当前位置:文档之家› 固定化脂肪酶催化大豆油制备生物柴油

固定化脂肪酶催化大豆油制备生物柴油

固定化脂肪酶催化大豆油制备生物柴油
固定化脂肪酶催化大豆油制备生物柴油

 第26卷第3期2007年5月 食品与生物技术学报Journal of Food Science and Biotechnology Vol.26 No.3May. 2007 

文章编号:167321689(2007)0320075205 收稿日期:2006207213.

基金项目:国家863计划项目(2003AA214061).

作者简介:曾淑华(19802),女,湖北汉川人,生态与生物技术硕士研究生.

通讯作者:闫云君(19692),男,湖北罗田人,教授,博导,主要从事生物能源及生态能量研究.Email :yanyunjun @https://www.doczj.com/doc/e88053551.html,

固定化脂肪酶催化大豆油制备生物柴油

曾淑华, 周位, 杨江科, 闫云君

(华中科技大学生命科学与技术学院,湖北武汉430074)

摘 要:研究了脂肪酶固定化及其催化大豆油制备生物柴油的工艺。采用溶胶2凝胶法对脂肪酶

进行了固定化,考察了固定化酶催化大豆油转酯化的生产工艺中酶用量、醇油比、含水量、反应温度、反应时间、溶剂等参数对转酯过程的影响。实验结果表明,当大豆油415g 时,最佳的反应条件为:固定化酶646mg ,醇油摩尔比4∶1,含水质量分数为6%,40℃,甲酯的最终转化率为96133%。

关键词:生物柴油;脂肪酶;固定化;转酯化中图分类号:TS 225.13文献标识码:A

Immobilized Lipase C atalyzing Production of Biodiesel

ZEN G Shu 2hua , ZHOU Wei , YAN G Jiang 2ke , YAN Yun 2jun

(College of Life Science and Technology ,Huazhong University of Science and Technology ,Wuhan 430074,China )

Abstract :In t his manuscript lipase f rom Pseu domonas cep aci a was immobilized in sol 2gel mat rix and use to it s t ransesterification of soybean oil wit h met hanol into biodiesel was st udied.The effect s of water content ,met hanol/oil molar ratio ,enzyme loading ,temperat ure ,organic solvent s and time course on t he t ransesterification were determined.The result s showed t hat t he optimal conditions for t ransesterification were as follows :soybean oil 415g :temperat ure 40℃,4∶1met hanol/oil molar ratio ,6%water content and 646mg immobilized lipase.By combination wit h t he optimum conditio ns ,a high met hyl esters formation (96133%)was obtained.K ey w ords :biodiesel ;lipase ;immobilization ;t ransesterification

生物柴油是一种可再生并能生物降解的良好石油替代能源,主要是以动植物油为原料,通过甲酯化或乙酯化而制备的长链脂肪酸甲酯或乙酯等酯类物质。与传统的矿物柴油相比,具有闪点高,润滑性能好,燃烧后不产生硫氧化物、芳香烃、多环芳烃等大气污染物,可有效减少尾气对环境的污染[122]等优点。因此,生物柴油的发展已引起世界

各国的广泛关注。

目前生物柴油的生产方法主要有化学法和酶法。化学法存在工艺复杂、醇消耗量大,产物不易回收,环境污染大等缺点[3]。而酶法制备生物柴油具有反应条件温和、醇用量小、产物易收集、对环境污染小等优点,因而报道日渐增多,但目前还只处在工艺探索阶段,未见有酶法制备生物柴油投入生

产实践的报道[4-6]。本文采用自制的固定化酶作为生物催化剂,以精制大豆油为原料,对酶促酯交换反应制备生物柴油的工艺进行了研究,探讨了酶用量、醇油比、含水量、反应温度、反应时间、溶剂等因素对生物柴油转化率的影响。

1 材料与方法

1.1 实验材料

所有脂肪酶购于日本Amano公司,精炼大豆油购于南海油脂工业有限公司,甲醇、正己烷、叔丁醇、四氢呋喃均为分析醇,购于国药集团化学试剂有限公司;tet ramet hoxysilane(TMOS)、met hyltrei2 met hoxysila(M TMS)、氟化钠等其他试剂均为国产分析纯。

1.2 仪器

摇床:金坛市新航仪器厂生产;电子天平:梅特勒2托利多仪器有限公司产品;气相色谱仪GC2 9790:温岭福立分析仪器有限公司生产,离心机: Eppendorf公司产品;旋涡混匀器:ScientificIndus2 t ries公司生产。

1.3 实验方法

1.3.1 脂肪酶的固定化 在15mL falcon t ube中加入200mg Lipase PS和2116mL Tris2HCl buff2 er(p H710,0105mol/L),混匀,加入200μL NaF (1mol/L)、适量PEG400和异丙醇,混匀5min,再加入2mmol TMOS和10mmol M TMS,将混合物在混匀器上剧烈震荡5s,然后轻轻震荡,看到凝胶颗粒在数秒内形成。将反应物置于空气中,经37℃干燥后,刮下白色凝胶,用10mL Tris2HCl buffer (p H710,0105mol/L)震荡洗涤2h,除去未固定上和结合松散的酶,离心,收集上清液,分析得酶的固定化效率为94%。将固体颗粒分别用10mL丙酮、10mL正己烷洗涤,冻干,置于220℃保存备用。11312 酶促转酯化合成生物柴油 在50mL具塞锥形瓶中,加入415g大豆油,适量甲醇和水,一定量的固定化酶,在摇床转速200r/min、一定的温度条件下,密封振荡反应。定时取出反应液,离心之后用于甲酯含量分析。

11313 气相色谱分析方法 取样5μL,用295μL 正己烷溶解,加入300μL内标物(十七碳酸甲酯正己烷溶液),混匀,取1μL样品进样。

11314 GC分析条件 INNOWAX毛细管柱,30 mm×0125mm×0125μm,载气N2,柱前压011M Pa,一阶程序升温,温度由200℃升到235℃,升温速率3℃/min,FID检测器,气化室温度280℃,检测器温度280℃。

11315 生物柴油转化率的测定 将生物柴油的转化率定义为经气相色谱分析得到的脂肪酸甲酯的含量/大豆油完全甲酯化后脂肪酸甲酯的含量×100%。

2 结果与讨论

211 不同来源的游离脂肪酶催化大豆油转酯化的比较

为了选出转酯活力较高的脂肪酶用于固定化,对表1中Amano公司的7种不同来源的脂肪酶进行了转酯实验比较。其初步考察反应体系为415g 大豆油,甲醇793μL(醇油摩尔比为4∶1),135mg 游离酶,01225g水,摇床转速200r/min,40℃密封振荡反应24h,该条件不是酶催化的最适条件。实验结果见图1,Lipase PS的转酯效率最高,为63124%,而其他几种酶的转酯效率都很低,只有百分之几。这表明Lipase PS在生物柴油的合成过程中具有很强的应用潜力,因此,对该种酶进行了固定化,并将其固定化酶应用于后面的生物柴油制备实验

图1 不同的游离酶催化大豆油转酯化的影响Fig.1 E ffect of different free lip ases on transesterif ica2 tion of soybean oil

表1 用于筛选的7种脂肪酶

T ab.1 Free lipase tested in the transesterif ication screening 脂肪酸来源

PS Pseudomonas cepacia

A K Pseudomonas fluorescens

FA P Aspergillus niger

A YC andida rugosa

N Rhizopus niveus

G Penicillium camemberittii

A Aspergillus niger

67食 品 与 生 物 技 术 学 报 第26卷 

212 不同的加酶量对转酯反应的影响

在415g 大豆油,甲醇793μL (醇油摩尔比为4∶1),0127g 水,摇床转速200r/min ,40℃的反应体系中,加入0~300mg 的游离酶(10%蛋白质含量)和0~115g 的固定化酶(2%蛋白质含量),反应24h 后,结果见图2。图2表明,随着酶量的增加,转化率陡然上升,并且固定化酶催化体系的转化率上升速率明显高于游离酶催化体系,当体系中Li 2pase PS 的质量大于100mg 后,甲酯转化率增长趋势趋于平缓,其最大值分别为89181%和70132%。参考多种因素,选择加入固定化酶646mg (相当于135mg lipase PS )最为合适。酶经过固定化后转酯活力明显高于游离酶,该结果与H 1Noureddini 等[7]、Mamoru Iso 等[8]的研究结果一致。可能的原因是溶胶前驱体中烷烃基的疏水性与脂肪酶结构中α螺旋疏水性的侧链发生疏水作用,导致酶的活性中心的盖子结构被打开[9],出现界面活化现象,使酶分子的活性得到提高。另外,酶浓度过大时,会使酶分子堆积,限制其催化空间,导致比活力下降

图2 加酶量对转酯反应的影响

Fig.2 E ffect of enzyme loading on transesterif ication of

soybean oil

213 醇油比对转酯反应的影响

通过预实验发现,采用分3次等摩尔流加甲醇

的反应体系的最终转化率要低于一次性加入甲醇体系的最终转化率,故选择在一次性加入甲醇的条件下,比较了415g 大豆油,646mg 固定化酶,醇油摩尔比为3∶1、4∶1、5∶1,含水质量分数为6%,反应温度40℃的反应体系的甲酯转化率。结果见图3。从图3可以看出,4∶1的反应体系的转化率最高,其次是3∶1的体系,再次是5∶1的体系。在醇油摩尔比高于理论摩尔比3∶1的条件下固定化Lipase PS 能表现出非常高的催化活性,这一结果与An 2Fei Hsu 等[10211]人的研究结果一致。但是过高的醇油比反过来也会抑制酶的转酯活性,以醇油

摩尔比4∶1最合适

图3 醇油比对转酯反应的影响

Fig.3 E ffect of methanol/oil molar ratio on transesteri 2

f ication

214 含水量对转酯反应的影响

脂肪酶只有在油2水界面才具有催化活性,因此

水在反应体系中是必不可少,但是过多的水会促进脂肪酶催化底物水解而不是转酯反应。我们在醇油摩尔比4∶1,摇床转速200r/min ,40℃、反应24h 的条件下,探讨了不同含水量对转酯反应的影响,结果见图4。从图4可知,在低水环境中脂肪酶的转酯活力随着含水量的增加而急剧增大,在质量分数6%(水与油的质量比)时,甲酯转化率达到89181%的最大值,随后开始降低。低水环境中不能充分的形成油2水界面,脂肪酶活性很低,而过多的水分则会导致脂肪酶催化底物的水解,最适含水质量分数约为6%。该结果比其他人的研究结果略为偏高,可能原因是溶胶2凝胶固定化颗粒本身吸收了部分水份,导致表观上需要更多的水才能充分的形成油2水界面

图4 含水量对转酯反应的影响

Fig.4 E ffect of w ater content on transesterif ication

215 反应温度对转酯反应的影响

我们在415g 大豆油,646mg 固定化酶,醇油

7

7 第3期曾淑华等:固定化脂肪酶催化大豆油制备生物柴油

摩尔比4∶1,质量分数为6%含水量,摇床转速200r/min 的条件下探讨了不同温度对转酯反应的影

响,反应24h 后,结果见图5。从图5可以看出,40℃时甲酯转化率最高,约为86135%。温度过高,脂肪酶更倾向于催化底物水解[12],温度更高酶易失活,从而降低甲酯转化率

图5 温度对转酯反应的影响

Fig.5 E ffect of temperature on transesterif ication

216 反应时间与甲酯转化率的关系

在醇油摩尔比4∶1,6%含水量,摇床转速200

r/min ,40℃的反应条件下测定了不同时间下的甲酯转化率,结果见图6。从图6可知,转化率在前12h 急剧上升,达到78104%,随后上升缓慢,24h 达到89181%,最后趋于平缓,48h 后达到95142%,之后基本无变化,72h 后达到96133%

图6 不同时间下的甲酯转化率

Fig.6 Time course of the transesterif ication

217 有机溶媒对转酯反应的影响

对比了无溶剂体系与溶剂体系对反应的影响,分别以正己烷、叔丁醇、四氢呋喃为溶剂进行了研究。结果见图7。从图7可以看出,无溶剂体系的转化率最高,其次为四氢呋喃体系,再次为叔丁醇体系,最后为正己烷体系。结果说明容剂体系并不利于Lipase PS 催化转酯反应地进行。目前,利用Lipase PS 催化转酯反应的体系基本为无溶剂体

系[7-13]。通过预实验发现Lipase PS 用甲醇处理24h 之后酶活无明显变化,并且在较高的醇油比的

条件下转酯活力极高(如图3所示),而有机溶剂的

加降低了反应体系中甲醇的浓度,导致底物之间不能充分接触,从而降低甲酯转化率。同时,无溶剂体系更加有利于产物的分离和纯化。因此,无溶剂体系更加适合作为Lipase PS 的转酯反应体系

图7 有机溶剂对转酯反应的影响

Fig.7 E ffect of organic solvent on transesterif ication

218 生物柴油成分分析

产物的气相色谱分析结果如图8所示

11棕榈酸甲酯;21十七碳酸甲酯;31硬脂酸甲酯;41油酸甲

酯;51亚油酸甲酯;61亚麻酸甲酯

图8 脂肪酸甲酯气相色谱分析图

Fig.8 G C analysis of methyl esters

3 结 论

酶法合成生物柴油是一种环境友好型、高效的

生物合成工艺催化过程。本实验研究了溶胶2凝胶法固定的Lipase PS 催化大豆油合成生物柴油的反应工艺条件。在415g 大豆油,646mg 固定化酶,793μL 甲醇(醇油摩尔比为4∶1),0127g 水,摇床转速200r/min ,40℃的反应体系中,甲酯的最终转化率可达到96133%。此外,固定化酶回收方便,在有机溶剂中的分散性好,这为酶法生产生物柴油的工业化应用奠定了良好的技术基础。

87食 品 与 生 物 技 术 学 报 第26卷 

参考文献(References ):

[1]Nelson L A ,Foglia T A ,Marmer W N.Lipase 2catalyzed production of biodiesel [J ].Journal of American Oil Chemists ’

Society ,1996,73:1191-1195.

[2]Fukuda H ,K ondo A ,Noda H.Biodiesel f uel production by transesterification of oils[J ].Journal of Bioscience and Bioen 2

gineering ,2001,92:405-416.

[3]Fangrui M ,Milford A H.Biodiesel production :a review[J ].Bioresource T echnology ,1999,70,1-15.

[4]Gemma V ,Mercedes M ,Jos A.Optimization of brassica carinata oil methanolysis for biodiesel production[J ].Journal of

American Oil Chemists ’Society ,2005,82:899-904.

[5]Samukawa T ,Kaieda M ,Matsumoto T ,et al.Pretreatment of immobilized Candi da antarctica lipase for biodiesel f uel

production f rom plant oil[J ].Journal of Bioengineering ,2000,90:180-183.

[6]Watanabe Y ,Shimada Y ,Sugihara A ,et al.Conversion of degummed soybean oil to biodiesel with immobilized Candi da

A ntarctica lipase[J ].Journal of Molecular catalysis

B :E nzym atic ,2002,17:151-155.

[7]Noureddini H ,Gao X ,Philkana R S.Immobilized Pseudomonas cepacia lipase for biodiesel f uel production f rom soybean

oil[J ].Bioresource T echnology ,2005,96:769-777.

[8]Mamoru I ,Baoxue C ,Masashi E ,et al.Production of biodiesel f uel f rom triglycerides and alcohol using immobilized lipase

[J ].Journal of Molecular catalysis B :E nzym atic ,2001,16:53-58.

[9]Brady L ,Brzozowski A M ,Derewenda Z S ,et al.A Serine protease triad f rom the catalytic center of a triacylglycerol li 2

pase[J ].N ature ,1990,343:767-770.

[10]An 2Fei H ,Kerby J ,Thomas A F ,et al.Transesterification activity of lipase immobilized in a phyllosilicate sol 2gel matrix

[J ].Biotechnology Letters ,2004,26:917-921.

[11]An 2Fei H ,Kerby J ,Thomas A F ,et al.Optimization of alkyl ester production f rom grease using a phyllosilicate sol -gel

immobilized lipase[J ].Biotechnology Letters ,2003,25:1713-1716.

[12]Noureddini H ,G ao X ,Wagner P R.Immobilization of Pseudomonas cepacia lipase by sol 2gel entrapment and its applica 2

tion in the hydrolysis of soybean oil[J ].Journal of American Oil Chemists ’Society ,2004,79:33-39.

[13]An 2Fei H ,Kerby J ,Thomas A F ,et al.Immobilized lipase 2catalyzed production of alkyl esters of restaurant grease as

biodiesel[J ].Biotechnology and Applied Biochemistry ,2002,36:181-186.

(责任编辑:杨萌)

9

7 第3期曾淑华等:固定化脂肪酶催化大豆油制备生物柴油

固定化酶的研究进展

固定化酶的研究进展 固定化酶是20世纪60年代发展起来的一项新技术。最初主要是将水溶性酶与不溶性体结合起来,成为不溶于水的酶衍生物,所以曾叫过“水不溶酶”和“固相酶”。但是,后来发现,也可以将酶包埋在凝胶内或置于超滤装置中,高分子底物与酶在超滤膜一边,而反应产物可以透过膜逸出。在这种情况下,酶本身仍是可溶的,只不过被固定在一个有限的空间内不能再自由流动。因此,用水不溶酶或固相酶的名称就不再恰当。在1971年第一届国际酶工程会议上,正式建议采用“固定化酶”的名称[1]。 一固定化酶的发展历程[1] 酶参与体内各种代谢反应,而且反应后其数量和性质不发生变换。作为一种生物催化剂,酶可以在常温常压等温和条件下高效地催化反应,一些难以进行的化学反应在酶的催化作用下也可顺利地进行反应,而且反应底物专一性强、副反应少等优点大大促进了人们对酶的应用和酶技术的研究。近年来,酶被人们广泛应用于食品生产与检测、生物传感器、医药工程、环保技术、生物技术等领域。 1916年美国科学家NELSON和GRIFFIN最先发现了酶的固定化现象;直到20世纪50年代,酶固定化技术的研究才真正有效地开展;1953年,德国科学家GRUB-HOFER 和SCHLEITH首先将聚氨基苯乙烯树脂重氮化,然后将淀粉酶、胃蛋白酶、羧肽酶和核糖核酸酶等与上述载体结合制备固定化酶;到20世纪60年代,固定化技术迅速发展;1969年日本千畑一郎利用固定化氨基酰胺酶从DL-氨基酸生产L-氨基酸,是世界上固定化酶大规模应用的首例;在1971年的第一届国际酶工程会议上,正式建议使用固定化酶(mimobilizedenzyme)这个名称。我国的固定化酶研究开始于1970年,首先是中国科学院微生物所和上海生化所的酶学工作者同时开始了固定化酶的研究工作 二固定化酶的特点[2] [3] 固定化酶具有许多优点:极易将固定化酶与底物、产物分开;可以在较长时间内进行分批反应和装柱连续反应;在大多数情况下,可以提高酶的稳定性;酶反应过程能够加以严格控制;产物溶液中没有酶的残留,简化了提取工艺;较水溶性酶更适合于多酶反应;可以增加产物的收率,提高产物的质量;酶的使用效率提高,成本降低。但是,固定化酶也有其不足之处,如固定化时,酶活力有损失;增加了固定化的成本,工厂开始投资大;只能用于水溶性底物,而且较适用于小分子。 三固定化酶固定化方法[3] [4] 由于所固定的酶或细胞的不同,或者固定的目的及固定用的载体的不同,使固定化方法大相径庭。根据固定的一般机理,可将之分为如下几种方法。酶的固定化方法有:

3.2制备和应用固定化酶

第三章酶的应用技术实践 3.2制备和应用固定化酶 探究目的: 1说出固定化酶和固定化细胞的作用和原理 2、尝试制备固定化酵母细胞,并利用固定化酵母细胞进行酒精发酵。探究预习: 固定化酶技术的发展也促进了固定化细胞技术的发展。20世纪70年代后期出现了固定化细胞 技术。通过各种方法将细胞与一定的载体结合,使细胞仍保持原有的生物活性,这一过程称为细胞固定化。固定化细胞仍能进行正常的生长、繁殖和代谢,由于保留了细胞内原有的多酶系统,这对多步催化的连续反应优势就更加明显。细胞固定化的方法也有多种,主要是吸附法和包埋法两大类。 吸附法是制备固定化动物细胞的主要方法。动物细胞大多数具有附着特性,能够很好地附着在容器壁、微载体和中空纤维等载体上。吸附法制备固定化植物细胞,是将植物细胞吸附在泡沫塑料的大孔隙或裂缝之中,也可将植物细胞吸附在中空纤维的外壁上。 包埋法是指将细胞包埋在多孔载体的内部而制成固定化细胞的方法。凝胶包埋法是应用最广泛的细胞固定化方法,适用于各种微生物、动物和植物细胞的固定化。凝胶包埋法所使用的载体主要有琼脂、海藻酸钠凝胶、角叉菜胶、明胶等。 海藻酸钠凝胶包埋法制备固定化细胞的操作简便,条件温和,对细胞无毒性。通过改变海藻酸钠的浓度可以改变凝胶的孔径,适合于多种细胞的固定化。用海藻酸钠凝胶制备的固定化细胞已用于多种酶的发酵生产与研究。 固定化细胞技术可以取代游离的细胞进行发酵,生产各种物质。 材料用具:干酵母,聚乙烯醇,海藻酸钠,无水CaC2,蒸馏水,烧杯,玻璃棒,酒精灯,三 角架,石棉网,注射器等。 探究过程: 探究反思: 固定化酵母菌技术有哪些优点? 探究示例: 请参照细胞固定化技术的相关基础知识,完成下列问题。 (1)细胞固定化技术一般采用包埋法固定化,采用该方法的原因是 (2)包埋法固定化是指___________________________________ 。 (3)_____________________________________________________________________ 包埋法固定化细胞常用的载体有 ________________________________________________________________ _______________________ 。(答出三种即可) (4)与固定化酶技术相比,固定化细胞技术的优点是 (5)制备固定化酵母细胞的步骤为: 【解析】(1)固定化细胞的方法有包埋法、化学结合法和物理吸附法,一般来说多采用包埋法固定化,因为个大的细胞难以被吸附或结合,且不易从包埋材料中漏出。 (2)(3)包埋法固定化即将微生物细胞均匀地包埋在不溶于水的多孔性载体中。常用的载体有明胶、琼脂糖、海藻酸钠等。 (4)与固定化酶技术相比,固定化细胞技术的成本更低?操作更容易。 (5)制备固定化酵母细胞的程序为:酵母细胞的活化T配制CaC2溶液T配制海藻酸钠溶液T海藻酸钠溶液与酵母细胞混合T固定化酵母细胞。 【答案】(1 )细胞个大,不易从包埋材料中漏出;(2)将微生物细胞均匀地包埋在不溶于水的多 孔性载体中;(3)明胶、琼脂糖、海藻酸钠、醋酸纤维素、聚丙烯酰胺等;(4)成本更低,操作更容易;(5)①酵母细胞的活化②配制CaC2溶液③配制海藻酸钠溶液④海藻酸钠溶液与酵 母细胞混合⑤酵母细胞的固定化。 【矫正反馈】 1?固定化酶和固定化细胞是利用物理或化学方法将酶或细胞固定在一定空间内的技术,其中适合细胞固定的方法是() A.包埋法 B.物理吸附法 C.化学结合法 D.高温冷却法 2.与固定化酶相比,固定化细胞制备的特点是() A.成本高,但操作更容易 B.成本低,但操作更复杂 C.成本高,且操作更复杂 D.成本低,且操作更容易 3.固定化细胞技术在废水处理中有着重要作用,用于处理含氮、氨丰富的废水的固定化微生物通常是() ①酵母菌②青霉菌③硝化菌④反硝化菌 ①③D.②④ 让酵母细胞在缺水状态下休眠 让处于休眠状态的酵母细胞重新恢复正常的生活状态 5.下面为制备固定化酵母细胞的步骤,其正确的操作程序是 () ①海藻酸钠溶液与酵母细胞混合②配制海藻 酸钠溶液③酵母细胞的活化 ⑤配制物质的量浓度为0.05 mol/L的CaC2溶液 A.①②③④⑤ B.③①②⑤④ C.③⑤②①④ 6 .试分析下图中,哪一种与用海藻酸钠作载体制备的固定化酵母细胞相似( 7 .下列有关固定化酵母细胞制备步骤叙述,不恰当的是() A.应使干酵母与水混合并搅拌,以利于酵母菌活化 B.配制海藻酸钠溶液时要用小火间断加热的方法 C.向刚溶化好的海藻酸钠溶液中加入已活化的酵母细胞,充分搅拌并混合均匀 D.将与酵母混匀的海藻酸钠溶液注入CaC2溶液中,会观察到CaC2溶液中有球形的凝胶珠形成 8.用固定化酵母细胞发酵葡萄糖溶液时,为了能产生酒精,下列措施错误的是() A.向瓶内泵入氧气 B.应将装置放于适宜的条件下进行 C.瓶内应富含葡萄糖等底物 D.将瓶口密封,效果更好 探究步骤探究记录结论或解释1.实验准备准备各种实验药品和器具。 2?制备麦芽汁称取一定质量的干麦芽粉,加入其质量4倍的水,在58~65C下 糖化3-4 h。每隔一定的时间用碘液测定,如果仍显蓝色,说明糖化还不完全,继续糖化直至不显色为止,得到麦芽汁。煮沸、冷却麦芽汁后用纱布过滤,再调节pH至6.0,在121 C下灭菌15min,制成无菌麦牙汁。 3.活化酵母菌细胞称取1g干酵母放入50 mL的小烧杯中,加入蒸馏水10 mL。用玻璃棒搅拌酵母菌液,使其活化1h左右。 4.制备固定化细胞称取4g聚乙烯醇(PVA)和0.2 g海藻酸钠,加入无菌水40 mL,适当加热至完全溶化,将溶液冷却至45 C,加入预热至35C的 酵母菌培养液,混合均匀形成酵母菌谒藻酸钠胶液;将酵母菌- 海澡酸钠胶液倒入带有孔径为 2 mm喷嘴的小塑料瓶或吸入注 射针筒中;以恒定的速度滴入预先盛有50 mL饱和硼酸-氯化钙 溶液的烧杯中,采用磁力搅拌器或手摇的方法使溶液不停地旋转;酵母菌-海藻酸钠胶液在溶液中逐渐形成凝胶珠。待凝胶珠在溶液中浸泡30 min后,取出用无菌水洗涤3次备用。 5.发酵麦芽汁将固定化酵母菌细胞凝胶珠加入300 mL无菌麦芽汁中,置于 25C下发酵7~9 d。待发酵结束后品尝其味道。A.①② B.③④ C. 4 .酵母细胞的活化是指() A.让酵母细胞恢复运动状态 B. C.让酵母细胞内酶活性加倍 D. ④固定化酵母细胞 D.③②⑤①④ )

实验六十二固定化酶制备及酶活力测定

实验六十二固定化酶制备及酶活力测定 实验项目性质:综合性 所涉及的知识点:酶固定化、酶活测定 计划学时:6学时 一、实验目的 1.掌握包埋法固定化酶的操作技术。 2.掌握测定碱性蛋白酶活力的原理和酶活力的计算方法。 3.学习测定酶促反应速度的方法和基本操作。 二、实验原理 酶活力是指酶催化某些化学反应的能力。酶活力的大小可以用在一定条件下它所催化的某一化学反应的速度来表示。测定酶活力实际就是测定被酶所催化的化学反应的速度。 酶促反应的速度可以用单位时间内反应底物的减少量或产物的增加量来表示,为了灵敏起见,通常是测定单位时间内产物的生成量。由于酶促反应速度可随时间的推移而逐渐降低其增加值,所以,为了正确测得酶活力,就必须测定酶促反应的初速度。 碱性蛋白酶在碱性条件下,可以催化酪蛋白水解生成酪氨酸。酪氨酸为含有酚羟基的氨基酸,可与福林试剂(磷钨酸与磷钼酸的混合物)发生福林酚反应。(福林酚反应:福林试剂在碱性条件下极其不稳定,容易定量地被酚类化合物还原,生成钨蓝和钼蓝的混合物,而呈现出不同深浅的蓝色。)利用比色法即可测定酪氨酸的生成量,用碱性蛋白酶在单位时间内水解酪蛋白产生的酪氨酸的量来表示酶活力。 所谓固定化酶,就是用物理或化学方法处理水溶性的酶使之变成不溶于水或固定于固相载体的但仍具有酶活性的酶衍生物。在催化反应中,它以固相状态作用于底物,反应完成后,容易与水溶性反应物分离,可反复使用。固定化酶不但仍具有酶的高度专一性和高催化效率的特点,且比水溶性酶稳定,可较长期使用,具有较高的经济效益。将酶制成固定化酶,作为生物体内的酶的模拟,可有助于了解微环境对酶功能的影响。 酶的固定化方法大致可分为载体结合法、交联法和包埋法(图1-1-1)等。 载体结合法:将酶结合到非水溶性的载体上。一般来讲,载体的亲水性基团越多,表面积越大,单位载体结合的酶量也越大。最常用的是共价结合法,此外还有离子结合法、物理吸附法。 交联法:利用双官能团或多官能团试剂与酶之间发生分子交联来把酶固定化的方法。常用的试剂有戊二醛、亚乙基二异氰酸酯、双重氮联苯胺和乙烯- 马来酸酐共聚物等。参与此反应的酶蛋白中的官能团有N末端的α-氨基、赖氨酸的ε-氨基、酪氨酸的酚基和半胱氨酸的巯基等。交联法反应比较激烈,固定化酶的活力,在多数情况下都较脆弱。 包埋法:将酶包裹于凝胶网格或聚合物的半透膜微中,使酶固定化。所用的凝胶有琼脂、海藻酸盐以及聚丙烯酰胺凝胶等;用于制备微囊的材料有聚酰胺、聚脲、聚酯等。将酶包埋在聚合物内是一种反应条件温和,很少改变酶蛋白结构的固定化方法,此法对大多数酶、粗酶制剂、甚至完整的微生物细胞都适用。但此法较适合于小分子底物和产物的反应,因为在凝胶网格和微囊中存在有分子扩散效应。加大凝胶网格,有利于分子扩散,但使凝胶的机械强度降低。

苏教版生物选修1第二节制备和应用固定化酶

选修一:考点4:制备和应用酶的固定化技术 【学习目标】 1.说出固定化酶概念和方法(A) 2.制备固定化酵母细胞(B) 【知识梳理】 (一)课题背景 酶:优点:催化效率高,低耗能、低污染,大规模地应用于食品、化工等各个领域。 实际问题:对环境条件敏感,易失活;溶液中的酶很难回收,不能再次利用,提高了生产成本;反应后的酶会混合在产物中,如不除去,会影响产品质量。 设想:能否有一种方法使酶发挥它的优点,而没有这些缺点? 固定化酶:优点:容易与水溶性反应物和生成物分离,可被反复使用 实际问题:一种酶只能催化一种化学反应,而在生产实践中,很多产物的形成都 是通过一系列的酶促反应才能得到的 设想:细胞中有多种酶,能否用固定化酶类似的技术来处理细胞? 固定化细胞:优点:成本低,操作更容易 (二)、固定化酶的应用实例 高果糖浆是指果糖含量为42%的糖浆能将葡萄糖转化为果糖的酶是葡萄糖异构酶。使用固定化酶技术,将这种酶固定在一种颗粒状的载体上,再将这些酶颗粒装到一个反应柱内,柱子底端装上分布着许多小孔的筛板。酶颗粒无法通过筛板的小孔,而反应溶液却可以自由出入。生产过程中,将葡萄糖溶液从反应柱的上端注入,使葡萄糖溶液流过反应柱,与接触,转化成果糖,从反应柱的下端流出。反应柱能连续使用半年,大大降低了生产成本,提高了果糖的产量和质量。 (三)、固定化细胞技术 固定化酶和固定化细胞是利用物理或化学方法将酶或细胞固定在一定空间内的技术,包括包埋法、化学结合法和物理吸附法。一般来说,酶更适合采用化学结合法和物理吸附法固定,而细胞多采用包埋法固定化。这是因为细胞个大,而酶分子很小;个大的难以被化学结合或吸附,而个小的酶容易从包埋料中漏出。 包埋法固定化细胞即将微生物细胞均匀包埋在不溶于水的多孔性载体中。常用的载体有明胶、琼脂糖、海藻酸钠、醋酸纤维素和聚丙烯酰胺等。 〖思考1〗对固定酶的作用影响较小的固定方法是什么?吸附法 〖思考2〗将谷氨酸棒状杆菌生产谷氨酸的发酵过程变为连续的酶反应,应当固定(细胞);若将蛋白质变成氨基酸,应当固定(酶)。 (四)、实验操作 (1)制备固定化酵母细胞 制备固定化酵母细胞需要的材料是干酵母、CaCl2和海藻酸钠溶液 1.酵母菌的活化 活化就是处于休眠状态的微生物重新恢复正常的生活状态。 2.配制物质的量尝试为0.05mol/L的Cacl2溶液 3.配制海藻酸钠溶液 加热溶化海藻酸钠时要注意:微火加热并不断搅拌,防止海藻酸钠焦糊 4.海藻酸钠溶液与酵母菌细胞混合

固定化酶的生产

酶的固定化技术 摘要:固定化酶(Immobilized Enzyme)是20世纪60年代发展起来的一项新技术。它是通过物理的或化学的手段,将酶束缚于水不溶的载体,或将酶束缚在一定的空间内,限制酶分子的自由流动,但能使酶充分发挥催化作用。这么好的酶是如何生产的以及它的应用前景是怎样的,本篇文章就对这些问题进行一些论述。 关键字:固定化、束缚、生物技术、固定化细胞 Abstract:Immobilized Enzyme was a new technology of developing from sixty years of twenty century.It depends on physical or chemical means to bound enzymes on carriers which are not dissolved into water or in a certain space. It can limit the free flow of enzymes molecule, but the catalysis can be come into play fully. So, this passage will discuss how to produce such a good enzyme and what is the applied in future. Keywords:Immobilized, bounded, biotechnology, Immoilized cell 前言:固定化酶是指经过一定改造后被限制在一定的空间内,能模拟体内酶的作用方式,并可反复连续地进行有效催化反应的酶。固定化酶又称固相酶。在理论研究上,固定化酶可以作为探讨酶在体内作用的模型;在实际使用中,可使生产工艺自动化和连续化,提高酶的使用效率。

高中生物第三章酶的应用技术实践第二节固定化酶的制备和应用学案苏教版选修1

第二节固定化酶的制备和应用 学习导航明目标、知重点难点 固定化酶和固定化细胞的应用。(重点) 固定化酶与固定化细胞的制备方法。(难点) [学生用书P43] 一、阅读教材P63分析固定化酶 1.概念:是指用物理学或化学的方法将酶与固相载体结合在一起形成的仍具有酶活性的酶复合物。 2.优点:在催化反应中,它以固相状态作用于底物,反应完成后容易与水溶性反应物和产物分离,可被反复使用,且保持了酶的催化性能,可实现酶促反应的连续化和自动化。 3.制备固定化酶的常用方法 目前,制备固定化酶的方法主要有物理吸附法、化学结合法、包埋法等。 二、阅读教材P64~65分析固定化细胞技术的应用 1.应用:固定化细胞可以取代游离的细胞进行发酵,生产各种物质。 2.优点 (1)固定化细胞技术无须进行酶的分离和纯化,减少了酶的活力损失,同时大大降低了生产成本。 (2)固定化细胞不仅可以作为单一的酶发挥作用,而且可以利用细胞中所含的复合酶系完成一系列的催化反应。 (3)对于活细胞来说,保持了酶的原始状态,酶的稳定性更高。 (4)细胞生长停滞时间短,反应快等。 3.缺点 (1)固定化细胞只能用于生产细胞外酶和其他能够分泌到细胞外的产物。 (2)由于载体的影响,营养物质和产物的扩散受到一定限制。 (3)在好氧性发酵中,溶解氧的传递和输送成为关键的限制因素。 4.酵母菌细胞的固定化技术的主要流程 准备各种实验药品和器材 ↓ 制备麦芽汁 ↓

活化酵母菌细胞 ↓ 配制物质的量浓度为0.05 mol/L的氯化钙溶液 ↓ 制备固定化细胞 ↓ 浸泡凝胶珠,用蒸馏水洗涤 ↓ 发酵麦芽汁 判一判 (1)酶在催化时会发生变化,不可反复利用。(×) (2)某种固定化酶的优势在于能催化一系列生化反应。(×) (3)固定化细胞所固定的酶都在细胞外起作用。(×) (4)制备固定化细胞的方法主要有包埋法、化学结合法和物理吸附法。(×) 连一连 固定化酶技术[学生用书P44] 由于酶的分离与提纯有许多技术性难题,造成酶制剂来源有限、成本高、不利于大规模使用。人们针对酶的这种不足寻着改善的方法之一是固定化酶技术的应用。结合教材P63内容完成以下探究。 (1)图A为物理吸附法,它的显著特点是工艺简便且条件温和,在生产实践中应用广泛。 (2)图B为化学结合法,它是利用多功能试剂进行酶与载体之间的交联,在酶和多功能试剂之间形成共价键,从而得到三维的交联网架结构。 (3)包埋法是将酶包埋在能固化的载体中。将酶包裹在聚丙烯酰胺凝胶等高分子凝胶中(如图C),包埋成格子型;或包裹在硝酸纤维素等半透性高分子膜中(如图D),包埋成微胶囊型。 各种固定化酶方法的比较

2019年精选生物《生物技术实践》[第三章 酶的应用技术实践第二节 制备和应用固定化酶]苏教版巩固辅导[含答

2019年精选生物《生物技术实践》[第三章酶的应用技术实践第二节制备和应用固定化酶]苏教版巩固辅导[含答案解析]第四十五篇 第1题【单选题】 下列关于加酶洗衣粉的说法中,正确的是( ) ①加酶洗衣粉的效果总比普通洗衣粉的效果好②加酶洗衣粉效果的好坏受很多因素影响③加酶洗衣粉中目前常用的酶制剂有蛋白酶、脂肪酶、淀粉酶和纤维素酶④加酶洗衣粉相对普通洗衣粉来讲有利于保护环境. A、②③④ B、①②③ C、①② D、①③④ 【答案】: 【解析】: 第2题【单选题】 在原材料有限的情况下,能正确表示相同时间内果胶酶的用量对果汁产量影响的曲线是

A、甲 B、乙 C、丙 D、丁 【答案】: 【解析】: 第3题【单选题】 A、温度影响果胶酶的活性 B、若温度从10℃升高到40℃,酶的活性都将逐渐增强 C、40℃与60℃时酶的活性相等 D、该酶的最适温度一定是50℃ 【答案】: 【解析】: 第4题【单选题】 目前,酶已经大规模地应用于各个领域,下列属于酶应用中面临的实际问题的是( ) A、酶对高温不敏感,但对强酸、强碱非常敏感 B、加酶洗衣粉因为额外添加了酶制剂,比普通洗衣粉更易污染环境 C、固定化酶可以反复利用,但在固定时可能会造成酶的损伤而影响活性 D、酶的催化功能很强,但需给以适当的营养物质才能较长时间维持其作用 【答案】:

【解析】: 第5题【单选题】 下列关于纤维素酶的说法,错误的是( ) A、纤维素酶是一种复合酶,至少包括三种 B、葡萄糖苷酶可把纤维素分解成葡萄糖 C、纤维素酶可用于去掉植物的细胞壁 D、纤维素酶可把纤维素分解成葡萄糖 【答案】: 【解析】: 第6题【单选题】 下列有关固定化酶和固定化细胞的叙述,正确的是( ) A、反应产物对固定化酶的活性没有影响 B、实验室常用吸附法制备固定化酵母细胞 C、若发酵底物是大分子,则固定化细胞优于固定化酶 D、固定化细胞技术在多步连续催化反应方面优势明显【答案】: 【解析】:

固定化酶的制备

固定化酶制备及酶活力测定 实验者:张玲玲绿药1班 201330360126 同组者:金雨馨、管青青 实验日期:2015/3/13 报告完成日期:2015/3/20 实验指导:易喻 摘要:酶的固定化技术是用固定材料将酶束缚或限制于一定区域内,酶仍能进行其特有的催化反应、并可回收及重复利用的一类技术。酶活力的测定实质是测定被酶所催化的化学反应速度。本文通过包埋法对酶进行固定化,并利用福林酚反应测定碱性蛋白酶的酶活力。结果表明:固定酶能够增强酶的稳定性,多次使用,但会造成酶活力的降低。 关键词:固定化酶酶活力包埋法 Abstract:Enzyme immobilization is a kind of technology that confine enzyme to a certain area by fixed material and the enzyme can still carry out its unique catalytic reaction .Determination of enzyme activity is essentially determination of enzyme-catalyzed chemical reaction rate. In this article, we fixed enzyme by embedding and determinated enzyme by Folin phenol reaction. The result showed that enzyme immobilization can enhance the stability of the enzyme, but will reduce the enzyme activity. 前言:酶的固定化(Immobiiization of enzymes)是用固体材料将酶束缚或限制于一定区域内,仍能进行其特有的催化反应、并可回收及重复使用的一类技术。与游离酶相比,固定化酶在保持其高效、专一及温和的酶催化反应特性的同时,还呈现贮存稳定性高、分离回收容易、可多次重复使用、操作连续及可控、工艺简便等一系列优点。依据酶的性质及用途,可通过包埋法、交联法、吸附法及共价结合法来实现酶的固定化。其中包埋法是将酶包裹于凝胶网格或聚合物的半透膜微中,使酶固定化。所用的凝胶有琼脂、海藻酸盐以及聚丙烯酰胺凝胶等;用于制备微囊的材料有聚酰胺、聚脲、聚酯等。分为网格型和微囊型两类,其制备工艺简便且条件较为温和、可获得较高的酶活力回收。 测定酶活力实际就是测定被酶所催化的化学反应的速度。酶促反应的速度可以用单位时间内反应底物的减少量或产物的增加量来表示,为了灵敏起见,通常是测定单位时间内产物的生成量。由于酶促反应速度可随时间的推移而逐渐降低其增加值,所以,为了正确测得酶活力,就必须测定酶促反应的初速度。福林—酚试剂是磷铂酸盐与磷钨酸盐的混合物。它在碱性条件下不稳定,能被酪氨酸中的酚基还原,生成铂蓝、钨蓝的混合物。酪蛋白在蛋白酶作用后产生的酪氨酸可与福林—酚试剂反应,所生成的蓝色化合物可用比色法测定。 正文: 1.实验过程 1.1试剂与仪器 1.1.1试剂 ①海藻酸钠、3.0%氯化钙 ②碱性蛋白酶(1.0mg/mL) ③福林试剂

【小初高学习]2017-2018学年高中生物 第三章 酶的应用技术实践 第二节 制备和应用固定化酶素

第二节固定化酶的制备和应用 1.掌握制备固定化酶的常用方法。(重点) 2.掌握酵母菌细胞的固定化技术。(重难点) 1.固定化酶 固定化酶是指用物理学或化学的方法将酶与固相载体结合在一起形成的仍具有酶活性的酶复合物。 2.制备固定化酶的方法 (1)物理吸附法的显著特点是工艺简便且条件温和,在生产实践中应用广泛。 (2)化学结合法是利用多功能试剂进行酶与载体之间的交联,在酶和多功能试剂之间形成共价键,从而得到三维的交联网架结构。 (3)包埋法是将酶包埋在能固化的载体中。 3.固定化酶的优点:在催化反应中,它以固相状态作用于底物,反应完成后容易与水溶性反应物和产物分离,可被反复使用。 [合作探讨] 探讨1:对固定化酶的作用影响最小的固定方法是哪一种? 提示:物理吸附法。 探讨2:为什么固定化酶不适合采用包埋法? 提示:由于酶分子较小,容易在包埋材料中漏出,所以不适合采用包埋法固定化。 探讨3:如果反应物是大分子物质,应该采用哪种方法? 提示:因为大分子物质不容易进入细胞内,应采用固定化酶技术。 [思维升华] 1.制备固定化酶的常用方法可用下图所示: 2.常用的制备固定化酶的方法

1.最广泛的细胞固定化方法 凝胶包埋法是应用最广泛的细胞固定化方法,适用于各种微生物、动物和植物细胞的固定化。所使用的载体主要有琼脂、海藻酸钠凝胶、角叉菜胶、明胶等。 2.优点 (1)无须进行酶的分离和纯化,减少了酶的活力损失,降低了生产成本。 (2)不仅可以作为单一的酶发挥作用,且可以利用细胞中所含的复合酶完成一系列的催化反应。 (3)对于活细胞来说,保持了酶的原始状态,酶的稳定性更高。 3.缺点 (1)固定化细胞只能用于生产细胞外酶和其他能够分泌到细胞外的产物。 (2)由于载体的影响,使营养物质和产物的扩散受到一定的限制。 (3)在好氧性发酵中,溶解氧的传递和输送成为关键性的限制因素。 [合作探讨] 探讨1:固定化细胞为什么只能用于生产胞外酶和其他能分泌到细胞外的产物? 提示:因为固定化细胞固定的是活细胞,细胞膜具有选择透过性,细胞内有用的物质(如胞内酶)是不能自由进出细胞的。 探讨2:能否在刚溶化好的海藻酸钠溶液中加入活化的酵母菌细胞? 提示:不能,因为刚溶化好的海藻酸钠溶液温度较高,会将酵母菌细胞杀死。 探讨3:如果制作的凝胶珠颜色过浅,呈白色,则说明了什么?如果凝胶珠不是圆形或椭圆形,又说明了什么? 提示:如果凝胶珠的颜色过浅,则说明了海藻酸钠溶液的浓度偏低,固定的酵母菌细胞数目较少;如果凝胶珠不是圆形或椭圆形,则说明了海藻酸钠的浓度过高,制作失败。 [思维升华] 1.制备固定化酵母菌细胞的操作流程 准备各种实验药品和器具

固定化酶技术与应用

固定化酶技术与应用 姓名:高强 专业:生物科学 学号:2004083011 日期:2013年5月

固定化酶技术及应用 摘要:近年来由于固定化酶技术的发展,对固定化酶载体的研究非常活跃。本文对固定化酶载体,固定化酶的应用生产,酶传感器,固定化细胞技术进行简单介绍。 关键词:固定化酶载体应用固定化细胞 引言 固定化技术的应用可追溯到20世纪50年代,最初是将水溶性酶与不溶性载体结合起来,成为不溶于水的酶的衍生物。1971年第一届国际酶工程会议上正式建议采用“固定化酶”的名称。所谓固定化酶,即在一定空间内呈闭锁状态存在的酶,能连续地进行反应,反应后的酶可以回收重复使用。固定化酶属于修饰酶,其具有以下优点:1极易将固定化酶与底物,产物分开;2可以在较长时间内进行反复分批反应和装柱连续反应;3在大多数情况下,能够提高酶的稳定性;4反应过程能够加以严格控制;5产物溶液中没有酶的残留,简化了提纯工艺;6较游离酶更适合于多酶反应;7可以增加产物的收率,提高产物的质量;8酶的使用效率提高,成本降低。鉴于固定化酶的优点,本文从固定化酶载体的研究进展,固定化酶的应用,固定化酶的生产,在食品加工中的使用,固定化细胞技术等方面进行介绍。 固定化酶载体研究进展 载体材料的选择是决定酶能否成功固定化以及固定化酶活力高低的重要因素。酶蛋白的活性中心是酶催化活性所必需的,酶蛋白的空间结构也与酶活力密切相关,因而.在固定化的过程中,必须注意酶活性中心的氨基酸残基不受到载体的影响.而且要避免酶蛋白高级结构的破坏[1]。 甲壳素及壳聚糖作为载体的固定化方法报道较多的有吸附法、通过双功能试剂交联的共价结合法。目前,使用较多的是用戊二醛作交联剂的共价结合法。载体的形态有片状、球状、膜状、无定形等。1982年.John Wiley 利用甲壳素、壳聚糖的吸附作用固定化胰蛋白酶,把甲壳素、壳聚糖固态混合研磨40h,加入粉末状胰蛋白酶混合研磨进行固定化,另一对照样加入酶液进行固定化。结果表明胰蛋白酶以粉末状进行固定化时效果更好,且研磨时间越长,固定化效果越好。得出结论:甲壳素、壳聚糖表面积的增加有利于胰蛋白酶的固定化溶液酶在数天内几乎失去全部活力,而固定化酶在室温或高于室温的条件下仍保持其活力。 纳米粒子作为酶固定化的载体,当其具有磁性时,制备的固定化酶易从反应体系中分离和回收,操作简便;并且利用外部磁场可以控制磁性材料固定化酶的运动方式和方向,替代传统的机械搅拌方式,提高固定化酶的催化效率。在众多纳米材料中,氧化铁因其在磁性、催化等多方面的良好特性而备受瞩目[2]。 微胶囊是一种采用高分子聚合物或其他成膜材料将物质的微粒或微滴包覆所形成的微小容器,其粒径一般在微米至毫米级范围,通常为5~400μm。将酶用微胶囊包覆后形成的微胶囊固定化酶,由于被催化物质和产物可自由通过囊壁,因而能起到酶催化剂的作用[3]。酶经过微胶囊固化后,还使酶具有如下的优点:①提高了酶的稳定性,使其可以在恶劣的条件下存活。微胶囊囊壁可将对酶活性和稳定性有影响的抑制因子、有害因子等排除在外,同时还可与一定量的稳定剂、整合剂等一起包埋,进一步增加其耐极端条件的能力;②通过选择合适的胶囊,可控制酶的释放时间。这对于多阶段加工过程中酶的活力要在后一阶段发挥的情况

固定化酶制备方法研究进展_曹树祥

专论与综述 固定化酶制备方法研究进展 曹树祥 黎苇 (九江职业大学,九江332000) 摘要 对固定化酶的主要制备方法进行了系统的阐述,根据作者本人的试验经验对 目前应用和研究得较多的方法作了详细的说明,对所阐述的各种固定化酶的制备方 法的优缺点进行了比较。 关键词 固定化酶 吸附 包埋 共价键结合 肽键结合 交联 本世纪60年代,一项新的技术——固定化酶技术开始发展起来。最初主要是将水溶性酶与不溶性载体结合起来,成为不溶于水的酶的衍生物,称为“水不溶酶”或“固相酶”。后来发现,也可以将酶包埋在凝胶内或置于超滤装置中。将酶置于超滤装置中时,高分子底物与酶被截留在超滤膜一侧,而反应物可以透过膜流出,在这种情况下,酶本身仍是可溶的,只不过被固定在一个很有限的空间内,因此用水不溶酶和固相酶的名称不恰当。1997年第1届国际酶工程会议正式建议采用“固定化酶”的名称。 从60年代起,固定化酶的研究迅速发展,固定化方法目前已超过200种以上。近来研究较多且应用最广的两种方法分别为卡拉胶聚糖包埋法和海藻酸钙凝胶包埋法。本文依据国内外有关文献及作者在这一领域的试验与体会就固定化酶的主要制备方法作简要介绍与评述。 1 固定化酶制备方法的分类 固定化酶的制备方法可分为如下几类: (1)吸附法:物理吸附法、离子吸附法等。 (2)包埋法:聚丙烯酰胺凝胶包埋法、辐射包埋法、卡拉胶包埋法和微囊法等。 (3)共价键结合法:重氮化法、烷基化和芳基化法、戊二醛处理法、钛螯合法、硫醇-二硫化物互换反应法和四组分缩合反应法等。 (4)肽键结合法:酰基迭氮衍生物法、溴化氰活化的多糖法、碳酸纤维素衍生物法、马来酐衍生物法、异氰衍生物法和硫酰胺结合法等。 (5)交联法。 2 吸附法 2.1 物理吸附法[1] 使酶直接吸附在载体上的方法称为物理吸附法。常用的载体有:(1)有机载体,如面筋、淀粉等;(2)无机载体,如氧化铝、活性炭、皂土、白土、高岭土、多孔玻璃、硅胶、二氧化钛等。用此法制成的固定化酶,活力损失少,但酶与载体的结合不牢固,易于脱落,很少有实用价值。 2.2 离子吸附法[1] 此法是将酶与含有离子交换基团的水不溶性载体结合,酶吸附于载体上较为牢固。此法在工业上应用较广泛,常用的载体有:(1)阴离子交换剂,如二乙氨基乙基(DEAE)-纤维素、混合胺类(ECTEOLA)-纤维素、四乙氨基乙基(TEAE)-纤维素、DEAE-葡聚糖凝胶、Amberlite IRA-93、IRA-410、IRA-900等;(2)阳离子交换剂,如羧甲基(CM)-纤维素、纤维素-柠檬酸盐、Amberlite CG-50、IRC-50、IR-120、IR-200、Dowex-50等。 1999-01-12收到初稿,1999-05-30收到修改稿。

苏教新选修1 《固定化酶的制备和应用》作业 (2)

2013年高中生物 3.2 制备和应用固定化酶同步训练苏教版选修1 1.(2012·海安高二期中)固定化酶与普通酶制剂相比较,主要优点是( ) A.可以反复使用,降低成本 B.固定化酶不受酸碱度、温度等的影响 C.酶的制备更简单容易 D.酶能够催化的反应类型大大增加 解析:选A。固定化酶与普通酶制剂相比较主要优点是可以反复使用,降低成本,固定化酶仍具有酶的特性。 2.下列图形依次表示包埋法、吸附法、交联法、包埋法的一组是( ) A.①②③④B.④③②① C.③①②④D.④②③① 解析:选C。考查酶固定的方法及对每种方法的原理的理解。 3.关于固定化酶技术的说法,正确的是( ) A.固定化酶技术就是固定反应物,将酶依附着载体围绕反应物旋转的技术 B.固定化酶的优势在于能催化一系列的酶促反应 C.固定化酶中的酶无法重复利用 D.固定化酶技术是将酶固定在一定空间内的技术 解析:选D。固定化酶是利用物理或化学方法将酶固定在一定空间内的技术,其优点是酶被固定在一定装置内可重复利用;其缺点是无法同时解决一系列酶促反应。在固定过程中,固定的是酶而不是反应物。 4.使用固定化细胞的优点是( ) A.能催化大分子物质的水解 B.可催化一系列化学反应 C.与反应物易接近

D.有利于酶在细胞外发挥作用 解析:选B。固定化细胞的优点是可催化一系列反应。 5.(2012·无锡高二检测)下列叙述不.正确的是( ) A.从操作角度来考虑,固定化细胞比固定化酶更容易 B.固定化细胞比固定化酶对酶活性的影响更小 C.固定化细胞固定的是一种酶 D.将微生物的发酵过程变成连续的酶反应,应选择固定化细胞技术 解析:选C。固定化细胞内酶的活性基本没有损失,保留了细胞内原有的多酶系统,所以固定化细胞不同于固定化酶只固定一种酶。 6.某一实验小组的同学,欲通过制备固定化酵母菌细胞进行葡萄糖溶液发酵实验,实验材料及用具齐全。 (1)制备固定化酵母菌细胞常用________法。 (2)制备固定化酵母细胞的过程为: ①使干酵母与________混合并搅拌,使酵母菌活化; ②将无水CaCl2溶解在蒸馏水中,配成CaCl2溶液; ③用酒精灯加热配制海藻酸钠溶液; ④海藻酸钠溶液冷却至常温再加入已活化的酵母菌细胞,充分搅拌并混合均匀; ⑤用注射器将海藻酸钠和酵母菌细胞的混合物缓慢滴入氯化钙溶液中。 (3)该实验小组用下图所示的装置来进行葡萄糖发酵:(a是固定化酵母,b是反应柱) ①从上端漏斗中加入反应液的浓度不能过高的原因是: ________________________________________________________________________。 ②要想得到较多的酒精,加入反应液后的操作是________活塞1和________活塞2。 ③为使该实验中所用到的固定化酵母菌细胞可以反复利用,实验过程一定要在________条件下进行。

2019-2020学年度北师大版高中选修一生物第2章 酶技术第4节 固定化酶的制备和应用课后辅导练习第八十八篇

2019-2020学年度北师大版高中选修一生物第2章酶技术第4节固定化酶的制 备和应用课后辅导练习第八十八篇 第1题【单选题】 下列说法不正确的是( ) A、固定化酶和固定化细胞在应用上的主要区别是后者需要一定的营养 B、固定化酶技术一次只能固定一种酶 C、固定化酶和固定化细胞的共同点之一是酶都是在细胞外起作用 D、固定化酶和固定化细胞都能反复使用 【答案】: 【解析】: 第2题【单选题】 下图是应用固定化酵母进行葡萄糖发酵的装置,下列说法中不正确的是 A、为使固定化酵母可以反复使用,实验要在无菌条件下进行 B、加入反应液后应保持活塞1始终打开,活塞2则必须关闭

C、装置的长导管主要是为了释放CO2并防止杂菌进入反应柱 D、加入反应液的浓度不能过高以免酵母细胞失水过多而死亡 【答案】: 【解析】: 第3题【单选题】 下列有关固定化酶和固定化细胞的说法正确的是 A、某种固定化酶的优势在于能催化一系列生化反应 B、固定化细胞技术一次只能固定一种酶 C、固定化酶和固定化细胞的共同点是所固定的酶都可在细胞外起作用 D、固定化酶和固定化细胞都能反复使用,但酶的活性迅速下降 【答案】: 【解析】: 第4题【单选题】 同工酶具有以下哪个特性?( ) A、具有相同的蛋白质分子结构 B、理化性质相同 C、催化相同的化学反应 D、免疫性能相同 【答案】: 【解析】:

第5题【单选题】 固定化酶和固定化细胞常用的方法不包括( ) A、射线刺激法 B、包埋法 C、化学结合法 D、物理吸附法 【答案】: 【解析】: 第6题【单选题】 加酶洗衣粉既能提高洗涤效果又能缩短洗涤时间而得到普及,洗衣粉中不包括的酶制剂是( ) A、蛋白酶 B、纤维素酶 C、淀粉酶 D、脂肪酶 【答案】: 【解析】: 第7题【单选题】 在以如图所示酶的固定方法模式图中,属于载体结合法的是( )

【CN110004138A】固定化酶及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910354520.5 (22)申请日 2019.04.29 (71)申请人 中国检验检疫科学研究院 地址 100176 北京市大兴区北京市亦庄经 济开发区荣华南路11号 (72)发明人 张峰 姚桂红 凌云 杨敏莉  (74)专利代理机构 北京正鼎专利代理事务所 (普通合伙) 11495 代理人 岳亚 (51)Int.Cl. C12N 11/14(2006.01) C12N 11/08(2006.01) (54)发明名称固定化酶及其制备方法(57)摘要本发明公开了制备固定化酶及其制备方法。其中,该制备固定化酶的方法包括:将四氧化三铁溶于第一缓冲液中获得基材溶液,并加入多巴胺盐进行包覆处理,以便得到聚多巴胺包覆的四氧化三铁纳米复合物;将非特异性脂肪酶和sn -1,3专一性脂肪酶溶于第二缓冲液中,以便得到酶缓冲液;将聚多巴胺包覆的四氧化三铁纳米复合物与所述酶缓冲液接触,通过共价固定获得所述固定化双酶。该方法以四氧化三铁纳米复合物为固定载体,将sn -1,3专一性脂肪酶和非特异性脂肪酶经共固定化处理得到固定化双酶。制备过程简单,条件温和,同时,所制备的固定化双酶的稳定性好,催化效果高,且易于分离回收、重复使用效果好, 便于将该酶用于工业生产。权利要求书1页 说明书8页 附图4页CN 110004138 A 2019.07.12 C N 110004138 A

权 利 要 求 书1/1页CN 110004138 A 1.一种制备固定化酶的方法,其特征在于,包括: 将四氧化三铁溶于第一缓冲液中获得基材溶液,并加入多巴胺盐进行包覆处理,以便得到聚多巴胺包覆的四氧化三铁纳米复合物; 将非特异性脂肪酶和sn-1,3专一性脂肪酶溶于第二缓冲液中,以便得到酶缓冲液;以及 将所述聚多巴胺包覆的四氧化三铁纳米复合物与所述酶缓冲液接触,通过共价固定获得所述固定化双酶。 2.根据权利要求1所述的方法,其特征在于,所述非特异性脂肪酶为皱褶假丝酵母脂肪酶。 3.根据权利要求2所述的方法,其特征在于,所述sn-1,3专一性脂肪酶为疏棉状嗜热丝孢菌脂肪酶。 4.根据权利要求3所述的方法,其特征在于,所述非特异性脂肪酶与所述sn-1,3专一性脂肪酶的质量比为1:0.2-7。 5.根据权利要求4所述的方法,其特征在于,所述酶缓冲液中的所述非特异性脂肪酶和所述sn-1,3专一性脂肪酶的总浓度为0.5-3.5mg/mL。 6.根据权利要求1所述的方法,其特征在于,所述多巴胺盐的添加量为0.5-3mg/mL。 7.根据权利要求1所述的方法,其特征在于,所述第一缓冲液为三羟甲基氨基甲烷盐酸盐缓冲液,优选地,所述三羟甲基氨基甲烷盐酸盐缓冲液的浓度为8-12mM,pH值为7.0-12.0。 8.根据权利要求1所述的方法,其特征在于,所述四氧化三铁的添加量为1-6mg/mL。 9.根据权利要求1所述的方法,其特征在于,所述第二缓冲液为PBS缓冲液,优选地,所述PBS缓冲液的浓度为8-12mM,pH值为4.0-9.0。 10.一种固定化酶,其特征在于,所述固定化酶是利用权利要求1-9任一项所述的方法制备的。 2

固定化酶在现代工业中的应用

固定化酶在现代工业中的应用姓名:胡艳芬学号:2008132106 指导教师:张孟 摘要酶是一类有催化功能的蛋白质,具有反应条件温和, 底物专一性强, 可在水溶液和中性pH 下操作等优点。与游离酶相比,固定化酶在保持其高效专一及温和的酶催化反应特性的同时,又克服了游离酶的不足之处。本文简要介绍了固定化酶的概念、制备方法及其在生物、医药、环境保护等方面的广泛应用。重点介绍一些固定化酶在现代工业中的应用,并对其应用前景进行了展望。 关键词固定化酶制备工业应用前景 酶是一类由活细胞产生的具有生物催化功能的分子量适中的蛋白质,具有极高的催化效率、高度的特异性及控制的灵敏性。大多数酶是水溶性的。由于酶催化反应具有底物专一性、催化高效性、反应条件温和等优点,符合绿色化学的要求,从而被大家高度重视,已在许多领域得到广泛的应用[1]。酶的最大缺点是其不稳定性,在酸、碱、热及有机溶剂中易发生变性,活性降低或丧失;而且酶反应后,会在溶液中残留,造成酶反应难以连续化、自动化,同时也不利于终产品的分离提纯,这些都大大阻碍了酶工业的发展,所以有必要采取酶工程技术改善这些缺点。酶工程技术措施较多,其中酶的固定化技术是重要举措之一。酶的固定化是用人工方法把从生物体内提取出来的酶固定在特定的载体上或使酶与酶相交联,酶被限定在一定区域内,但仍保持原有高效、专一、条件温和的催化功能[2]。 已固定化的酶像化学反应所用的固体催化剂那样, 既能发挥它们的催化特性, 又能回收, 并能多次反复使用, 使整个生产工艺可以连续化、自动化。近年来, 国内外科技工作者在固定化酶在工业生产中的应用做了大量研究,并得到了广泛的发展,本文将对这些成就做具体介绍。 1 固定化酶的概念 1916 年Nelson 和Griffin最先发现了酶的固定化现象后, 科学家就开始了固定化酶的研究工作。1969 年日本一家制药公司第1 次将固定化的酰化氨基酸水解酶用来从混合氨基酸中生产L-氨基酸, 开辟了固定化酶工业化应用的新纪元。酶的固定化是用人工方法把从生物体内提取出来的酶固定在特定的载体上或使酶与酶相交联,酶被限定在一定区域内,但仍保持原有高效、专一、条件温和的催化功能。通常酶是游离的,而经过固定化以后,酶被束缚在一定区域内,因而这样的酶被称为固定化酶[ 3, 4 ]。

相关主题
相关文档 最新文档