当前位置:文档之家› 【最新】基于51单片机汇编语言的数字钟课程设计报告(含有闹钟万年历)

【最新】基于51单片机汇编语言的数字钟课程设计报告(含有闹钟万年历)

【最新】基于51单片机汇编语言的数字钟课程设计报告(含有闹钟万年历)
【最新】基于51单片机汇编语言的数字钟课程设计报告(含有闹钟万年历)

51单片机作的电子钟程序及电路图

51单片机作的电子钟程序在很多地方已经有了介绍,对于单片机学习者而言这个程序基本上是一道门槛,掌握了电子钟程序,基本上可以说51单片机就掌握了80%。常见的电子钟程序由显示部分,计算部分,时钟调整部分构成。 时钟的基本显示原理:时钟开始显示为0时0分0秒,也就是数码管显示000000,然后每秒秒位加1 ,到9后,10秒位加1,秒位回0。10秒位到5后,即59秒,分钟加1,10秒位回0。依次类推,时钟最大的显示值为23小时59分59秒。这里只要确定了1秒的定时时间,其他位均以此为基准往上累加。 开始程序定义了秒,十秒,分,十分,小时,十小时,共6位的寄存器,分别存在30h,31h,32h,33h,34h,35h单元,便于程序以后调用和理解。 6个数码管分别显示时、分、秒,一个功能键,可以切换调整时分秒、增加数值、熄灭节电等功能全部集一键。

以下是部分汇编源程序,购买我们产品后我们用光盘将完整的单片机汇编源程序和烧写文件送给客户。;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 中断入口程序 ;; (仅供参考) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; ORG 0000H ;程序执行开始地址 LJMP START ;跳到标号START执行 ORG 0003H ;外中断0中断程序入口 RETI ;外中断0中断返回 ORG 000BH ;定时器T0中断程序入口 LJMP INTT0 ;跳至INTTO执行 ORG 0013H ;外中断1中断程序入口

RETI ;外中断1中断返回 ORG 001BH ;定时器T1中断程序入口 LJMP INTT1 ;跳至INTT1执行 ORG 0023H ;串行中断程序入口地址 RETI ;串行中断程序返回 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 主程序 ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; START: MOV R0,#70H ;清70H-7AH共11个内存单元MOV R7,#0BH ;clr P3.7 ; CLEARDISP: MOV @R0,#00H ; INC R0 ; DJNZ R7,CLEARDISP ; MOV 20H,#00H ;清20H(标志用) MOV 7AH,#0AH ;放入"熄灭符"数据 MOV TMOD,#11H ;设T0、T1为16位定时器 MOV TL0,#0B0H ;50MS定时初值(T0计时用)MOV TH0,#3CH ;50MS定时初值 MOV TL1,#0B0H ;50MS定时初值(T1闪烁定时用)MOV TH1,#3CH ;50MS定时初值 SETB EA ;总中断开放 SETB ET0 ;允许T0中断 SETB TR0 ;开启T0定时器 MOV R4,#14H ;1秒定时用初值(50M S×20)START1: LCALL DISPLAY ;调用显示子程序 JNB P3.7,SETMM1 ;P3.7口为0时转时间调整程序SJMP START1 ;P3.7口为1时跳回START1 SETMM1: LJMP SETMM ;转到时间调整程序SETMM ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; 1秒计时程序 ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;T0中断服务程序 INTT0: PUSH ACC ;累加器入栈保护 PUSH PSW ;状态字入栈保护

基于单片机的电子闹钟设计

基于单片机的电子闹钟设计 摘要 本设计以AT89C51芯片为核心,辅以必要的外围电路,设计了一个结构简单,功能齐全的电子时钟,它由5V直流电源供电。 关键词:单片机;led;闹钟;定时器 Abstract This design, adopting AT89C51 chip as the core part with some necessary peripheral circuits, is a simple electronic clock which uses 5V DC as the power supply. Keywords:single chip machine ,in fixed time machine, alarm clock,LED 1 引言 1.1设计目的 此次课程设计是在学习先修课程《单片机原理与系统设计》之后,为加强对学生系统设计和应用能力的培养而开设的综合设计训练环节。本课程设计应结合《单片机原理与系统设计》课程的基础理论,重点强调实际应用技能训练,包括单片机系统设计的软件和硬件两部分。其课程设计任务是使学生通过应用单片机系统设计的基本理论,基本知识与基本技能,掌握单片机应用系统各主要环节的设计、调试方法,初步掌握并具备应用单片机进行设备技术改造和产品开发的能力,培养学生的创新意识,提高学生的动手能力和分析问题、解决问题的能力。 1.2设计要求 结合单片机知识,以AT89C51单片机为核心,利用七段LED数码管实现计时、校时及闹钟功能。 1.3设计方法 以AT89C51单片机为核心,外加晶振电路,使用8个七段数码管显示,LED 采用动态扫描,用74ls245芯片作为驱动电路。通过四个独立按键对时间进行定时、校时,从而实现闹钟提醒功能。 2 设计方案及原理 2.1设计方案 选AT89C51单片机作为系统核心,辅助外部产生时钟信号的晶振电路,再加上四个独立按键作为输入信号,使用8个七段数码管显示时间,芯片74ls245为数码管段选线的驱动,最后用蜂鸣器实现闹铃功能。使用单片机的定时器T0计时时间为50ms,计时20次作为1s的时间基准。第一部分,12MHz的晶振连接至单片机的时钟信号输入端;第二部分,四个独立按键加上四个上拉电阻连接至单片机

基于51单片机的万年历的设计

单片机课程实训SCM PRACTICAL TRAINING

目录 第一部分课程设计任务书 (1) 一、课程设计题目 (1) 二、课程设计时间 (1) 三、实训提交方式 (1) 四、设计要求 (1) 第二部分课程设计报告 (2) 一、单片机发展概况 (2) 二、MCS-51单片机系统简介 (2) 三、设计思想 (3) 四、硬件电路设计 (3) 1. 总体设计 (3) 2. 晶振电路 (4) 3. 复位电路 (4) 4. DS1302时钟电路 (5) 5. 温度采集系统电路 (5) 6. 按键调整电路 (6) 7. 闹钟提示电路 (6) 五、软件设计框图 (7) 六、程序源代码 (8) 1. 主程序 (8) 2. 温度控制程序 (11) 3. 日历设置程序 (13) 4. 时钟控制程序 (18) 5. 显示设置程序 (20) 七、结束语 (23) 八、课程设计小组分工 (23) 九、参考文献 (23)

第一部分课程设计任务书 一、课程设计题目 用中小规模集成芯片设计制作万年历。 二、课程设计时间 五天 三、实训提交方式 提交实训设计报告电子版与纸质版 四、设计要求 (1)显示年、月、日、时、分、秒和星期,并有相应的农历显示。(2)可通过键盘自动调整时间。 (3)具有闹钟功能。 (4)能够显示环境温度,误差小于±1℃ (5)计时精度:月误差小于20秒。

第二部分课程设计报告 一、单片机发展概况 单片机诞生于20世纪70年代末,它的发展史大致可分为三个阶段: 第一阶段(1976-1978):初级单片机微处理阶段。该时期的单片机具有 8 位CPU,并行 I/O 端口、8 位时序同步计数器,寻址范围 4KB,但是没有串行口。 第二阶段(1978-1982):高性能单片机微机处理阶段,该时期的单片机具有I/O 串行端口,有多级中断处理系统,15 位时序同步技术器,RAM、ROM 容量加大,寻址范围可达 64KB。 第三阶段(1982-至今)位单片机微处理改良型及 16 位单片机微处理阶段民用电子产品、计算机系统中的部件控制器、智能仪器仪表、工业测控、网络与通信的职能接口、军工领域、办公自动化、集散控制系统、并行多机处理系统和局域网络系统。 二、MCS-51单片机系统简介 MCS-51系列单片机产品都是以Intel公司最早的典型产品8051为核心构成的。MCS-51单片机由CPU 、RAM 、ROM 、I/O接口、定时器/计数器、中断系统、内部总线等部件组成。8051单片机的基本性能有: ◆8位CPU; ◆布尔代数处理器,具有位寻址能力; ◆128B内部RAM,21个专用寄存器; ◆4KB内部掩膜ROM; ◆2个16位可编程二进制加1定时器/计数器; ◆32个(4×8位)双向可独立寻址的I/O口; ◆1个全双工UART(异步串行通信口); ◆5个中断源,两级中断结构; ◆片内振荡器及时钟电路,晶振频率为1.2MHz~12MHz; ◆外部程序/数据存储器寻址空间均为64KB; ◆111条指令,大部分为单字节指令; ◆单一+5V电源供电,双列直插40引脚DIP封装。

51单片机汇编程序范例

16位二进制数转换成BCD码的的快速算法-51单片机2010-02-18 00:43在做而论道上篇博文中,回答了一个16位二进制数转换成BCD码的问题,给出了一个网上广泛流传的经典转换程序。 程序可见: http: 32.html中的HEX2BCD子程序。 .说它经典,不仅是因为它已经流传已久,重要的是它的编程思路十分清晰,十分易于延伸推广。做而论道曾经利用它的思路,很容易的编写出了48位二进制数变换成16位BCD码的程序。 但是这个程序有个明显的缺点,就是执行时间太长,转换16位二进制数,就必须循环16遍,转换48位二进制数,就必须循环48遍。 上述的HEX2BCD子程序,虽然长度仅仅为26字节,执行时间却要用331个机器周期。.单片机系统多半是用于各种类型的控制场合,很多时候都是需要“争分夺秒”的,在低功耗系统设计中,也必须考虑因为运算时间长而增加系统耗电量的问题。 为了提高整机运行的速度,在多年前,做而论道就另外编写了一个转换程序,程序的长度为81字节,执行时间是81个机器周期,(这两个数字怎么这么巧!)执行时间仅仅是经典程序的!.近来,在网上发现了一个链接: ,也对这个经典转换程序进行了改进,话是说了不少,只是没有实质性的东西。这篇文章提到的程序,一直也没有找到,也难辩真假。 这篇文章好像是选自某个著名杂志,但是在术语的使用上,有着明显的漏洞,不像是专业人员的手笔。比如说文中提到的:

“使用51条指令代码,但执行这段程序却要耗费312个指令周期”,就是败笔。51条指令代码,真不知道说的是什么,指令周期是因各种机型和指令而异的,也不能表示确切的时间。 .下面说说做而论道的编程思路。;----------------------------------------------------------------------- ;已知16位二进制整数n以b15~b0表示,取值范围为0~65535。 ;那么可以写成: ; n = [b15 ~ b0] ;把16位数分解成高8位、低8位来写,也是常见的形式: ; n = [b15~b8] * 256 + [b7~b0] ;那么,写成下列形式,也就可以理解了: ; n = [b15~b12] * 4096 + [b11~b0] ;式中高4位[b15~b12]取值范围为0~15,代表了4096的个数; ;上式可以变形为: ; n = [b15~b12] * 4000 + {[b15~b12] * (100 - 4) + [b11~b0]} ;用x代表[b15~b12],有: ; n =x * 4000 + {x * (100 - 4) + [b11~b0]} ;即: ; n =4*x (千位) + x (百位) + [b11~b0] - 4*x ;写到这里,就可以看出一点BCD码变换的意思来了。 ;;上式中后面的位:

基于51单片机的电子时钟设计源程序

#include unsigned char DispBuf[6]; //时间显示缓冲区 unsigned char Disdate[6]; //日期显示缓冲区 unsigned char DisSec[6]; //秒表缓冲区 struct //设定时间结构体 { unsigned char Hour; unsigned char Min; unsigned char Sec; }Time; struct //设定日期结构体 { unsigned char Year; unsigned char Month; unsigned char Days; }Date; struct //设定毫秒结构体 { unsigned char Minite; unsigned char Second; unsigned char MilliSec; }Millisecond; unsigned char point=0; unsigned char point1=0; unsigned char point2=0; unsigned char Daymount; unsigned char Daymount1; unsigned char T0_Int_Times=0; //中断次数计数变量 unsigned char Flash_flag=0; //闪烁标志,每半秒闪烁 unsigned char Flash_flag1=0; //闪烁标志,每半秒闪烁 unsigned char DisPlay_Back=0; //显示缓冲区更新备份,如果显示缓冲区更新则跟闪烁标志不一致 unsigned char DisPlay_Back1=0; //显示缓冲区更新备份,如果显示缓冲区更新则跟闪烁标志不一致 unsigned char i,j; unsigned char SetMillisecond; //启动秒表 code unsigned char LEDCode[]={0x01,0xd7,0x22,0x82,0xc4,0x88,0x08,0xc1,0x00,0x80}; //数码管显示代码 code unsigned char ErrorLEDCode[]={0x01,0xe7,0x12,0x82,0xc4,0x88,0x08,0xc1,0x00,0x80};//绘制错误图纸的数码管显示代码 void DisPlayBuf(); void ChangeToDispCode(); void ChangeToDispCode1(); void changedate(); // 调日期 void displaydate(); // 显示日期 void makedays(); //确定每个月的日期 void runSec();

51单片机实用汇编程序库(word)

51 单片机实用程序库 4.1 流水灯 程序介绍:利用P1 口通过一定延时轮流产生低电平 输出,以达到发光二极管轮流亮的效果。实际应用中例如:广告灯箱彩灯、霓虹灯闪烁。 程序实例(LAMP.ASM) ORG 0000H AJMP MAIN ORG 0030H MAIN: 9 MOV A,#00H MOV P1,A ;灭所有的灯 MOV A,#11111110B MAIN1: MOV P1,A ;开最左边的灯 ACALL DELAY ;延时 RL A ;将开的灯向右边移 AJMP MAIN ;循环 DELAY: MOV 30H,#0FFH D1: MOV 31H,#0FFH D2: DJNZ 31H,D2 DJNZ 30H,D1 RET END 4.2 方波输出 程序介绍:P1.0 口输出高电平,延时后再输出低电 平,循环输出产生方波。实际应用中例如:波形发生器。 程序实例(FAN.ASM): ORG 0000H MAIN: ;直接利用P1.0 口产生高低电平地形成方波////////////// ACALL DELAY SETB P1.0 ACALL DELAY 10 CLR P1.0 AJMP MAIN ;////////////////////////////////////////////////// DELAY: MOV R1,#0FFH DJNZ R1,$ RET

五、定时器功能实例 5.1 定时1 秒报警 程序介绍:定时器1 每隔1 秒钟将p1.o 的输出状态改变1 次,以达到定时报警的目的。实际应用例如:定时报警器。程序实例(DIN1.ASM): ORG 0000H AJMP MAIN ORG 000BH AJMP DIN0 ;定时器0 入口 MAIN: TFLA G EQU 34H ;时间秒标志,判是否到50 个 0.2 秒,即50*0.2=1 秒 MOV TMOD,#00000001B;定时器0 工作于方式 1 MOV TL0,#0AFH MOV TH0,#3CH ;设定时时间为0.05 秒,定时 20 次则一秒 11 SETB EA ;开总中断 SETB ET0 ;开定时器0 中断允许 SETB TR0 ;开定时0 运行 SETB P1.0 LOOP: AJMP LOOP DIN0: ;是否到一秒//////////////////////////////////////// INCC: INC TFLAG MOV A,TFLAG CJNE A,#20,RE MOV TFLAG,#00H CPL P1.0 ;////////////////////////////////////////////////// RE: MOV TL0,#0AFH MOV TH0,#3CH ;设定时时间为0.05 秒,定时 20 次则一秒 RETI END 5.2 频率输出公式 介绍:f=1/t s51 使用12M 晶振,一个周期是1 微秒使用定时器1 工作于方式0,最大值为65535,以产生200HZ 的频率为例: 200=1/t:推出t=0.005 秒,即5000 微秒,即一个高电

基于51单片机的电子时钟的设计

目录 0 前言 (1) 1 总体方案设计 (2) 2 硬件电路设计 (2) 3 软件设计 (5) 4 调试分析及说明 (7) 5 结论 (9) 参考文献 (9) 课设体会 (10) 附录1 电路原理 (12) 附录2 程序清单 (13)

电子时钟的设计 许山沈阳航空航天大学自动化学院 摘要:传统的数字电子时钟采用了较多的分立元器件,不仅占用了很大的空间而且利用率也比很低,随着系统设计复杂度的不断提高,用传统时钟系统设计方法很难满足设计需求。 单片机是集CPU、RAM、ROM、定时器/计数器和多种接口于一体的微控制器。它体积小、成本低、功能强,广泛应用于智能产品和工业自动化上。而51系列的单片机是各单片机中最为典型和最有代表性的一种。,本次设计提出了系统总体设计方案,并设计了各部分硬件模块和软件流程,在用C语言设计了具体软件程序后,将各个模块完全编译通过过后,结果证明了该设计系统的可行性。该设计给出了以AT89C2051为核心,利用单片机的运算和控制功能,并采用系统化LED显示模块实时显示数字的设计方案,适当地解决了实际生产和日常生活中对计时高精确度的要求,因此该设计在现代社会中具有广泛的应用性。 关键字:AT89C2051,C语言程序,电子钟。 0前言 利用51单片机开发电子时钟,实现时间显示、调整和闹铃功能。具体要求如下: (1)按以上要求制定设计方案,并绘制出系统工作框图; (2)按要求设计部分外围电路,并与单片机仿真器、单片机实验箱、电源等正确可靠的连接,给出电路原理图; (3)用仿真器及单片机实验箱进行程序设计与调试;

(4)利用键盘输入调整秒、分和小时时刻,数码管显示时间; (5)实现闹钟功能,在设定的时间给出声音提示。 1总体方案设计 该电子时钟由89C51,BUTTON,1602 LCD液晶屏等构成,采用晶振电路作为驱动电路,利用单片机内部定时计数器0通过软件扩展产生的一秒定时,达到时分秒的计时,六十秒为一分钟,六十分钟为一小时,满二十四小时为一天。闹钟和时钟的时分秒的调节是由一个按键控制,而另外一个按键控制时钟和闹钟的时间的调节。 图1 系统结构框图 该电子时钟由STC89C51,BUTTON,1602 LCD液晶屏等构成,采用晶振电路作为驱动电路,晶振电路的晶振频率为12MHZ,使用的定时器/计数器工作方式0,通过软件扩展产生的一秒定时,达到时分秒的计时,60秒为一分钟,60分钟为一小时,24小时为一天,又重00:00:00开始计时。没有按键按键按下时,时钟正常运行,当按下调节时钟按键K1,就会关闭时钟,当按下闹钟按键K3时时钟就会进入设置时间界面,但是时钟不会停止工作,按K2键,,就可以对时钟和闹钟要设置的时间进行调整。 2硬件电路设计

51单片机中的汇编语言与C语言.

51单片机中的汇编语言与 C 语言 C 语言, 更多的是为了掌握单片机的应用, C 语言是高效的应用程序开发工具, 与汇编语言比却不是开发高效应用程序的工具。就目前而言, 更多的是为了应用单片机, 开发应用程序, 更多的是强调开发效率, 而不是程序的运行效率 (相对而言。再就是应用程序对单片机内部资源的使用效率, 这在过去, 单片机内部资源紧缺的年代, 特别的强调, 现在已经不是特别重要了。所以, 大多数人都认为,只用 C 语言,就可以应对大多数单片机的应用开发了。 其实,汇编语言跟 C 语言在本质上一样的,只是语言形式不同而已,一个接近底层逻辑, 一个接近人类语言, 本质上都是对寄存器或存储器的读写操作而已。 汇编语言中,用 MOV 来回传送数据, C 语言里,用等号表示数据传送。汇编语言中,用 call 转去执行子过程程序, C 语言里,用个函数名调用子程序。汇编语言中,用 JMP 完成分支转移, C 语言里用 if 、 switch 、 while 、 for 来判断跳转。汇编语言跟 C 一样可以给寄存器指定命名,然后对定义的名称进行操作。汇编语言提供了对很多标志位的操作, C51根据需要也进行了改进, C 语言可以通过 #include给存储器命名来简化操作。 我觉得, C 语言是最接近汇编语言的一种高级语言, 要说不同, 也许具有大量函数的函数库,是 C 语言与汇编语言的最大区别,也是 C 语言比汇编语言有更大开发效率的原因。 在应用汇编语言进行应用程序开发时, 如果精心规划好程序结构, 设计好各种数据结构、子程序、中断程序,积累大量的算法程序(相当于函数库,也可以高效率的用汇编语言进行单片机开发。倒是兼容性、可移植性是汇编语言的最大限制,因为不同单片机有不同的指令系统,而 C 语言把这个问题,交给了机器也就是编译器去解决了。其实, 计算机的发展, 就是把尽可能多的事情交个机器去解决。

51单片机汇编语言教程:13课单片机逻辑与或异或指令详解

51单片机汇编语言教程:第13课-单片机逻辑与或异或指令详解

结果11111001 而所有的或指令,就是将与指仿中的ANL换成ORL,而异或指令则是将ANL换成XRL。即或指令: ORL A,Rn;A和Rn中的值按位'或',结果送入A中 ORL A,direct;A和与间址寻址单元@Ri中的值按位'或',结果送入A中 ORL A,#data;A和立direct中的值按位'或',结果送入A中 ORL A,@Ri;A和即数data按位'或',结果送入A中 ORL direct,A;direct中值和A中的值按位'或',结果送入direct中 ORL direct,#data;direct中的值和立即数data按位'或',结果送入direct中。 异或指令: XRL A,Rn;A和Rn中的值按位'异或',结果送入A中 XRL A,direct;A和direct中的值按位'异或',结果送入A中 XRL A,@Ri;A和间址寻址单元@Ri中的值按位'异或',结果送入A中 XRL A,#data;A和立即数data按位'异或',结果送入A中 XRL direct,A;direct中值和A中的值按位'异或',结果送入direct中 XRL direct,#data;direct中的值和立即数data按位'异或',结果送入direct中。 练习: MOV A,#24H MOV R0,#37H ORL A,R0 XRL A,#29H MOV35H,#10H ORL35H,#29H MOV R0,#35H ANL A,@R0 四、控制转移类指令 无条件转移类指令 短转移类指令 AJMP addr11 长转移类指令

单片机控制系统汇编程序

; step motor control ; ASM for MCS51 mode equ 082h contrl equ 08003h ctl equ 08000h ;8255接口芯片PA口的地址值 Astep equ 01h ;对A相通电,PA口的赋值 Bstep equ 02h ;对B相通电,PA口的赋值 Cstep equ 04h ;对C相通电,PA口的赋值 Dstep equ 08h ;对D相通电,PA口的赋值 dly_c equ 10h ;启动初值(加速度)寄存器 sd1 equ 80 ;0--255 加速度初值:值越小,加速越快 sd2 equ 40 ;

51单片机经典编辑流水灯汇编程序

单片机流水灯汇编程序设计 流水灯汇编程序 8只LED为共阳极连接,即单片机输出端为低电平时即可点亮LED。 ;用最直接的方式实现流水灯 ORG 0000H START:MOV P1,#01111111B ;最下面的LED点亮 LCALL DELAY ;延时1秒 MOV P1,#10111111B ;最下面第二个的LED点亮 LCALL DELAY ;延时1秒 MOV P1,#11011111B ;最下面第三个的LED点亮(以下省略) LCALL DELAY MOV P1,#11101111B LCALL DELAY MOV P1,#11110111B LCALL DELAY MOV P1,#11111011B LCALL DELAY MOV P1,#11111101B LCALL DELAY MOV P1,#11111110B LCALL DELAY MOV P1,#11111111B ;完成第一次循环点亮,延时约0.25秒 AJMP START ;反复循环 ;延时子程序,12M晶振延时约250毫秒 DELAY: ;大约值:2us*256*256*2=260ms,也可以认为为250ms PUSH PSW ;现场保护指令(有时可以不加) MOV R4,#2 L3: MOV R2 ,#00H L1: MOV R3 ,#00H L2: DJNZ R3 ,L2 ;最内层循环:(256次)2个周期指令(R3减一,如果比1大,则转向L2) DJNZ R2 ,L1 ; 中层循环:256次 DJNZ R4 ,L3 ;外层循环:2次 POP PSW RET END

51单片机汇编程序集(二) 2008年12月12日星期五 10:27 辛普生积分程序 内部RAM数据排序程序(升序) 外部RAM数据排序程序(升序) 外部RAM浮点数排序程序(升序) BCD小数转换为二进制小数(2位) BCD小数转换为二进制小数(N位) BCD整数转换为二进制整数(1位) BCD整数转换为二进制整数(2位) BCD整数转换为二进制整数(3位) BCD整数转换为二进制整数(N位) 二进制小数(2位)转换为十进制小数(分离BCD码) 二进制小数(M位)转换为十进制小数(分离BCD码) 二进制整数(2位)转换为十进制整数(分离BCD码) 二进制整数(2位)转换为十进制整数(组合BCD码) 二进制整数(3位)转换为十进制整数(分离BCD码) 二进制整数(3位)转换为十进制整数(组合BCD码) 二进制整数(M位)转换为十进制整数(组合BCD码) 三字节无符号除法程序(R2R3R4/R7)=(R2)R3R4 余数R7 ;二进制整数(2位)转换为十进制整数(分离BCD码) ;入口: R3,R4 ;占用资源: ACC,R2,NDIV31 ;堆栈需求: 5字节 ;出口: R0,NCNT IBTD21 : MOV NCNT,#00H MOV R2,#00H IBD211 : MOV R7,#0AH LCALL NDIV31 MOV A,R7 MOV @R0,A INC R0 INC NCNT MOV A,R3 ORL A,R4 JNZ IBD211 MOV A,R0 CLR C SUBB A,NCNT MOV R0,A RET ;二进制整数(2位)转换为十进制整数(组合BCD码) ;入口: R3,R4 ;占用资源: ACC,B,R7 ;堆栈需求: 3字节

51单片机简易可调的数码管电子钟程序

#include sbit KEY1=P3^0; sbit KEY2=P3^1; sbit KEY3=P3^2; sbit KEY4=P3^3; sbit LED=P1^2; code unsigned char tab[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //共阳数码管0-9 unsigned char StrTab[8]; //定义缓冲区 unsigned char minute=30,hour=12,second; //定义并且初始化值12:30:00 void delay(unsigned int cnt)//延时函数 { while(--cnt); } void Displaypro(void) { StrTab[0]=tab[hour/10]; //显示正常时间 StrTab[1]=tab[hour%10]; StrTab[2]=0xBF; StrTab[3]=tab[minute/10]; StrTab[4]=tab[minute%10]; StrTab[5]=0xBF; StrTab[6]=tab[second/10]; StrTab[7]=tab[second%10]; } main()//主函数 { TMOD |=0x01;//定时器0 10ms in 12M crystal 用于计时 TH0=0xd8; TL0=0xf0; ET0=1; TR0=1; TMOD |=0x10; //定时器1用于动态扫描 TH1=0xF8; TL1=0xf0; ET1=1; TR1=1; EA =1; Displaypro();

最经典的51单片机经典流水灯汇编程序

单片机流水灯汇编程序设计 开发板上的8只LED为共阳极连接,即单片机输出端为低电平时即可点亮LED。 程序A: ;用最直接的方式实现流水灯 ORG 0000H START:MOV P1,#01111111B ;最下面的LED点亮 LCALL DELAY;延时1秒 MOV P1,#10111111B ;最下面第二个的LED点亮 LCALL DELAY;延时1秒 MOV P1,#11011111B ;最下面第三个的LED点亮(以下省略) LCALL DELAY MOV P1,#11101111B LCALL DELAY MOV P1,#11110111B LCALL DELAY MOV P1,#11111011B LCALL DELAY MOV P1,#11111101B LCALL DELAY MOV P1,#11111110B LCALL DELAY MOV P1,#11111111B ;完成第一次循环点亮,延时约0.25秒 AJMP START ;反复循环 ;延时子程序,12M晶振延时约250毫秒 DELAY: MOV R4,#2 L3: MOV R2 ,#250 L1: MOV R3 ,#250 L2: DJNZ R3 ,L2 DJNZ R2 ,L1 DJNZ R4 ,L3 RET END 程序B: ;用移位方式实现流水灯

ajmp main ;跳转到主程序 org 0030h ;主程序起始地址 main: mov a,#0feh ;给A赋值成11111110 loop: mov p1,a ;将A送到P1口,发光二极管低电平点亮 lcall delay ;调用延时子程序 rl a ;累加器A循环左移一位 ajmp loop ;重新送P1显示 delay: mov r3,#20 ;最外层循环二十次 d1: mov r4,#80 ;次外层循环八十次 d2: mov r5,#250 ;最内层循环250次 djnz r5,$ ;总共延时2us*250*80*20=0.8S djnz r4,d2 djnz r3,d1 ret end 51单片机经典流水灯程序,在51单片机的P2口接上8个发光二极管,产生流水灯的移动效果。 ORG 0 ;程序从0地址开始 START: MOV A,#0FEH ;让ACC的内容为11111110 LOOP: MOV P2,A ;让P2口输出ACC的内容 RR A ;让ACC的内容左移 CALL DELAY ;调用延时子程序 LJMP LOOP ;跳到LOOP处执行 ;0.1秒延时子程序(12MHz晶振)=================== DELAY: MOV R7,#200 ;R7寄存器加载200次数 D1: MOV R6,#250 ;R6寄存器加载250次数 DJNZ R6,$ ;本行执行R6次 DJNZ R7,D1 ;D1循环执行R7次 RET ;返回主程序

51单片机数码管时钟程序

本人初学51,编写简单时钟程序。仅供参考学习 #include #define uint unsigned int #define uchar unsigned char Uchar code table_d[16] = {0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef,0xf7,0xfc,0xb9,0xde,0xf9,0xf1 }; uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0xef}; void delay(uint); unsigned long i,num,t=1; void main() { TMOD=0X01; TH0=(65536-10000)/256; TL0=(65536-10000)%256; EA=1; ET0=1; TR0=1; while(1) { num=i/20;//i为秒位 if(i==1728000)//一天大概是这个秒吧,,,应该是,呵呵。就是世间到24时就归零。 i=0; //也可用下面这个部分来代替上面的。 /*if(i==20) { i=0; num++; if(num==5184000) num=0; }*/ //num=9; P2=7;//P2口为数码管控制端,我的是38译码器控制,就直接对其赋值来控制时,分,秒的显示; P0=table[i%100%10]; delay(t); P2=6; P0=table[i%100/10]; delay(t); P0=table_d[(num%60)%10]; P2=5; delay(t); P0=table[(num%60)/10]; P2=4;

#第3章-MCS-51系列单片机的指令系统和汇编语言程序

第3章MCS一51系列单片机的指令系统 和汇编语言程序 3·1汇编指令 3·1·1请阐明机器语言、汇编语言、高级语言三者的主要区别,进一步说明为什么这三种语言缺一不可。 3·1·2请总结: (1)汇编语言程序的优缺点和适用场合。 (2)学习微机原理课程时,为什么一定要学汇编语言程序? 3·1·3MCS一51系列单片机的寻址方式有哪儿种?请列表分析各种寻址方式的访问对象和寻址范围。 3·1·4要访问片内RAM,可有哪几种寻址方式? 3·1·5要访问片外RAM,有哪几种寻址方式? 3·1·6要访问ROM,又有哪几种寻址方式? 3·1·7试按寻址方式对MCS一51系列单片机的各指令重新进行归类(一般根据源操作数寻址方式归类,程序转移类指令例外)。 3·1·8试分别针对51子系列和52子系列,说明MOV A,direct指令和MOV A,@Rj 指令的访问范围。 3·1·9传送类指令中哪几个小类是访问RAM的?哪几个小类是访问ROM的?为什么访问ROM的指令那么少?CPU访问ROM多不多?什么时候需要访问ROM? 3·1·10试绘图示明MCS一51系列单片机数据传送类指令可满足的各种传送关系。3·1·11请选用指令,分别达到下列操作: (1)将累加器内容送工作寄存器R6. (2)将累加器内容送片内RAM的7BH单元。 (3)将累加器内容送片外RAM的7BH单元。 (4)将累加器内容送片外RAM的007BH单元。 (5)将ROM007BH单元内容送累加器。 3·1·12 区分下列指令的不同功能: (l)MOV A,#24H 和MOV A.24H (2)MOV A,R0和MOV A,@R0 (3)MOV A,@R0和MOVX A,@R0 3·1·13设片内RAM 30H单元的内容为40H; 片内RAM 40H单元的内容为l0H; 片内RAM l0H单元的内容为00H; (Pl)=0CAH。 请写出下列各指令的机器码和执行下列指令后的结果(指各有关寄存器、RAM单元和端口的内容)。 MOV R0,#30H MOV A,@R0 MOV RI,A MOV B,@Rl MOV @R0,Pl MOV P3,Pl MOV l0H,#20H MOV 30H,l0H

单片机汇编语言经典一百例

51单片机实用程序库 4.1 流水灯 程序介绍:利用P1 口通过一定延时轮流产生低电平 输出,以达到发光二极管轮流亮的效果。实际应用中例如:广告灯箱彩灯、霓虹灯闪烁。 程序实例(LAMP.ASM) ORG 0000H AJMP MAIN ORG 0030H MAIN: 9 MOV A,#00H MOV P1,A ;灭所有的灯 MOV A,#11111110B MAIN1: MOV P1,A ;开最左边的灯 ACALL DELAY ;延时 RL A ;将开的灯向右边移 AJMP MAIN ;循环 DELAY:

MOV 30H,#0FFH D1: MOV 31H,#0FFH D2: DJNZ 31H,D2 DJNZ 30H,D1 RET END 4.2 方波输出 程序介绍:P1.0 口输出高电平,延时后再输出低电 平,循环输出产生方波。实际应用中例如:波形发生器。 程序实例(FAN.ASM): ORG 0000H MAIN: ;直接利用P1.0口产生高低电平地形成方波////////////// ACALL DELAY SETB P1.0 ACALL DELAY 10 CLR P1.0 AJMP MAIN ;////////////////////////////////////////////////// DELAY: MOV R1,#0FFH

DJNZ R1,$ RET END 五、定时器功能实例 5.1 定时1秒报警 程序介绍:定时器1每隔1秒钟将p1.o的输出状态改变1 次,以达到定时报警的目的。实际应用例如:定时报警器。程序实例(DIN1.ASM): ORG 0000H AJMP MAIN ORG 000BH AJMP DIN0 ;定时器0入口 MAIN: TFLA G EQU 34H ;时间秒标志,判是否到50个 0.2秒,即50*0.2=1秒 MOV TMOD,#00000001B;定时器0工作于方式 1 MOV TL0,#0AFH MOV TH0,#3CH ;设定时时间为0.05秒,定时 20次则一秒 11 SETB EA ;开总中断

快速入门单片机大全语言

快速入门单片机汇编语言 简要: 单片机有通用型和专用型之分。专用型是厂家为固定程序的执行专门开发研制的一种单片机,其程序不可更改。通用型单片机是常用的一种供学习或自主编制程序的单片机,其程序需要自己写入,可更改。单片机根据其基本操作处理位数不同可以分为:1位、4位、8位、16、32位单片机。 正文: 在此我们主要讲解美国ATMEL公司的89C51单片机。 一、89C51单片机PDIP(双列直插式)封装引脚图: 其引脚功能如下: P0口(—):为双向三态口,可以作为输入/输出口。但在实际应用中通常作为地址/数据总线口,即为低8位地址/数据总线分时复用。低8位地址在ALE信号的负跳变锁存到外部地址锁存器中,而高8位地址由P2口输出。 P1口(—):其每一位都能作为可编程的输入或输出线。 P2口(—):每一位也都可作为输入或输出线用,当扩展系统外设时,可作为扩展系统的地址总线高8位,与P0口一起组成16位地址总线。对89c51单片机来说,P2口一般只作为地址总线使用,而不作为I/O线直接与外设相连。 P3口(—):其为双功能口,作为第一功能使用时,其功能与P1口相同。当作为第二功能使用时,每一位功能如下表所示。 XTAL1(xtal2):外接晶振一脚,分别接晶振的一端。 Gnd:电源地。 Vcc:电源正级,接+5V。 PROG\ALE:地址锁存控制端 PSEN:片外程序存储器读选通信号输出端,低电平有效。 EA\vpp:访问外部程序储存器控制信号,低电平有效。当EA为高电平时访问片内存储器,若超出范围则自动访问外部程序存储器。当EA为低电平时只访问外部程序存储器。 二、常用指令及其格式介绍: 1、指令格式:

51单片机时钟程序

51单片机时钟程序 #include #define uint unsigned int #define uchar unsigned char uchar code duan[]= {0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71,}; uchar code we[]={0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfe,0xff,}; uint z; void display(uchar miao,uchar fen,uchar xiaoshi); uchar t=0,miao,fen,xiaoshi,shi1,ge1,shi2,ge2,shi,ge,a; void delay(uint z) { uint x,y; for(x=80;x>0;x--) for(y=z;y>0;y--); } void InitTimer0() { TMOD=0x01; TH0=0x3C; TL0=0x0B0; EA=1; ET0=1; TR0=1; } void Timer0Interrupt() interrupt 1 { TH0=0x3C;

TL0=0x0B0; t++; } void main() { InitTimer0(); miao=0; fen=10; xiaoshi=21; while(1) { if(t==20) { t=0; miao++; if(miao==60) { miao=0; fen++; if(fen==60) { fen=0; xiaoshi++; if(xiaoshi==24)

相关主题
文本预览
相关文档 最新文档