0 , a1 , , a n使得 n a 0 a 1 a n0 。

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( c )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、{} 3 ,,a a e 2、下面的代数系统(G ,*)中,( D )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( B ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( B ) A 、1 2σ B 、1σ2σ C 、2 2 σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( A )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----变换群------同构。 2、一个有单位元的无零因子-交换环----称为整环。 3、已知群G 中的元素a 的阶等于50,则4 a 的阶等于----25--。 4、a 的阶若是一个有限整数n ,那么G 与---模n 剩余类加群----同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=---{2}--。 6、若映射?既是单射又是满射,则称?为----双射-------------。

高中数学教师教学反思(共11篇)

篇一:高二数学教学反思 高二数学教学反思 --高二文科班教学的感想 高芳育 我今年所教的是高二(3)、(4)班,这两个班是文科班,感觉到由于学生的基础差,对数学不感兴趣等特点,但好多学生的形象思维能力还是较强,记忆方面大多以机械,形象记忆为主,特别是一些女同学,常常能把课本内容整段背出,有的同学甚至还能把例题的解题过程一字不漏地复述一遍,笔记记得整整齐齐,虽然能把概念,定理整段背出,但理解不深,解题过程虽然全部正确,却不会变通,特别是遇到没有见过的新题型,常常摸不着方向,无从下手,她们思维的广阔性,灵活性,创造性常常不够,特别对于逻辑思维要求较高的数学学科,就必须针对女同学的特点,精心设计思维情境,点燃她们数学想象的"灵气",激发它们学习数学的兴趣,鼓起她们学习数学的勇气。 这半年来我认真钻研数学中的每一个知识点,精心设计每一节课,虚心向教学经验丰富的教师请教,同时积极主动的学习老教师的实际教学方法,与此同时,我努力做好教学的各个环节,做好学生的课后辅导工作,注意学生的心理素质的提高 为了以后更好提高教学效果。经过一番深思,我个人觉得高二数学教学,应该作到夯实"三基",基本知识、基本概念和基本方法的巩固掌握相当关键。我从中得到的教学反思如下: 一、教学定位要合理化,重基础知识、基本方法和基本思想 通过半年来的高二的数学教学,以及考试题研究分析发现,数学考查的多是中等题型,占据总分的百分之八十之多,所以我认为,对于大多数的学生作好这部分题是至关重要的。 二、教师指导好学生对教材的合理利用 数学考试考查点"万变不离教材",许多的试题就来源于教材的例题和习题,提高学生对教材的重视的同时,关键做好学生的学习指导工作,对于教材的改造和加工至关重要,先整体把握全教材的章节,再细化具体的内容,用联想的方式,对于详略的处理交代清楚,使学生在自己的头脑中构建知识体系,理解解题思想和知识方法的本质联系,提高实际运用能力非常重要。 三、理解知识网络,构建认识体系 各知识模块之间不是孤立的,我们要引导学生发现知识之间的衔接点,有的在概念外延上相连,有的在应用上相通等。这样,就可以把已有知识连成一个完整的体系,在解决问题时便会左右逢源,如鱼得水。 四、把握教材,注重通性通法的教学、做好学习方法的指导工作 近几年高考数学试题坚持新题不难、难题不怪的命题方向,强调"注意通性通法,淡化特殊技巧"。我们要注意回归课本。回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上。 教学反思是教师对自身教学工作的检查与评定,是教师整理教学效果与反馈信息,适时总结经验教训,常常反思,对数学教师提高自身教学水平,优化课堂教学是行之有效的办法。 篇二:高一年级数学教师教学反思 高一数学教学反思 2010-2011学年马上就要过去,回顾这一学年的教学,我有一种沉重的感觉,有些学生逐渐失去学习数学的兴趣,问数学问题的同学有所减少。成绩拔尖的同学并不是很多,是什么原因造成呢?这些让我想了很久,心中有一点想法: 一、初,高中教材间的过渡存在间隙 首先,初中教材偏重于实数集内的运算,缺少对概念的严格定义或对概念的定义不全,如函数的定义,三角函数的定义更是如此,对不少数学定理没有严格论证,一般都是用公理

近世代数第二章答案

近世代数第二章群论答案 §1.群的定义 1.全体整数的集合对于普通减法来说是不是一个群? 解:不是,因为普通减法不是适合结合律。 例如 () 321110 --=-= --=-=() 321312 ()() --≠-- 321321 2.举一个有两个元的群的例。 解:令G=,e a {},G的乘法由下表给出 首先,容易验证,这个代数运算满足结合律 (1) ()(),, = ∈ x y z x y z x y z G 因为,由于ea ae a ==,若是元素e在(1)中出现,那么(1)成立。(参考第一章,§4,习题3。)若是e不在(1)中出现,那么有 ()aa a ea a == a aa ae a ==() 而(1)仍成立。 其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。所以G是一个群。 读者可以考虑一下,以上运算表是如何作出的。 3.证明,我们也可以用条件Ⅰ,Ⅱ以及下面的条件IV',V'来做群的

定义: IV ' G 里至少存在一个右逆元1a -,能让 =ae a 对于G 的任何元a 都成立; V ' 对于G 的每一个元a ,在G 里至少存在一个右逆元1a -,能让 1=aa e - 解:这个题的证法完全平行于本节中关于可以用条件I,II,IV,V 来做群定义的证明,但读者一定要自己写一下。 §2. 单位元、逆元、消去律 1. 若群G 的每一个元都适合方程2=x e ,那么G 是交换群。 解:令a 和b 是G 的任意两个元。由题设 ()()()2 ==ab ab ab e 另一方面 ()()22====ab ba ab a aea a e 于是有()()()()=ab ab ab ba 。利用消去律,得 =ab ba 所以G 是交换群。 2. 在一个有限群里,阶大于2的元的个数一定是偶数。 解:令G 是一个有限群。设G 有元a 而a 的阶>2n 。 考察1a -。我们有 ()1=n n a a e - ()()11==n n e a a e -- 设正整数

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

近世代数基础习题课答案到第二章9题

第一章 第二章 第一章 1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □ 2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群. 证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □ 3. 设G 是一个非空有限集合, 它上面的一个乘法满足: (1) ()()a bc ab c =, 任意,,a b c G ∈. (2) 若ab ac =则b c =. (3) 若ac bc =则a b =. 求证: G 关于这个乘法是一个群. 证明: 任取a G ∈, 考虑2{,,,}a a G ??. 由于||G <∞必然存在最 小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1, 即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元, 从而是幺群. 事实上, 对任意,a b G ∈, 此时有: ()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==, 再由消去律, 得到a b =, 从而证明了此时G 只有一个元, 从而是幺群. 所以我们设G 中至少有一个元素a 满足: 对于满足 i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e

为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在 最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =: i ba ba =, 即be b =. 最后, 对任意x G ∈, 前面已经证明了有最小的正整数k 使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e = 从而22x e e ==, 此时x 有逆, 即它自身. 如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆: 1k x -. □ 注: 也可以用下面的第4题来证明. 4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法 还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群. 证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G 的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =. 于是: ()()be ca e c ae ca b ====. 得证. 对任意g G ∈, 由gx e =即得g 的逆. □ 5. 找两个元素3,x y S ∈使得222()xy x y =/. 解: 取(12)x =, (13)y =. □ 6. 对于整数2n >, 作出一个阶为2n 的非交换群. 解: 二面体群n D . □ 7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证 明: i i i r a ba b -=, i 是非负整数.

近世代数期末试题

近 世 代 数 试 卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1 -f 。 ( ) 4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( ) 6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整 数环,()p 是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ??? 21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ??? 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。 2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。 3、设 是整数集Z 上的二元运算,其中{}b a b a ,max = (即取a 与b 中的最大者),那么 在Z 中( ) ①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。

抽象代数-小阶群

一、确定所有互不同构的18阶Abel 群 设A 为18阶Abel 群,21823A ==?。 故A 的Sylow 子群的阶分别为22A =,233A =。 A 的初等因子共有以下2种可能:{2,3,3},{2,9}。 所以18阶Abel 群共有2个:2 23⊕Z Z ,29⊕Z Z 。 {2,3,3}化为不变因子为{3,6},故22336⊕⊕ Z Z Z Z 。 {2,9}化为不变因子为{18},故2918⊕?Z Z Z 。 所以互不同构的18阶Abel 群共有2个:36⊕Z Z ,18Z 。 二、确定所有互不同构的20阶Abel 群 设B 为20阶Abel 群,22025B ==?。 故B 的Sylow 子群的阶分别为222B =,55B =。 B 的初等因子共有以下2种可能:{2,2,5},{4,5}。 所以20阶Abel 群共有2个:225⊕Z Z ,45⊕Z Z 。 {2,2,5}化为不变因子为{2,10},故225210⊕⊕ Z Z Z Z 。 {4,5}化为不变因子为{20},故4520⊕ Z Z Z 。 所以互不同构的20阶Abel 群共有2个:210⊕Z Z ,20Z 。 三、确定所有互不同构的18阶非Abel 群 记G 为18阶非Abel 群,将G 的3Sylow -子群记为S 。 1)若S a =,则91a =。再取2阶元b G ∈,即有,G a b =。 现设1d bab a -=,其中由于G 为非Abel 群,故1d ≠。

因为2 111122()()()d d d d d a a bab ba b b bab b b ab a -----======,故21(mod9)d ≡。 200(m o d 9)≡ 224(m o d 9)≡ 230(m o d 9)≡ 247(m o d 9)≡ 257(m o d 9)≡ 260(m o d 9)≡ 274(m o d 9)≡ 281(m o d 9)≡ 故得8d =,而81a a -=,故9219,|1,1,G a b a b ba a b D -==== 。 2)若S a ≠,则必有S a b =?,其中31a =,31b =。 同理,再取2阶元c G ∈,即有,,G a b c =。 现设111cac a b αβ-=,221cbc a b αβ-=。其中12120,,,3ααββ≤<。 11 1 11 22111 1 1 11 ()()()()() a c a c c c a c c c a b c c a c c b c c a c c b c αβαβαβ--------===== 2 1112211211112()()a b a b a b αβααββααβαβββ++== 2 22 22 221 11 1 1 11 ()()()()() b c b c c c b c c c a b c c a c c b c c a c c b c αβαβαβ--------===== 2 1122221222212()()a b a b a b αβααββαααβαββ++== 故21211122 2122121(mod3)()0(mod3) 1(mod3)()0(mod3)ααββαβαββααβ?+≡+≡?+≡+≡? 共有以下14组解: (1) 1212(,,,)(0,1,1,0)ααββ=,即1cac b -=,1cbc a -=。 (2) 1212(,,,)(0,2,2,0)ααββ=,即12cac b -=,12cbc a -=。 (3) 1212(,,,)(1,0,0,1)ααββ=,即1cac a -=,1cbc b -=。(G 非Abel 群,舍去) (4) 1212(,,,)(1,0,0,2)ααββ=,即1cac a -=,12cbc b -=。 (5) 1212(,,,)(1,0,1,2)ααββ=,即1cac ab -=,12cbc b -=。 (6) 1212(,,,)(1,0,2,2)ααββ=,即12cac ab -=,12cbc b -=。 (7) 1212(,,,)(1,1,0,2)ααββ=,即1cac a -=,12cbc ab -=。 (8) 1212(,,,)(1,2,0,2)ααββ=,即1cac a -=,122cbc a b -=。

近世代数学习心得论文(中文英文对照)

近世代数学习心得 《抽象代数》是一门比较抽象的学科,作为初学者的我感到虚无飘渺,困难重 重。我本来英语学的就不好,看到全英的《近世代数》我似乎傻眼了。通过两个月的学习,发现它还是有规律有方法的。 针对“近世代数”课程的概念抽象、难于理解的特点,我认为理解概念的一种有效方法是多举已学过的典型例子。多看多做,举一反三。比如群论里面有一个最基本的问题就是n阶有限群的同构类型有多少。围绕这个问题可以引出很多抽象的概念,比如元素的阶数,abel群,正规子群,商群,Sylow定理等,同时也会学到如何把这些理论应用到具体的例子分析中学习“近世代数”时,就仅仅背下来一些命题、性质和定理,并不意味着真正地理解。要想真正理解,需要清楚这些命题、性质和定理的前提条件为什么是必要的?而达到这个目的的最有效的方法就是构造反例。 其次是通过变换角度寻求问题的解法,通常是将已知或未知较复杂的问题变换为等价的较简单的问题,或者是将新问题变换为已经解决的问题,或者是将未知与已知关系较少的问题变为已知与未知关系较多的问题等等 先参考着答案做题,然后自己总结方法思路,自己就开始会做了。问题在是否善于总结归纳。 以前学代数的时候从来没有意识到代数是门很抽象的学科,总在练习的过程中靠点小聪明学过来,也由于这段路一直走得非常平坦,我从来没停下来去想想其本身的理论体系的问题。现在想想,也许这就是我一直停留在考试成绩一般,却难以有所作为的原因吧。所以有时走得太快可能未必时间好事。很可惜现在才了解到这一点,同时也还算幸运,毕竟人还在青年,还来得及改正

Modern Algebra learning experience "Abstract Algebra" is a more abstract subjects, as a beginner , I feel vague , difficult. I had to learn English is not good to see the UK 's "Modern Algebra" I seem dumbfounded. Through two months of the study, it is found that there is a regular method . For the " Modern Algebra " course abstract concept , difficult to understand the characteristics , I believe that an effective way to understand the concept is to have learned to cite a typical example . See more and more , by analogy . Such as group theory which has a fundamental problem is a finite group of order n is isomorphic to type numbers . Around this problem can lead to many abstract concepts , such as the order of elements , abel group , normal subgroups , quotient groups , Sylow theorems , etc. , but also learn how to put these theories to the analysis of specific examples to learn " Modern Algebra ", it is just back down a number of propositions , properties and theorems , does not mean that truly understand. To truly understand the need to clear these propositions , properties and theorems prerequisite Why is necessary ? To achieve this purpose the most effective way is to construct counterexample. Followed by changing the angle seek a solution, usually known or unknown to the more complex problem is converted into an equivalent simpler problem , or is transformed into a new problem has been solved , or is unknown with the known relations fewer problems become more known and unknown relationship problems, etc. Do question the answer to the first reference , and then summarize their way thinking that he began to do it. Whether good at summarizing the problem . Previously learned algebra algebra is never realized when the door is very abstract subject , always in the process of practice by learning a little smarter over, but also because this section has gone very flat , I never stopped to think about their own theoretical system problems . Now think about it , maybe this is what I have been stuck in test scores in general, but the reason it is difficult to make a difference . So sometimes a good thing going too fast may not be time . Unfortunately now I understand this, but also lucky , after all, people are still young , still have time to correct

相关主题
文本预览
相关文档 最新文档