当前位置:文档之家› 具有二重趋势性的季节型电力负荷预测组合优化灰色神经网络模型

具有二重趋势性的季节型电力负荷预测组合优化灰色神经网络模型

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

基于BP神经网络的预测模型

基于BP神经网络的国际黄金价格预测模型 公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。 [关键词] MATLAB BP神经网络预测模型数据归一化 一、引言 自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20 世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。 二、影响因素 刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。 三、模型构建

模糊神经网络技术研究的现状及展望

模糊神经网络技术研究的现状及展望 摘要:本文对模糊神经网络技术研究的现状进行了综述,首先介绍了模糊控制技术和神经网络技术的发展,然后结合各自的特点讨论了模糊神经网络协作体的产生以及优越性,接着对模糊神经网络的常见算法、结构确定、规则的提取等进行了阐述,指出了目前模糊神经网络的研究发展中还存在的一些问题,并对模糊神经网络的发展进行了展望。 关键字:模糊控制;神经网络;模糊神经网络 引言 系统的复杂性与所要求的精确性之间存在尖锐的矛盾。为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺点。模糊逻辑与神经网络的融合——模糊神经网络由于吸取了模糊逻辑和神经网络的优点,避免了两者的缺点,已成为当今智能控制研究的热点之一了。 1 模糊神经网络的提出 模糊集理论由美国著名控制论专家L.A.Zadeh于1965年创立[1]。1974年,英国著名学者E.H.Mamdani将模糊逻辑和模糊语言用于工业控制,提出了模糊控制论。至今,模糊控制已成功应用在被控对象缺乏精确数学描述及系统时滞、非线性严重的场合。 人工神经网络理论萌芽于上世纪40年代并于80年代中后期重掀热潮,其基本思想是从仿生学的角度对人脑的神经系统进行功能化模拟。人工神经网络可实现联想记忆,分类和优化计算等功能,在解决高度非线性和严重不确定系统的控制问题方面,显示了巨大的优势和潜力模糊控制系统与神经网络系统具有整体功能的等效性[2],两者都是无模型的估计器,都不需要建立任何的数学模型,只需要根据输入的采样数据去估计其需要的决策:神经网络根据学习算法,而模糊控制系统则根据专家提出的一些语言规则来进行推理决策。实际上,两者具有相同的正规数学特性,且共享同一状态空间[3]。 另一方面,模糊控制系统与神经网络系统具有各自特性的互补性[。神经网络系统完成的是从输入到输出的“黑箱式”非线性映射,但不具备像模糊控制那样的因果规律以及模糊逻辑推理的将强的知识表达能力。将两者结合,后者正好弥补前者的这点不足,而神经网络的强大自学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度。因此,模糊逻辑和神经网络虽然有着本质上的不同,但由于两者都是用于处理不确定性问题,不精确性问题,两者又有着天然的联系。Hornik和White(1989)证明了神经网络的函数映射能力[4];Kosko(1992)证明了可加性模糊系统的模糊逼近定理(FAT,Fuzzy Approximation Theorem)[5];Wang和Mendel(1992)、Buckley和Hayashi(1993)、Dubots和Grabish(1993)、Watkins(1994)证明了各种可加性和非可加性模糊系统的模糊逼近定理[6]。这说明模糊逻辑和神经网络有着密切联系,正是由于这类理论上的共性,才使模糊逻辑和神经网络的结合成为可能。 2 模糊神经网络的学习算法 各种类型的模糊神经网络学习算法的共同方面是结构学习和参数学习两部分。结构学习是指按照一定的性能要求确定模糊系统的推理规则的条数,每条规则的前提和结论的隶属度函数以及由清晰化得到具体的规则数。参数学习是指进一步细化各隶属函数的参数以及模糊规则的其他参数,以使系统达到最优。结构学习主要是从输入输出数据中提取规则或由输入空间模糊划分获得规则,主要有启发式搜索、模糊网格法、树形划分法、基于模糊聚类的学习算

基于BP神经网络的电力系统负荷预测

基于人工神经网络的负荷预测 1.人工神经网络概述 人工神经网络类似于一个“多输入-多输出”的黑匣子,由一些能并行操作的简单单元组成,整个网络的功能是由单元之间的互连所决定的。 人工神经网络是通过“训练-调整-再训练-再调整”的过程,使得一个特定的输入能够通过网络得到一个特定的输出,其实质是通过调整单元之间的相互影响参数。其结构如下图1: 图1 神经网络结构图 2.题目要求及说明: 以广东某城市的2004年7月20日到7月30日的负荷值以及2004年7月 21日到7月31日的气象特征状态作为网络的训练样本,来预测7月31日的电

2.程序源代码 P=[0.2452 0.1466 0.1314 0.2243 0.5523 0.6642 0.7015 0.6981 0.6821 0.6945 0.7549 0.8215 0.2415 0.3027 0; 0.2217 0.1581 0.1408 0.2304 0.5134 0.5312 0.6819 0.7125 0.7265 0.6847 0.7826 0.8325 0.2385 0.3125 0; 0.2525 0.1627 0.1507 0.2406 0.5502 0.5636 0.7051 0.7352 0.7459 0.7015 0.8064 0.8156 0.2216 0.2701 1; 0.2016 0.1105 0.1243 0.1978 0.5021 0.5232 0.6819 0.6952 0.7015 0.6825 0.7825 0.7895 0.2352 0.2506 0.5; 0.2115 0.1201 0.1312 0.2019 0.5532 0.5736 0.7029 0.7032 0.7189 0.7019 0.7965 0.8025 0.2542 0.3125 0; 0.2335 0.1322 0.1534 0.2214 0.5623 0.5827 0.7198 0.7276 0.7359 0.7506 0.8092 0.8221 0.2601 0.3198 0; 0.2368 0.1432 0.1653 0.2205 0.5823 0.5971 0.7136 0.7129 0.7263 0.7153 0.8091 0.8217 0.2579 0.3099 0; 0.2342 0.1368 0.1602 0.2131 0.5726 0.5822 0.7101 0.7098 0.7127 0.7121 0.7995 0.8126 0.2301 0.2867 0.5; 0.2113 0.1212 0.1305 0.1819 0.4952 0.5312 0.6886 0.6898 0.6999 0.7323 0.7721 0.7956 0.2234 0.2799 1; 0.2005 0.1121 0.1207 0.1605 0.4556 0.5022 0.6553 0.6673 0.6798 0.7023 0.7521 0.7756 0.2314 0.2977 0]'; T=[0.2217 0.1581 0.1408 0.2304 0.5134 0.5312 0.6819 0.7125 0.7265 0.6847 0.7826 0.8325; 0.2525 0.1627 0.1507 0.2406 0.5502 0.5636 0.7051 0.7352 0.7459 0.7015 0.8064 0.8156; 0.2016 0.1105 0.1243 0.1978 0.5021 0.5232 0.6819 0.6952 0.7015 0.6825

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.doczj.com/doc/e17574345.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

基于神经网络的预测控制模型仿真

基于神经网络的预测控制模型仿真 摘要:本文利用一种权值可以在线调整的动态BP神经网络对模型预测误差进行拟合并与预测模型一起构成动态组合预测器,在此基础上形成对模型误差具有动态补偿能力的预测控制算法。该算法显著提高了预测精度,增强了预测控制算法的鲁棒性。 关键词:预测控制神经网络动态矩阵误差补偿 1.引言 动态矩阵控制(DMC)是一种适用于渐近稳定的线性或弱非线性对象的预测控制算法,目前已广泛应用于工业过程控制。它基于对象阶跃响应系数建立预测模型,因此建模简单,同时采用多步滚动优化与反馈校正相结合,能直接处理大时滞对象,并具有良好的跟踪性能和较强的鲁棒性。 但是,DMC算法在实际控制中存在一系列问题,模型失配是其中普遍存在的一个问题,并会不同程度地影响系统性能。DMC在实际控制中产生模型失配的原因主要有2个,一是诸如建模误差、环境干扰等因素,它会在实际控制的全程范围内引起DMC的模型失配;二是实际系统的非线性特性,这一特性使得被控对象的模型发生变化,此时若用一组固定的阶跃响应数据设计控制器进行全程范围的控制,必然会使实际控制在对象的非建模区段内出现模型失配。针对DMC模型失配问题,已有学者进行了大量的研究,并取得了丰富的研究成果,其中有基于DMC控制参数在线辨识的智能控制算法,基于模型在线辨识的自校正控制算法以及用神经元网络进行模型辨识、在辨识的基础上再进行动态矩阵控制等。这些算法尽管进行在线辨识修正对象模型参数,仍对对象降阶建模误差(结构性建模误差)的鲁棒性不好,并对随机噪声干扰较敏感。针对以上问题,出现了基于误差校正的动态矩阵控制算法。这些文献用基于时间序列预测的数学模型误差代替原模型误差,得到对未来误差的预测。有人还将这种误差预测方法引入动态矩阵控制,并应用于实际。这种方法虽然使系统表现出良好的稳定性,但建立精确的误差数学模型还存在一定的困难。 本文利用神经网络通过训练学习能逼近任意连续有界函数的特点,建立了一种采用BP 神经网络进行预测误差补偿的DMC预测控制模型。其中神经网络预测误差描述了在预测模型中未能包含的一切不确定性信息,可以归结为用BP神经网络基于一系列过去的误差信息预测未来的误差,它作为模型预测的重要补充,不仅降低建立数学模型的负担,而且还可以弥补在对象模型中已简化或无法加以考虑的一切其他因素。 本文通过进行仿真,验证了基于神经网络误差补偿的预测控制算法的有效性及优越性,

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

BP神经网络预测模型及应用

B P神经网络预测模型及 应用 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

B P神经网络预测模型及应用 摘要采用BP神经网络的原理,建立神经网络的预测模型,并利用建立的人工神经网络训练并预测车辆的销售量,最后得出合理的评价和预测结果。 【关键词】神经网络模型预测应用 1 BP神经网络预测模型 BP神经网络基本理论 人工神经网络是基于模仿生物大脑的结构和功能而构成的一种信息处理系统。该网络由许多神经元组成,每个神经元可以有多个输入,但只有一个输出,各神经元之间不同的连接方式构成了不同的神经网络模型,BP网为其中之一,它又被称为多层前馈神经网络。 BP神经网络预测模型 (1)初始化,给各连接权值(wij,vi)及阐值(θi)赋予随机值,确定网络结构,即输入单元、中间层单元以及输出层单元的个数;通过计算机仿真确定各系数。 在进行BP网络设计前,一般应从网络的层数、每层中的神经元个数、初始值以及学习方法等方面进行考虑,BP网络由输入层、隐含层和输出层组成。隐含层神经元个数由以下经验公式计算: (1)

式中:s为隐层节点数,m为输入层节点数,n为输出层节点数,h为正整数,一般取3―7. BP网络采用了有一定阈值特性的、连续可微的sigmoid函数作为神经元的激发函数。采用的s 型函数为: (2) 式中:s为隐层节点数,m为输入层节点数,n为输出层节点数,h为正整数,一般取3―7.计算值需经四舍五入取整。 (2)当网络的结构和训练数据确定后,误差函数主要受激励函数的影响,尽管从理论分析中得到比的收敛速度快,但是也存在着不足之处。当网络收敛到一定程度或者是已经收敛而条件又有变化的时候,过于灵敏的反映会使得系统产生震荡,难于收敛。因此,对激励函数进行进一步改进,当权值wij (k)的修正值Δwij(k) Δwij(k+1)<0时,,其中a为大于零小于1的常数。这样做降低了系统进入最小点时的灵敏度,减少震荡。 2 应用 车辆销售量神经网络预测模型 本文以某汽车制造企业同比价格差、广告费用、服务水平、车辆销售量作为学习训练样本数据。如表1。 表1 产品的广告费、服务水平、价格差、销售量 月份广告费 (百万元)服务水平价格差

毕业设计:基于BP神经网络的短期电力负荷预测(终稿)

毕业设计:基于BP神经网络的短期电力负荷预测(终稿)西安工业大学北方信息工程学院 题目:基于BP神经网络的短期电力负荷预测 系别电子信息工程系 专业电气工程及其自动化 班级 B070307 姓名宋亮 学号 B07030716 导师张荷芳焦灵侠 2011年6月 毕业设计(论文)任务书 系别电子信息系专业电气工程自动化班 b070307 姓名宋亮学号 b07030716 1.毕业设计(论文)题目: 基于bp神经网络的短期电力负荷预测题目背景和意义:电力系统是由电力网、电力用户组成,其作用就是对各类用户尽可能经济2. 地提供可靠而合乎标准要求的电能,以随时满足负荷要求。但是由于电力的生产与使用具有 其特殊性,即电能是不能储存的。这就要求系统发出电力随时紧跟系统负荷的变化动态平衡, 否则,就会影响供用电的质量。电力系统负荷预测因此发展起来,成为工程科学中重要的研 究领域,是电力系统自动化中一项重要内容。在电力系统安排生产计划和实际运行的过程中,

负荷预测起着十分重要的作用,主要表现在以下几个方面: (1)经济调度的主要依据。对电力 系统来说,必须对用户提供可靠而经济的电能,以随时满足各类用户的要求,亦即满足用户 的负荷需求,而在另一方面,又要考虑生产成本,由于电能不能大量储存,因此必须在确保 系统安全的情况下尽量减少实时发电备用容量。(2)生产计划的要求。电力系统中,由于其可 靠性的要求,各种发、供电设备都有确定的检修周期。(3)电力系统安全分析的基础。电力事 故所造成经济损失和社会影响是巨大的,必须尽量避免。 3.设计(论文)的主要内容(理工科含技术指标): 负荷预测并达到一定误差范围之内。 4.设计的基本要求及进度安排(含起始时间、设计地点):电子系实验室1-5周;开题,针对原理及应用、主要技术难点的收集资料,熟悉课题方案。 6-10周; 完成方案论证,确定设计方案。 10-15周;利用Matlab对系统做进一步的仿真分析 16-18周;完成所有的设计工作,整理资料,完成毕业论文,准备答辩。 5.毕业设计(论文)的工作量要求 400机时 *? 实验(时数)或实习(天数): 100天 *? 图纸(幅面和张数):A4×2 ? 其他要求: 论文:15000字以上;外文翻译:5000字以上 指导教师签名: 年月日 学生签名: 年月日 系主任审批: 年月日

神经网络预测控制综述

神经网络预测控制综述 摘要:近年来,神经网络预测控制在工业过程控制中不仅得到广泛的应用,而且其理论研究也取得了很大进展。对当前各种神经刚络预测控制方法的现状及其工业应用进行了较深入地分析,并对其存在的问题和今后可能的发展趋势作了进一步探讨。 关键词:神经网络;预测控制:非线性系统;工业过程控制 Abstract: In recent years, neural network predictive control has not only been widely used in industrial process control, but also has made great progress in theoretical research. The current status of various neural network prediction control methods and their industrial applications are analyzed in depth, and the existing question and possible future development trends are further discussed. Keywords: neural network; predictive control: nonlinear system; industrial process control

20世纪70年代以来,人们从工业过程的特点出发,寻找对模型精度要去不高而同样能实现高质量控制性能的方法,预测控制就是在这种背景下发展起的[1]。预测控制技术最初山Richalet和Cutler提出[2],具有多步预测、滚动优化、反馈校正等机理,因此能够克服过程模型的不确定性,体现出优良的控制性能,在工业过程控制中取得了成功的应用。如Shell公司、Honeywell公司、Centum 公司,都在它们的分布式控制系统DCS上装备了商业化的预测控制软件包.并广泛地将其应用于石油、化工、冶金等工业过程中[3]。但是,预测函数控制是以被控对象的基函数的输出响应可以叠加为前提的,因而只适用于线性动态系统控制。对于实际中大量的复杂的非线性工业过程。不能取得理想的控制效果。而神经网络具有分布存储、并行处理、联想记忆、自组织和自学习等功能,以神经元组成的神经网络可以逼近任意的:线性系统。使控制系统具有智能化、鲁棒性和适应性,能处理高维数、非线性、干扰强、难建模的复杂工业过程。因此,将神经网络应用于预测控制,既是实际应用的需要,同时也为预测控制理论的发展开辟了广阔的前景。本文对基于神经网络的预测控制的研究现状进行总结,并展望未来的发展趋势。 l神经网络预测控制的基本算法的发展[4] 实际中的控制对象都带有一定的菲线性,大多数具有弱非线性的对象可用线性化模型近似,并应用已有的线性控制理论的研究成果来获得较好的控制效果。而对具有强非线性的系统的控制则一直是控制界研究的热点和难点。 就预测控制的基本原理而言,只要从被控对象能够抽取出满足要求的预测模型,它便可以应用于任何类型的系统,包括线性和非线性系统。 由于神经网络理论在求解非线性方面的巨大优势,很快被应用于非线性预测控制中。其主要设计思想是:利用一个或多个神经刚络,对非线性系统的过程信息进行前向多步预测,然后通过优化一个含有这些预测信息的多步优化目标函数,获得非线性预测控制律。在实际应用与理论研究中形成了许多不同的算法。如神经网络的内模控制、神经网络的增量型模型算法控制等,近来一些学者对有约束神经网络的预测控制也作了相应的研究。文献[5]设计了多层前馈神经网络,使控制律离线求解。文献[6]采用两个网络进行预测,但结构复杂,距离实际应用还有一定的距离,文献[7]利用递阶遗传算法,经训练得出离线神经网络模型.经多步预测得出对象的预测模型,给出了具有时延的非线性系统的优化预测控制。将神经网络用于GPC的研究成果有利用Tank.Hopfield网络处理GPC矩阵求逆的算法,基于神经网络误差修正的GPC算法、利用小脑模型进行提前计算的GPC 算法、基于GPC的对角递归神经网络控制方法以及用神经网络处理约束情形的预

基于BP神经网络的短期电力负荷预测

西安工业大学北方信息工程学院 本科毕业设计(论文)题目:基于BP神经网络的短期电力负荷预测 系别电子信息工程系 专业电气工程及其自动化 班级B070307 姓名宋亮 学号B07030716 导师张荷芳焦灵侠 2011年6月

毕业设计(论文)任务书 系别 电子信息系 专业 电气工程自动化 班 b070307 姓名 宋亮 学号 b07030716 1.毕业设计(论文)题目: 基于bp 神经网络的短期电力负荷预测 2.题目背景和意义:电力系统是由电力网、电力用户组成,其作用就是对各类用户尽可能经济地提供可靠而合乎标准要求的电能,以随时满足负荷要求。但是由于电力的生产与使用具有其特殊性,即电能是不能储存的。这就要求系统发出电力随时紧跟系统负荷的变化动态平衡,否则,就会影响供用电的质量。电力系统负荷预测因此发展起来,成为工程科学中重要的研究领域,是电力系统自动化中一项重要内容。在电力系统安排生产计划和实际运行的过程中, 负荷预测起着十分重要的作用,主要表现在以下几个方面: (1)经济调度的主要依据。对电力系统来说,必须对用户提供可靠而经济的电能,以随时满足各类用户的要求,亦即满足用户的负荷需求,而在另一方面,又要考虑生产成本,由于电能不能大量储存,因此必须在确保 系统安全的情况下尽量减少实时发电备用容量。(2)生产计划的要求。电力系统中,由于其可 靠性的要求,各种发、供电设备都有确定的检修周期。(3)电力系统安全分析的基础。电力事 故所造成经济损失和社会影响是巨大的,必须尽量避免。 3.设计(论文)的主要内容(理工科含技术指标): 负荷预测并达到一定误差范围之内。 4.设计的基本要求及进度安排(含起始时间、设计地点):电子系实验室 1-5周;开题,针对原理及应用、主要技术难点的收集资料,熟悉课题方案。 6-10周; 完成方案论证,确定设计方案。 10-15周;利用Matlab 对系统做进一步的仿真分析 16-18周;完成所有的设计工作,整理资料,完成毕业论文,准备答辩。 5.毕业设计(论文)的工作量要求 400机时 ① 实验(时数)*或实习(天数): 100天 ② 图纸(幅面和张数)*:A4×2 ③ 其他要求: 论文:15000字以上;外文翻译:5000字以上 指导教师签名: 年 月 日 学生签名: 年 月 日 系主任审批: 年 月 日 说明:1本表一式二份,一份由学生装订入册,一份教师自留。 2 带*项可根据学科特点选填。

模糊神经网络的基本原理与应用概述

模糊神经网络的基本原理与应用概述 摘要:模糊神经网络(FNN)是将人工神经网络与模糊逻辑系统相结合的一种具有强大的自学习和自整定功能的网络,是智能控制理论研究领域中一个十分活跃的分支,因此模糊神经网络控制的研究具有重要的意义。本文旨在分析模糊神经网络的基本原理及相关应用。 关键字:模糊神经网络,模糊控制,神经网络控制,BP算法。 Abstract:A fuzzy neural network is a neural network and fuzzy logic system with the combination of a powerful. The self-learning and self-tuning function of the network, is a very intelligent control theory research in the field of active branches. So the fuzzy neural network control research has the vital significance. The purpose of this paper is to analysis the basic principle of fuzzy neural networks and related applications. Key Words: Fuzzy Neural Network, Fuzzy Control, Neural Network Control, BP Algorithm.

1人工神经网络的基本原理与应用概述 人工神经网络的概念 人工神经网络(Artificial Neural Network,简称ANN)是由大量神经元通过极其丰富和完善的联接而构成的自适应非线性动态系统,它使用大量简单的相连的人工神经元来模仿生物神经网络的能力,从外界环境或其它神经元获得信息,同时加以简单的运算,将结果输出到外界或其它人工神经元。神经网络在输入信息的影响下进入一定状态,由于神经元之间相互联系以及神经元本身的动力学特性,这种外界刺激的兴奋模式会自动地迅速演变成新的平衡状态,这样具有特定结构的神经网络就可定义出一类模式变换即实现一种映射关系。由于人工神经元在网络中不同的联接方式,就形成了不同的人工神经网络模式,其中误差反向传播网络(Back-Propagation Network,简称BP网络)是目前人工神经网络模式中最具代表性,应用得最广泛的一种模型【1,2】。 人工神经网络研究的发展简史 人工神经网络的研究己有近半个世纪的历史但它的发展并不是一帆风顺的,神经网络的研究大体上可分为以下五个阶段[3]。 (1) 孕育期(1956年之前):1943年Mcculloch与Pitts共同合作发表了“A logical calculus of ideas immanent in Nervous Activity”一文,提出了神经元数学模型(即MP模型)。1949年Hebb提出Hebb学习法则,对神经网络的发展做出了重大贡献。可以说,MP模型与学习规则为神经科学与电脑科学之间架起了沟通的桥梁,也为后来人工神经网络的迅速发展奠定了坚实的基础。 (2)诞生期(1957年一1968年):1960年Widrow提出了自适应线性元件模型,Rossenbaltt在1957年提出了第一种人工神经网络模式一感知机模式,由二元值神经元组成,该模式的产生激起了人工神经网络研究的又一次新高潮。(3)挫折期(1969年一1981年):1969年Minsky等人写的《感知机》一书以数学方法证明了当时的人工神经网络模式的学习能力受到很大限制。之后,人工神经网络的研究一直处于低潮。

人工神经网络在电力负荷预测上的分析与探讨

人工神经网络在电力负荷预测上的分析与探讨 作者:赵宇红胡玲刘旭宁 来源:《科技创新导报》2011年第02期 摘要:电力负荷的预测是电力系统规划的基础,对配变系统和新发电厂的建立具有重要意义。传统的预测方法是通过数学模型来分析电力负荷与其影响因素之间的关系,但由于实际工作中的不可预见因素较多,因此很难建立一个适用于任何情况的表达式。本文通过对人工神经网络在短期电力负荷预测中应用的分析,对其优缺点进行了探讨。 关键词:电力负荷预测人工神经网络应用人工神经网络的分析与探讨 中图分类号:TM76 文献标识码:A 文章编号:1674-098x(2011)01(b)-0090-01 对电力系统负荷的预测对于实现安全发供电、电力系统的自动化运行以及制定工作计划都有着非常重要的意义。传统的预测方法是将线形或分段线形表达作为负荷的预报函数,通过对其进行概率及数理统计的方式对其进行计算,并最终得出预测值。这种方法存在着建模所需的数据量大、适应性不强以及精度不高的问题,因此正逐渐被人工神经网络预测所取代。 1 日负荷模型的构成 电力系统负荷变化的周期性较强,因天气的变化而出现的负荷波动是导致电力系统负荷变化的主要因素,也就是说,N时刻负荷的变化量可以反映出天气的变化情况。因此,用向量的方式来表示负荷型,从而使全部的自变量相对于神经网络来说都属于输入量的中间分量,进而在自变量中隐含负荷与天气变化之间的函数关系。因此,日负荷模型的构成主要包括日基础负荷型和负荷影响因子模型。 1.1 日基础负荷模型 日基础负荷具有明显的周日性和周期性特征,代表了负荷的连续性,是负荷变化的基本规律。 ML[n,t]=∑(1-w)w(i-1)·L[n-(i·7),t] 其中ML[n,t]代表的是日基础负荷; L[n,t]代表的是第n天t时刻的实际负荷; W代表的是加权系数,取指小于1大于0;

基于BP神经网络的短期负荷预测

基于BP神经网络的短期负荷预测 基于BP神经网络的短期负荷猜测 摘要:基于人工神经网络原理,设计了一个三层的BP网络来实现电力系统的短期负荷猜测。经过仿真验证,利用BP神经网络进行电力系统短期负荷猜测是可行和有效的,其预告结果正确性很高。 要害词:短期负荷猜测;BP神经网络;电力系统 0前言 电力系统负荷猜测是电力生产部门的重要工作之一,通过正确的负荷猜测,可以经济合理地安排机组启停,减少旋转备用容量,合理安排检修计划,降低发电成本,提高经济效益。很多学者对此进行了研究,提出了很多种猜测方法,并且及时地将数学上的最新进展应用到猜测中去,使猜测的水平得到迅速提高,负荷猜测研究取得了很大的进展。 1负荷的分类及其短期猜测的方法 1.1负荷的分类 负荷猜测按猜测时间可以分为长期、中期和短期负荷猜测。其中,在短期负荷猜测中,周负荷猜测(未来7天)、日负荷猜测(未来24小时负荷猜测)及提前小时猜测对于电力系统的实时运行调度至关重要。因为对未来时刻进行预调度要以负荷猜测的结果为依据,负荷猜测的结果的正确性将直接影响调度的结果,从而对电力系统的安全稳定运行和经济性带来重要影响。 1.2负荷短期猜测的方法 电力系统负荷短期预告问题的解决办法和方式可以分为统计技术、专家系统法和神经网络等3种。统计技术中所用的短期负荷模型一般可归为时间系列模型和回归模型。时间系列模型的缺点在于不能充分利用对负荷性能有很大影响的气候信息等因素,但需要事先知道负荷与气象变量之间的函数关系,这是比较困难的。并且为了获得比较精确的预告结果,需要大量的计算,这一方法不能处理气候变量和与负荷之间的非平衡暂态关系。专家系统法利用了专家的经验知识和推理规则,使节假日或有重大活动日子的符合预告精度得到了提高。但是,把专家知识和经验等正确地转化为一系列规则是非常不轻易的。 众所周知负荷曲线是与很多因素相关的一个非线性关系函数。对于抽取盒逼近这种非线性函数,神经网络是一种合适的方法。神经网络的优点在于它具有模拟多变量而不需要对输入变量做复杂的相关假定的能力。它不依靠专家经验,只利用观察到的数据,可以从练习过程中通过学习来抽取和逼近隐含的输入/输出非线性关系。近年来的研究表明,相对于前两种方法,利用神经网络技术进行电力系统短期负荷预告可获得更高的精度。本文主要采纳BP神经网络来对电力系统短期负荷进行猜测。 2BP神将网络 2.1BP学习算法的思想 BP算法的基本思想是,学习过程由暗号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师暗号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差暗号,此误差暗号即作为修正各单元权值的依据。这种暗号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习练习过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行预先预定的学习次数为止。 2.2BP神经网络的组成及作用

基于人工神经网络的电力系统短期负荷预测

龙源期刊网 https://www.doczj.com/doc/e17574345.html, 基于人工神经网络的电力系统短期负荷预测作者:李晶 来源:《科学与技术》2018年第26期 摘要:随着智能电网技术的发展,电网问题的管理变得尤为重要,负荷预测是电网管理的主要内容之一。针对电力负荷预测随机性强、稳定性低、影响因素复杂等特点,具有非线性特性的神经网络可以极大地提高预测精度。 关键词:电力系统;负载预测;神经网络;反向传播算法 引言 电力系统负荷预测按预测的时间可分为长期、中期、短期、超短期以及特殊日,然而其中的短期负荷预测对电力系统来说有着很重要的地位,也是现有电力市场环境下编排发电计划、交易计划、调度计划的基础。随着电力行业的发展,分布式电源的接入和电动汽车等新负荷的加入,电力系统负荷预测的精确度就显得尤其重要。因此负荷预测成为了电网运行和管理的一个重要研究领域。由于负荷预测在电网中占有很重要的地位,所以对负荷预测初始数据的处理、预测方法的选择就显得尤其的重要。对短期负荷预测的研究已有很长的历史,国内外专家和学者在预测方面做了很多工作,提出很多预测模型。 1 负荷预测方法比较 1.1 神经网络法 目前神经网络广泛应用于图像识别、自然语言处理、机器翻译、自动驾驶等方面。谷歌、百度、阿里等企业最主要的人工智能算法都是神经网络。神经网络在能源领域大量应用于电力负荷预测、电力现货市场价格预测、风电发电预测等方面。神经网络法在负荷预测上的应用主要分为人工神经网络和递归神经网络。神经网络法选取过去一段时间的负荷作为训练样本,构建适宜的网络结构,用某种训练算法对网络进行训练,使其满足精度要求之后,此神经网络作为负荷预测模型。神经网络对大量非结构性、非精确性规律具有自适应能力,能够信息记忆、自主学习、知识推理和优化计算,具有很强的计算能力、复杂映射能力、容错能力及各种智能处理能力。江西负荷预测表明,其短期负荷预测精度高于中长期预测精度,日前负荷预测精度可达99.3%,5年规划负荷预测精度约为95.4%。 1.2 模糊预测法 模糊预测法是建立在模糊数学理论上的一种负荷预测技术,可以描述负荷预测中的一些关键因素,如天气状况的评判、经济发展的不确定性等。模糊负荷预测可分为模糊聚类法、模糊相似优先法和模糊最大贴近度法等。江西负荷预测表明,短期负荷模糊预测的精度约为

相关主题
文本预览
相关文档 最新文档