当前位置:文档之家› 交流电路继电器

交流电路继电器

交流电路继电器
交流电路继电器

交流电路继电器采用面板式安装,高雅、亮丽的外观,为低压电控装置提升档次。

相序保护器、过欠压保护器等)主要用于交流50/60Hz,

400V)、440V(460V)、660V等电压级别的各种故障检测,对三相输入电源的电压过高、电压过低、断相、错相(逆相序)、三相电压不平衡等提供继电保

复位方式:相序、缺相故障手动复位;不平衡、过欠压故障自动复位,也可按复位键手动复位。断

电后故障锁存功能。

JL-410交流电路继电器功能选型

交流电路继电器按功能的组合分以下四个系列,每个系列都有不同电压等级的产品。

●表示具有该功能 ○表示不具有该功能

交流电路继电器不同电压等级的产品选型

产品选型举例

1. 如用户需要全部保护功能(过电压保护、欠电压保护、缺相保护、三相电压不平衡保护、相序保护),

使用于380V 电压,那所选择的交流电路继电器产品型号,应该为JL-410。

2. 如用户只需要相序保护,缺相保护两种功能,使用于煤矿660V 的电压,那所选的交流电路继电器产

品型号应该为JL-411-60。

JL-410交流电路继电器功能描述:

1、过压保护:当电网电压大于设定值时启动该项保护功能,动作门限值设定范围OFF-390-490V ,动作

方式为定时限,动作时间设置范围0.1-25s 。保护动作后电网电压恢复到小于设定值10V 以上时,保护器

自动复位,也可按复位键手动复位。用户可选择是否启用该项保护功能。

2、欠压保护:当电网电压小于设定值时启动该项保护功能,动作门限值设定范围300-370V-OFF ,动作

方式为定时限,动作时间设置范围0.1-25s 。保护动作后电网电压恢复到大于设定值10V 以上时,保护器

自动复位,也可按复位键手动复位。用户可选择是否启用该项保护功能。

3、三相电压不平衡保护:当电网电压三相不平衡度大于设定值时启动该项保护功能,不平衡度动作门

限值设定范围OFF-5-30%,动作方式为定时限,动作时间设置范围1-25s 。当电网电压三相不平衡度恢复

到小于设定门限值2%以上时,保护器自动复位,也可按复位键手动复位。用户可选择是否启用该项保护

功能。

三相电压不平衡度计算公式:

A ——电压不平衡度

max U ——三相线电压中最大线电压值

%

100max

min

max ?-=U U U A

min

U——三相线电压中最小线电压值

4、缺相保护:当电网电压三相不平衡度大于30%时启动该项保护功能,动作时间1s。当断相故障消失后,可按复位键手动复位。三相电压不平衡保护关闭时,断相保护功能也随之关闭。

5、相序保护:当三相电源相序错误时启动该项保护功能,动作方式为定时限,动作时间1s。当相序错误故障消失后,可按复位键手动复位。用户可选择是否启用该项保护功能。

6、故障记忆:能记忆最近三次故障信息,故障序号1为最近一次故障信息,当故障信息大于三次时,自动把最早的故障信息删除。

7、声光报警:保护器显示屏的背光作为光报警信号,当保护器检测到任何故障时,保护器还未动作脱扣时,故障指示符长亮,背光闪烁;当保护器动作脱扣动作后,故障指示符闪烁,背光长亮,蜂鸣器断续鸣叫,此时按任意键可消除声音报警。按复位键或故障自动复位后光报警才停止。

8、背光技术:操作任意按键背光点亮,方便全天候的操作、观察。在正常工作状态下无按键操作25秒后关闭背光;在报警状态下无按键操作5秒后背光闪烁。

9、声报警: 保护器进入和退出设置状态时蜂鸣器发“嘟”声提示。在报警状态下蜂鸣器发出断续报警声音,此时按任意键取消报警音,直到下次报警时才发出响声。

10、电压表功能:正常运行状态:保护器默认显示“A相、B相”及电压值,即A、B相线电压Uab。此时按“▲”“▼”键可切换显示“B相、C相”及电压值,即B、C相线电压Ubc;或“A相、C相”及电压值即A、C相之间线电压Uac。

JL-410交流电路继电器技术参数

额定控制电压Ue ·相电压

·线电压

AC-220V

AC-380V

功耗2VA

供电压电压误差-30% (30)

供电电压频率50/60Hz

供电时间100%

监视功能过/欠电压、相序、缺相、不平衡

测量范围相电压:150/300V 线电压:280/500V

阀值可调

过/欠电压迟滞10V

测量频率50/60Hz±10%

电压响应时间50ms

供电误差范围内测量误差≤0.5%

温度范围内测量误差0.06%/℃

过/欠电压0.1-25S范围可调相序1S

缺相1S

三相电压不平衡1-25s

产品标准IEC255-6、EN60255-6 EMC导则89/366/EEC

CE标志测量和控制继电器符合欧洲相关的CE 标准

正常供电电压显示工作电压值输出继电器动作显示故障信息

过电压故障显示【过压】,数字窗显示最大相电压值

欠电压故障显示【欠压】,数字窗显示最小相电压值

缺相故障显示【缺相】,数字窗显示000 相序故障显示【相序】,数字窗显示电压值

三相电压不平衡故障显示【不平衡】,数字窗显示最小相电压值

输出回路 95/96 97/98

触点数量2C/O触点动作原则闭路原则触点材料AgNi

额定电压VDE0110、IEC 6094-1 250V

最大开关电压440V

额定开关电流(IEC 60947-5-4) AC-12(阻性)230V 5A AC-15(感性)230V 3A AC-12(阻性)24V 5A AC-13(感性)24V 2A

机械寿命30×106次电气寿命AC-12,230V,4A 0.1×106次

导线载面面职1、0.75-1.5mm带压线端子多股软导线,

2、0.52-4mm (2×20-12awg)硬线

安装位置任何

防护等级IP50/IP20 工作温度-20 (60)

储存温度-40 (85)

允许相对温度范围符合IEC60721-3-3 15…85%环境等级3K3

复位功能过电压、欠电压、不平衡自动复位,相序、缺相手动复位

安装96 x96面板式(开孔尺寸91x91mm)电磁兼容

静电放电(ESD)IEC/EN61000-4-2 Level3-6kV/8kV

射频辐射IEC61000-4-3、EN61000-4-3 Level3-10V/m

瞬变冲击IEC61000-4-4、EN61000-4-4 Level3-2kV/5kHz

浪涌IEC1000-4-5、EN61000-4-4 Level4-2kVL-L

射频传导发射Level3-10V

低压导则73/23/EEC

机械振动IEC600-68-2-6 6g

供电回路、监视回路、输出回路间额定绝缘电压

VDE0110、IEC60947-1

1000V

所有隔离回路的额定冲击耐受电压Uimp

VDE0110、IEC664

测量回路:6KV输出回路:4KV 所有隔离回路间试验电压 2.5KV 50Hz 1min

污染等级VDE0110、IEC664、IEC-255-5 Ⅲ

过电压等级VDE0110、IEC664、IEC-255-5 Ⅲ

环境试验IEC68-2-30 24小时循环、55℃、相对湿度93%、96h

JL-410交流电路继电器工作原理

被检测的三相电源连接于继电器L1 L2 L3端子上。无须提供一个单独的电源给继电器,它们通过端子L1 L2 L3自供电。

相序保护

相序监测:当交流电路继电器通电时,如果相序正确并且所有三相带电,继电器吸合。

过压/欠压

A:“过压”字符闪烁 B:“过压”字符长亮 C/D:“欠压”字符闪烁 E:“欠压”字符长亮

过压和欠压检测:在正常工作条件下,交流电路继电器通电,如果三个线电压中其中有一个线电压超出监测范围,输出继电器延时释放,显示过压或欠压故障信息。延时期间,故障信息闪烁;输出继电器释放后,故障信息长亮。当电压返回额定值,继电器根据滞后值10V重新吸合并且过压或欠压故障信息消失。设置按键可以进0.1s到25s的可延时调整。为了检测过压或欠压的持续时间必须大于测量周期(80ms)。

缺相保护

缺相检测:当缺相故障时,输出继电器断电。正常工作(无故障)时继电器吸合。

不平衡

A、B、C:“不平衡”字符闪烁 D:“不平衡”字符长亮

不平衡检测:在正常工作条件下,输出继电器吸合。当出现不平衡故障时,经过设定的延时动作时间后。输出继电器释放,屏幕显示不平衡故障。

JL-410交流电路继电器外形尺寸:

JL-410交流电路继电器接线图:

主操作界面 开孔尺寸

QS :隔离开关QF :断路器断路器分励脱扣线圈

9798L1

三相三线制分励脱扣器接线图KM

L1

KM

负载三相三线制交流接触器接线图

QF :断路器

KM :交流接触器

如(图1)所示,为保护器的主操作界面。主操作界面由LCD、背光以及按键组成。按键的功能定义如下:

(图1)

设置键

在查询模式下,持续按设置键1.5秒,系统将进入设置模式。

在设置模式下,将按照“过压值、过压动作时间、欠压值、欠压动作时间、不平衡度、不平衡动作时间、相序开关、故障查询”的顺序,依次切换当前设置。

▲键

在查询模式下改变当前显示的线电压。按照“AB – BC – AC”的顺序,每按▲一次,改变一次显示的线电压对应的数据,如(图2)所示。

(图2)

在设置模式下对各项功能进行开启关闭操作。如果当前功能为OFF,则按▲后变为ON,再次按▲后变为OFF依次循环,如(图3)所示。

(图3)

在设置模式下对当前数值进行增操作。每按▲一次,数值在限定范围内加1。持续按下超过1秒钟,数值会以10倍速度增加,如(图4)所示。

(图4)

▼键

在查询模式下改变当前显示的线电压。按照“AC – BC – AB”的顺序,每▼按一次,改变一次显示的线电

压对应的数据。

在设置模式下对各项功能进

行开启关闭操作。如果当前功能为ON,则按▼后变为OFF,再次按▼后变为ON,依次循环。

在设置模式下对当前数值进行减操作。每按▼一次,数值在限定的范围内减1。持续按下超过1秒钟,数值会以10倍速度减少。

复位键

在故障状态下,按一次复位,系统复位。

操作方法

查询

保护器上电后,默认显示AB线电压。如需查询BC,AC线电压,可以操作▲, ▼键进行查询。每按一次▲键,当前线电压正向切换为下一个线电压,顺序为“AB – BC – AC –AB……”。每按一下▼键,则逆向切换,顺序为“AB – AC –BC – AB ……”。

复位

在非设置状态,按复位键,保护器将复位。

设置

任何时候,按下设置键,保护器进入设置模式。首先进行相序保护功能的设置,如图5所示。

如图5所示,为过压值设置界面。过压值设置只有在过压功能开启之后才会出现。默认过压为关闭(OFF)。过压值的设置范围为390V – 490V–OFF。按▲一次增1,按▼一次减1。持续按下▲不放超过1秒,数值会以10倍速度增加。同样的,按下▼不放持续1秒,数值会以10倍速度减少。在设置好所需要的过压值后,按设置键保存参数,并且进入过压动作时间的设置。

(图5)

如图6所示,为过压动作时间设置界面。过压动作时间只有在过压功能开启之后才会出现。过压动作时间的设置范围为0.1s – 25s。默认为10.0s。按一次▲增加0.1s,按一次▼减少0.1s。持续按下▲则以10倍速度增加,持续按下▼则以10倍速度减少。在设置好过压动作时间后,按设置键保存参数,并且进入欠压功能设置。

(图6)

如图7所示,为欠压值设置界面。欠压值必须在欠压保护功能开启之后才能出现。欠压值的设置范围为300V – 370V。默认欠压为关闭(OFF)。如果改变,按▲键一次,数值增1,按▼键一次,数值减1;持续按下▲,数值以10倍速度增加。持续按下▼键,数值以10倍速度减小。欠压值调整好后,按设置键保存当前参数,并进入欠压动作时间设置。

(图7)

如图8所示,为欠压动作时间设置界面。欠压动作时间必须在欠压保护功能开启之后才能出现。欠压保护时间的设置范围为0.1s – 25s。操作方法同上,按设置键保存当前参数,并进入不平衡功能设置。

(图8)

如图9所示,为不平衡度设置界面。不平衡度必须在不平衡保护功能开启之后才会出现。不平衡度的设置范围为OFF-5% -30%。这里,修改不平衡度的方法如上,不在赘述。按设置键保存当前参数,进入不平衡动作时间设置。

(图9)

如图10所示,为不平衡动作时间设这界面。不平衡动作时间必须在不平衡保护功能开启之后才会出现。不平衡动作时间设置范围为1s – 25s。按▲一次,增加1s;按▼一次,减少1s;持续按▲,数值以10倍速度增加;持续按下▼,数值以10倍速度减少。按设置键保存当前参数,进入设置相序开关。

(图10)

如图11所示,为相序功能设置界面。默认,相序保护功能关闭,LCD显示OFF。如需开启,可以按▲键,或者▼键将其设置为ON。按设置键,保存当前相序参数,并且进入故障查询界面。

(图11)

如图12所示,为故障查询界面。

右边数字为最近第几次的故障记录,按设置键键入记录的数据内容,如图13,此时可以按▲键,或者▼键查看三相电压数据。

(图12)

(图13)

如图14所示,为准备退出界面。表示所以参数设置完毕,按设置设置键将退出设置模式,保护器按照新设置的参数运行。

图14

报警

15秒内没有任何操作,保护器自动关闭背光。故障发生后,蜂鸣器发声,继电器动作,背光1秒钟闪烁一次,LCD锁定故障显示。

自动退出

在设置模式下,30秒没有任何操作,保护器将退出设置模式。

三相晶闸管交流调压电路的设计与仿真

目录 1设计任务及分析 (1) 1.1 电路设计任务 (1) 1.2 电路设计的目的 (1) 2.1 主电路的原理分析 (2) 3 MATLAB建模与仿真 (5) 3.2 参数设置 (6) 3.3 仿真结果及分析 (7) 总结 (8) 参考文献 (9)

三相晶闸管交流调压电路的设计与 仿真 1设计任务及分析 1.1 电路设计任务 (1)用simulink设计系统仿真模型;能够正常运行得到仿真结果。 (2)比较理论分析结果与仿真结果异同,总结规律。 (3)设计出主电路结构图和控制电路结构图。 (4)根据结构图设计出主电路图和控制电路图,对主要器件进行选型。 1.2 电路设计的目的 电力电子装置及控制是我们大三下学期学的一门很重要的专业课,课本上讲了很多电路,比如各种单相可控整流电路,斩波电路,电压型逆变电路,三相整流电路,三相逆变电路,等各种电路,通过对这些电路的学习,让我们知道了如何将交流变为直流,又如何将直流变为交流。并且通过可控整流调节输出电压的有效值,以达到我们的目的。而本次三相交流调压电路的设计与仿真,我们需要用晶闸管的触发电路来实现调节输入电压的有效值,然后加到负载上。本次课程设计期间,我们自己通过老师提供的Matlab仿真技术的资料和我们在网上搜索相关的资料,到图书馆查阅书籍,以及同学之间的相互帮助,让我们学到了很多知识。通过对主电路的设计与分析,对晶闸管触发电路的设计与分析,了解了他们的工作原理,知道了该电路是如何实现所要实现的功能的,把课堂所学知识运用起来,使我更能深刻理解所学知识,这让我受益匪浅。通过写课程设计报告,电路的设计,提高了我的能力,为我以后的毕业设计以及今后的工作打下了坚实的基础。 2 主电路的设计

继电器驱动电路设计

毕业设计(论文) 题目:继电器驱动电路设计系: 专业班级: 学生姓名: 指导教师: 20XX年X月

内蒙古电子信息职业技术学院毕业设计(论文)继电器驱动电路设计 继电器驱动电路设计 摘要 近年来,随着电子信息产业的快速发展,继电器已经渗入到生活的各个领域,它是很难找到哪些领域没有继电器的痕迹。继电器,广泛应用于家电,通讯,汽车,仪器仪表,机械设备,航空航天自动化和控制领域。最近的统计数据显示,继电器已经成为不可缺少的开关控制器件。 本设计研究继电器的驱动原理,并据此设计出继电器驱动电路。 关键词:继电器驱动电路

目录 第1章绪论 (3) 1.1项目背景 (3) 1.2 红外遥控的发展 (3) 1.3 项目背景和建设意义 ............................................ 错误!未定义书签。第二章几种常用红外遥控器协议 (8) 2.1 NEC 协议 (8) 2.2 Nokia NRC1协议 ..................................................... 错误!未定义书签。 2.3 Philips RC-5 协议 .................................................... 错误!未定义书签。 2.4 ITT协议................................................................. 错误!未定义书签。 2.5 Sharp协议.............................................................. 错误!未定义书签。第三章红外遥控发射电路 (8) 3.1 HT6221芯片介绍.................................................. 错误!未定义书签。 3.2 HT6221应用电路.................................................. 错误!未定义书签。 3.3 HT6221键码生成方式............................................. 错误!未定义书签。 3.3.1 HT6221键码的形成........................................... 错误!未定义书签。 3.3.2 代码格式 ............................................................. 错误!未定义书签。

电力电子课程设计单相交流调压电路

电力电子课程设计单相交流调压电路电力电子 课程设计说明书 题目: 单相交流调压电路课程设计 院系: 水能 专业班级: 学号: 学生姓名: 摘要 交流调压电路广泛用于灯光控制(如调光灯和舞台灯光控制)及异步电动机的软启动,也用于异步电动机调速。在电力系统中,这种电路还常用于对无功功率的连续调节。此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。在这些电源中如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源需要很多晶闸管并联。这都是十分不合理的。采用交流调压电路在变压器一次侧调压,其电压、电流值都比较适中,在变压器二次侧只要用二极管整流就可以了。这样的电路体积小、成本低、易于设计制造。单相交流调压电路是对单相交流电的电压进行调节的电路。用在电热制、交流电动机速度控制、灯光控制和交流稳压器等合。与自耦变压器调压方法相比,交流调压电路控制简便,调节速度快,装置的重量轻、体积小,有色金属耗也少。 目录

1、电路设计的目的及任 务 .................................................................... 1 1.1课程设计的目的与要 求 (1) 1.2课程设计的内 容 ..................................................................... (1) 1.3仿真软件的使 用 ..................................................................... (2) 1.4设计方案选 择 ..................................................................... ....... 2 2、单相交流调压主电路设计及分 析 (3) 2.1 电阻性负 载 ..................................................................... (3) 2.1.1 电阻性负载的交流调压器的原理分析 (3) 2.1.2 结果分 析 ..................................................................... (6)

继电器原理及可靠性应用

在电子元器件中,继电器一般被认为是一种最不可靠的电子元件,在整机可靠性设计中,把继电器、电位器、可调电感器及可变电容器列为建议不用或少用的元件。 但是,由于继电器在控制电路中有独特的电气、物理特性,其断态的高绝缘电阻和通态的低导通电阻,使得其它任何电子元器件无法与其相比,加上继电器标准化程度高、通用性好、可简化电路等优点,所以继电器广泛应用在航天、航空、军用电子装备、信息产业及国民经济的各种电子设备中。随着科技的飞速发展,继电器在程控通信设备中的使用量还在进一步增加,所以,如何保证继电器的可靠性,满足整机系统的可靠性,成为人们关洋的焦点。 电子元器件的可靠性应由两部分组成,一是元器件的固有可靠性;二是元器件的使用可靠性。固有可靠性是元器件可靠性的基础,主要靠元器件制造商从设计、制造等方面进行有效的控制,以保证制造出来的元器件达到要求的可靠性等级。使用可靠性则是从使用入手,如何保证和提高元器件的可靠性,使其能满足整机系统的可靠性要求。没有高可靠质量等级的元器件,不可能制造出高可靠的电子设备,所以元器件的固有可靠性是整机可靠性的基础。但是,有了高可靠质量等级的元器件也并不一定能制造出高可靠的整机,这里面就有一个使用可靠性的问题。所谓使用可靠性,就是根据各种元器件的特点利用可靠性设计技术,即元器件的合理选用、降额设计、容差与漂移设计、抗振设计、热设计、三防设计、抗幅射设计、电磁兼容设计、人机工程设计及维修设计等,最大限度的发挥元器件固有可靠性的作用,以达到整机系统的可靠性要求。 根据有关部门对整机失效原因的分析统计,其中有百分之四十以上的故障是由于元器件选用不合理造成的。随着元器件制造技术的不断提高,在元器件的固有可靠性已经有了较大提高的情况下,使用可靠性就显得特别重要,而且,随着整机系统功能愈来愈全,所用元器件愈来愈多,对可靠性要求也愈来愈高,所以使用可靠性也愈来愈受到科技界的重视,并且发展成一门新的学科——人为工程。 由于继电器是一种机电一体化的元件,是由电磁及机械传动部份组成的,与其它电子元件相比,要复杂得多,加之在制造过程中有些装配调整是手工操作,所以产品的一致性和可靠性要差一些。但是,如果在使用中采取一些防范措施,仍能达到较满意的效果。在对失效继电器进行失效分析中发现,由于使用原因造成的失效约占百分之三十以上。由以上分析可知,继电器可靠性不高,除自身质量原因外,使用不当也是一个主要原因。现在,我们重点研究如何在使用中提高继电器可靠性的措施。继电器的种类较多,这里重点研究目前使用较多的电磁继电器的使用可靠性。 2合理选择继电器 在整机的可靠性设计中,要求合理选用元器件。元器件的选择和控制是需要多学科知识才能完成的一项任务,一般应由元器件工程师、可靠性设计师、总体及电路设计师、失效分析人员共同完成。首先要根据整机系统的重要程度、可靠性要求、所使用的环境条件及成本等项要求综合考虑和选择。选择时必须重视以下几个方面的要求。 2.1对使用环境条件的选择 环境条件主要指温度、湿度、低气压、振动、冲击等。环境条件的好坏对继电器可靠性的影响极大。 2.1.1温度对继电器的影响 继电器是怕热元件,在美军标MIL—HDBK—217《电子设备可靠性预计手册》中的14种主要电子元器件的失效数据中,有8种元器件的失效率取决于环境温度,其中就包括继电器。高温可加速继电器内部塑料及绝缘材料的老化、触点氧化腐蚀、熄弧困难、电参数

继电器控制电路图

继电器控制电路图 [日期:2008-12-07 ] [来源:东哥单片机学习网https://www.doczj.com/doc/ec6871554.html, 作者:佚名] [字体:大中小] (投递新闻) 继电器控制电路图在人们的习惯中,总认为CMOS集成块不能直接带动继电器工作,但实验证明,部分CMOS集成块不仅能直接带动继电器工作,而且工作稳定可靠。实验中所用继电器的型号为JRC5M-DC12V微型密封继电器(其线圈电阻为750Ω)。现将CD4066 CMOS集成块带动继电器的工作原理分析如下: 电路中,继电器线圈两端均反相并联了一只二极管,它是用于保护集成块的,切不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施 常常因为电源电压低于继电器的吸合电压而使其不能正常工作,事实上,继电器一旦吸合,便可在额定电压的一半左右可靠地工作。因此,可以在开始时给继电器一个启动电压使其吸合,然后再让其在较低的电源电压下工作,如图所示的电路便可实现此目的。

制作本电路时,一般可取继电器的额定电压为电源电压的1.5倍左右,一般情况下,任何型号的单向可控硅(或双向可控硅)皆可满足本电路需要。V2、C1、C3的耐压视电源电压的高低选取。C2耐压最好不低于电源电压的两倍。 继电器的三种附加电路 继电器是电子电路中常用的一种元件,一般由晶体管、继电器等元器件组成的电子开关驱动电路中,往往还要加上一些附加电路以改变继电器的工作特性或起保护作用。继电器的附加电路主要有如下三种形式: 1.继电器串联RC电路:电路形式如图1,这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。原理是电路闭合的瞬间,电容C两端电压不能突变可视为短路,这样就将比继电器线圈额定工作电压高的电源电压加到线圈上,从而加快了线圈中电流增大的速度,使继电器迅速吸合。电源稳定之后电容C不起作用,电阻R起限流作用。 2.继电器并联RC电路:电路形式见图2,电路闭合后,当电流稳定时RC电路不起作用,断开电路时,继电器线圈由于自感而产生感应电动势,经RC电路放电,使线圈中电流衰减放慢,从而延长了继电器衔铁释放时间,起到延时作用。 3.继电器并联二极管电路:电路形式见图3,主要是为了保护晶体管等驱动元器件。当图中晶体管VT由导通变为截止时,流经继电器线圈的电流将迅速减小,这时线圈会产生很高的自感电动势与电源电压叠加后加在VT的c、e两极间,会使晶体管击穿,并联上二极管后,即可将线圈的自感电动势钳位于二极管的正向导通电压,此值硅管约0.7V,锗管约0.2V,从而避免击穿晶体管等驱动元器件。并联二极管时一定要注意二极管的极性不可接反,否则容易损坏晶体管等驱动元器件。 无电感式模拟继电器 本文介绍一种无电感式模拟继电器,其电路原理如下图所示。

单相交流调压电路课程设计

新疆工业高等专科学校电气系课程设计说明书 题目:单项交流调压电路(反并联)设计(纯电阻负载) 专业班级: 学生姓名: 指导教师: 完成日期:2012-6-8

新疆工业高等专科学校 电气系课程设计任务书 2012学年2学期2012年6月6日专业供用电技术班级课程名称电力电子应用技术 设计题目单项交流调压电路(反并联)设计(纯电阻 负载) 指导教师 起止时间2012-6-4至2012-6-8周数一周设计地点新疆工程学校设计目的: 设计任务或主要技术指标: 设计进度与要求: 主要参考书及参考资料: 教研室主任(签名)系(部)主任(签名)年月日

新疆工业高等专科学校电气系 课程设计评定意见 设计题目:单相交流调压(反并联)设计(纯电阻负载) 学生姓名:专业班级供电 评定意见: 评定成绩: 指导教师(签名):年月日 评定意见参考提纲: 1.学生完成的工作量与内容是否符合任务书的要求。 2.学生的勤勉态度。 3.设计或说明书的优缺点,包括:学生对理论知识的掌握程度、实践工作能力、表现出的创造性和综合应用能力等。

前言 电力电子线路的基本形式之一,即交流—交流变换电路,它是将一种形式的交流电能变换成另一种形式交流电能电路。在进行交流—交流变换时,可以改变交流电的电压、电流、频率或相位等。用晶闸管组成的交流电压控制电路,可以方便的调节输出电压有效值。可用于电炉温控、灯光调节、异步电动机的启动和调速等,也可用作调节整流变压器一次侧电压,其二次侧为低压大电流或高压小电流负载常用这种方法。采用这种方法,可使变压器二次侧的整流装置避免采用晶闸管,只需要二极管,而且可控级仅在一侧,从而简化结构,降低成本。交流调压器与常规的交流调压变压器相比,它的体积和重量都要小得多。交流调压器的输出仍是交流电压,它不是正弦波,其谐波分量较大,功率因数也较低。

继电器控制电路模块及原理讲解

继电器控制电路模块及原理讲解 发布: 2011-9-8 | 作者: —— | 来源:huangguohai| 查看: 564次| 用户关注: 能直接带动继电器工作的CMOS集成块电路在电子爱好者认识电路知识的的习惯中,总认为CMOS 集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-DC12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066CMOS集成块带动继电器的工作原理分析如下:CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的 能直接带动继电器工作的CMOS集成块电路 在电子爱好者认识电路知识的的习惯中,总认为CMOS集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-D C12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066CMOS集成块带动继电器的工作原理分析如下: CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SC R2~SCR4输入高电平或低电平时状态与SCR1相同。 本电路中,继电器线圈的两端均反相并联了一只二极管,它是用来保护集成电路本身的,千万不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施

单相交流调压电路设计

1 设计目的和要求分析 设计一个单相交流调压电路,要求触发角为45 度. 反电势负载E=40伏,输入交流U2=210伏。分有LB和没有LB两种情况分析.L足够大,C足够大要求分析: 1. 单相交流调压主电路设计,原理说明; 2.触发电路设计,每个开关器件触发次序与相位分析; 3.保护电路设计,过电流保护,过电压保护原理分析; 4.参数设定与计算(包括触发角的选择,输出平均电压,输出平均电流,输出有功功率计算,输出波形分析,器件额定参数确定等可自己添加分析的参数) ; 由以上要求可知该系统设计可分为四个部分:交流调压主电路设计、触发电路设计、保护电路设计及相关计算和波形分析部分。下面分别做详细的介绍。 2 设计方案选择采用两个普通晶闸管反向并联设计单相交流调压电路 3 单相交流调压主电路设计及分析 所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。交流调压电路广泛用于灯光控制及异步电动机的软启动,也用于异步电动机调速。此外,在高电压小电流或低电压大电流之流电源中,也常采用交流调压电路调节变压器一次电压。本次课程设计主要是研究单相交流调压电路的设计。由于交流调压电路的工作情况与负载的性质有很大的关系,因此下面就反电势电阻负载予以重点讨论。 1

图1、图2分别为反电势电阻负载单相交流调压电路图及其波形。图中的晶 闸管VT1 和VT2 也可以用一个双向晶闸管代替。在交流电源U2的正半周和负半周,分别对VT1 和VT2 的移相控制角进行控制就可以调节输出电压。 图1 反电势电阻负载单相交流调压电路图图2 输入输出电压及电流波形图 正、负半周起始时刻(=0),均为电压过零时刻。在t 时,对VT1施加触发脉冲,当VT1正向偏置而导通时,负载电压波形与电源电压波形相同;在 t 时,电源电压过零,因电阻性负载,电流也为零,VT1 自然关断。在 t 时,对VT2 施加触发脉冲,当VT2正向偏置而导通时,负载电压波形 与电源电压波形相同;在t 2 时,电源电压过零,VT2自然关断。 当电源电压反向过零时,由于反电动势负载阻止电流变化,故电流不能立即为零,此时晶闸管导通角的大小,不但与控制角有关,而且与负载阻抗角 有关。两只晶闸管门极的起始控制点分别定在电源电压每个半周的起始点。稳态时,正负半周的相等,负载电压波形是电源电压波形的一部分,负载电流(电源电流) 和负载电压的波形相似。 4 触发电路设计

继电器的结构和工作原理及应用举例

继电器的结构和工作原理及其在电机控制中的应用举例 一、继电器的结构和工作原理 图l-2a是继电器结构示意图,它主要由电磁线圈、铁心、触点和复位弹簧组成。继电器有两种不同的触点,于断开状态的触点称为常开触点(如图1-2中的触3,4),处于闭合状态的触点称为常闭触点(如图1-2中的触点当线圈通电时,电磁铁产生磁力,吸引衔铁,使常闭触点断开,常开触点闭合。线圈电流消失后,复位弹簧的位置,常开触点断开,常闭触点闭合。图l-2b是继电器的线圈、常开触点和常闭触点在电路图中的符号。一若干对常开触点和常闭触点。在继电器电路图中,一般用相同的由字母、数字组成的文字符号(如KA2)来标注同圈和触点。

二、接触器在电机控制中的应用 图1—3是用交流接触器控制异步电动机的主电路、控制电路和有关的波形图。接触器的结构和工作原理与继电区别仅在于继电器触点的额定电流较小,而接触器是用来控制大电流负载的,例如它可以控制额定电流为几十安电动机。按下起动按钮SBl,它的常开触点接通,电流经过SBl的常开触点和停止按钮SB2、作过载保护用的热闭触点,流过交流接触器KM的线圈,接触器的衔铁被吸合,使主电路中的3对常开触点闭合,异步电动机M 通,电动机开始运行,控制电路中接触器KM的辅助常开触点同时接通。放开起动按钮后,SBl的常开触点断开辅助常开触点和SB2、FR的’常闭触点流过KM的线圈,电动机继续运行。KM的辅助常开触点实现的这种功或“自保持”,它使继电器电路具有类似于R-S触发器的记忆功能。 在电动机运行时按停止按钮SB2,它的常闭触点断开,使KM的线圈失电,KM的主触点断开,异步电动机断,电动机停止运行i同时控制电路中KM的辅助常开触点断开。当停止按钮SB2被放开,其常闭触点闭合后,失电,电动机继续保持停止运行状态。图1.3给出了有关信号的波形图,图中用高电平表示1状态(线圈通电、低电平表示0状态(线圈断电、按钮被放开)。 图1.3中的控制电路在继电器系统和PLC的梯形图中被大量使用,它被称为“起动-保持-停止”电路,或简称路。

相控式单相交流调压电路设计

集美大学 电力电子课程设计报告题目:相控式单相交流调压电路设计 姓名: 学号: 学院: 专业班级: 指导教师: 时间:

2015年6月19日 目录: 0 概述-------------------------------------------------------------1 1 设计的目的-------------------------------------------------------1 2 设计的任务及要求-------------------------------------------------2 2.1 设计任务--------------------------------------------------- 2 2.2 设计要求--------------------------------------------------- 2 3主电路总体方案设计------------------------------------------------ 2 3.1 总体方案设计思路--------------------------------------------2 3.2 主电路工作原理----------------------------------------------3 3.2.1 主电路工作情况分析------------------------------------3 3.2.2 负载电流分析------------------------------------------4 3.3 主电路参数计算及元器件选择----------------------------------6 3.3.1 主电路参数计算----------------------------------------6 3.3.2 主电路元器件的选型------------------------------------7 3.3.3 芯片的详细介绍----------------------------------------8 4 基于MATLAB/Simulink的仿真设计-----------------------------------9 4.1 仿真模型建立------------------------------------------------9

继电器控制继电器形成自锁互锁电路怎么完成

继电器控制继电器形成自锁互锁电路怎么完成 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

继电器控制继电器形成自锁互锁电路怎么完成. 实现自锁和互锁都要用继电器的辅助触点来完成的,首先你要明白什么叫做自锁,什么叫做互锁,自锁就是用自己的触头将本接触器线圈回路的按钮开关给短接掉,在按钮开关松开以后使得线圈回路不断开,这就是自锁。这样你就可以利用继电器的常开触点并联在按钮开关上,这样当按钮按下时继电器线圈得电,继电器动作,常开触点闭合,这样在松开按钮以后由于继电器的常开触点已经比合了,即使松开按钮,继电器一样得电,这就完成了自锁,互锁:互锁就是由两个或者两个以上的接触器完成的相互有逻辑关系的控制电路,比如继电器2的线圈通过继电器1的常闭触电以后才接通电源,那么如果接触器1一旦动作,那么接触器2就永远不会动作,这就是互锁,这是最简单的互锁,就是由一个控制另一个或着很多个的动作与否!!! 自锁是用继电器常开触点并联到启动按钮上,按下启动按钮接触器吸合,常开触头导通这时松开按钮电流从触点导通,能够实现自锁。 互锁是把A线圈串连到B的常闭触头上。B吸合时常闭触头断开,A线圈是不可能再吸合。只有B断开了,它的常闭触头复位导通后A线圈才有可能导通。 自锁:是继电器的常开触点控制自己的线圈,能在点动后继续工作,而有一个停止按键可以将它停止。 互锁:是继电器A的常闭点控制这继电器B的线圈。A工作,B不能工作。反之依然。 自锁:继电器自身的常开触电和控制继电器线圈的开关并联; 互锁:两个继电器各自的常闭触点和另外一个继电器的线圈串联 继电器自锁可以通过把继电器常开触点与控制线圈串连解决。

继电器的用法

继电器驱动应用 一、实验目的 掌握继电器驱动的方法 二、实验原理 什么是继电器呢?这个东西很常见,在电子设备以及电力系统中的应用都很广泛,简单的来就是一种用小电流来控制大电流的开关。小电流通过线圈,产生磁场,这个磁场使得控制大电流的开关吸合。从而使得人们能够安全的超控大电流大电压设备。 继电器原理 继电器是一种电子控制器件,它具有控制系统和被控制系统通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。 继电器的选择 先了解必要的条件: ①控制电路的电源电压,能提供的最大电流; ②被控制电路中的电压和电流; ③被控电路需要几组、什么形式的触点。 选用继电器时,一般控制电路的电源电压可作为选用的依据。控制电路应能给继电器提供足够的工作电流,否则继电器吸合是不稳定的。 查阅有关资料确定使用条件后,可查找相关资料,找出需要的继电器的型号和规格号。若手头已有继电器,可依据资料核对是否可以利用。最后考虑尺寸是否合适。 继电器驱动 1、晶体管驱动

继电器控制电路模块及原理讲解

能直接带动继电器工作的CMOS集成块电路 在电子爱好者认识电路知识的的习惯中,总认为CMOS集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-DC12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066 CMOS集成块带动继电器的工作原理分析如下: CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SCR2~SCR4输入高电平或低电平时状态与SCR1相同。 本电路中,继电器线圈的两端均反相并联了一只二极管,它是用来保护集成电路本身的,千万不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施 常常因为电源电压低于继电器的吸合电压而使其不能正常工作,事实上,继电器一旦吸合,便可在额定电压的一半左右可靠地工作。因此,可以在开始时给继电器一个启动电压使其吸合,然后再让其在较低的电源电压下工作,如图所示的电路便可实现此目的。 工作原理: 如图所示。V1为单结晶体管BT33C

,它与R1、R2、R3和C1组成一个张弛式振荡器,SCR为单向可控硅,按下启动按钮AN1后,电路通电,因为SCR无触发电压,所以不导通,继电器J不动作,电源通过R4和VD1给电容C2迅速充电至接近电源电压(Vcc-VD1压降)。同时,电源经R1给电容C1充电。数秒后,C1上电压充到V1的触发电压,C1立即通过V1放电,在R3上形成一个正脉冲,该脉冲一路加到V2基极,使V2迅速饱和导通,V2集电极也即电容C2正极近于接地。由于此时C2上充有上正下负的正极性电压,所以C2负极也即J线圈一端呈负电位。R3上的正脉冲另一路经VD2、C3去触发可控硅导通,SCR阴极也即J线圈另一端接近电源电压。这时,J线圈实际上承受约两倍的电源电压,所以J1-1闭合,松开AN1后,J1-1自保。J1-2将V1、V2供电切断,继电器在接近电源电压下工作。图中,AN2为停止按钮,按下AN2,J失电释放,J1-1断开,整个控制电路失电。 制作本电路时,一般可取继电器的额定电压为电源电压的1.5倍左右,一般情况下,任何型号的单向可控硅(或双向可控硅)皆可满足本电路需要。V2、C1、C3的耐压视电源电压的高低选取。C2耐压最好不低于电源电压的两倍。 继电器的三种附加电路 继电器是电子电路中常用的一种元件,一般由晶体管、继电器等元器件组成的电子开关驱动电路中,往往还要加上一些附加电路以改变继电器的工作特性或起保护作用。继电器的附加电路主要有如下三种形式: 1.继电器串联RC电路: 电路形式如图1,这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。原理是电路闭合的瞬间,电容C两端电压不能突变可视为短路,这样就将比继电器线圈额定工作电压高的电源电压加到线圈上,从而加快了线圈中电流增大的速度,使继电器迅速吸合。电源稳定之后电容C不起作用,电阻R起限流作用。 2.继电器并联RC电路: 电路形式见图2,电路闭合后,当电流稳定时RC电路不起作用,断开电路时,继电器线圈由于自感而产生感应电动势,经RC电路放电,使线圈中电流衰减放慢,从而延长了继电器衔铁释放时间,起到延时作用。 3.继电器并联二极管电路: 电路形式见图3,主要是为了保护晶体管等驱动元器件。当图中晶体管VT由导通变为截止时,流经继电器线圈的电流将迅速减小,这时线圈会产生很高的自感电动势与电源

继电器控制电路锁电路图解

继电器控制电路互锁电路图解 在继电器控制电路中,常会遇到互锁的问题。 一、互锁的作用互锁的作用是为了避免接触器、继电器的主回路中的触点竞争所产生的不良后果。通常情况下是指为了避免接触器的主触点上的相间短路。 二、互锁中的功能控制回路是操作功能,是按工艺要求设计出来的。互锁的作用只是为了避免触点的竞争,它不能引起操作功能出错。这一点尤为重要。 1、不可互换工作的互锁不可互换工作的互锁电原理图如下:

不可互换工作的互锁其工作原理是:当KM1闭合后,其常闭触点断开,使其KM2的控制回路不起作用。同理,当KM2闭合后,其常闭触点断开,使其KM1的控制回路不起作用。它的功能是:当KM1在工作时,不能通过SB3直接使KM1停止而让KM2工作,而必须先按下停止钮SB1后,才能通过SB3的操作让KM2工作。同理,当KM2在工作时,不能通过SB2直接使KM2停止而让KM1工作,而必须先按下停止钮SB1后,才能通过SB2的操作让KM1工作。这是不可互换工作的互锁方式的工作特点:如当KM1在执行某一工作且必须完成的状况下,才能停止下来,而后KM2才能工作。同理,如当KM2在执行某一工作且必须完成的状况下,才能停止下来,而后KM1才能工作。

2、可互换工作的互锁可互换工作的互锁电原理图如下: 可互换工作的互锁其工作原理是:当KM1闭合后,其常闭触点断开,使其KM2的控制回路不起作用。同理,当KM2闭合后,其常闭触点断开,使其KM1的控制回路不起作用。它的功能是:当KM1在工作时,可通过SB3直接使KM1停止而让KM2工作,不必先按下停止钮SB1。同理,当KM2在工作时,可通过SB2直接使KM2停止而让KM1工作,不必先按下停止钮SB1。 这是可互换工作的互锁方式的工作特点:如当KM1在执行某一工作过程中,可直接通过SB3使KM1停止而让KM2工作。同理,如当KM2在

【精品】交流调压电路和交流调功电路区别

1.答:交流调压电路和交流调功电路的电路形式完全相同,二者的区别在于 控制方式不同。 交流调压电路是在交流电源的每个周期对输出电压波形进行控制。而交流调 功电路是将负载与交流电源接通几个周波,再断开几个周波,通过改变接通 周波数与断开周波数的比值来调节负载所消耗的平均功率。 交流调压电路广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动 机的软起动,也用于异步电动机调速。在供用电系统中,还常用于对无功功 率的连续调节。此外,在高电压小电流或低电压大电流直流电源中,也常采 用交流调压电路调节变压器一次电压。如采用晶闸管相控整流电路,高电压 小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源 需要很多晶闸管并联。这都是十分不合理的。采用交流调压电路在变压器一 次侧调压,其电压电流值都不太大也不太小,在变压器二次侧只要用二极管 整流就可以了。这样的电路体积小、成本低、易于设计制造。 交流调功电路常用于电炉温度这样时间常数很大的控制对象。由于控制对象 的时间常数大,没有必要对交流电源的每个周期进行频繁控制。 2. 答:TCR是晶闸管控制电抗器。TSC是晶闸管投切电容器。 二者的基本原理如下: TCR 是利用电抗器来吸收电网中的无功功率(或提供感性的无功功率),通过对晶闸管开通角a角的控制,可以连续调节流过电抗器的电流,从而调节TCR 从电网中吸收的无功功率的大小。TSC 则是利用晶闸管来控制用于补偿无功 功率的电容器的投入和切除来向电网提供无功功率(提供容性的无功功率)。二者的特点是: TCR只能提供感性的无功功率,但无功功率的大小是连续的。实际应用中往 往配以固定电容器(FC),就可以在从容性到感性的范围内连续调节无功功率。TSC提供容性的无功功率,符合大多数无功功率补偿的需要。其提供的无功 功率不能连续调节,但在实用中只要分组合理,就可以达到比较理想的动态 补偿效果。 3. 答:单相交交变频电路和直流电动机传动用的反并联可控整流电路的电路 组成是相同的,

基于单片机的继电器控制

目录 0 前言 (1) 1 总体方案设计 (1) 2 硬件电路设计 (2) 2.1单片机系统 (2) 2.1.1 晶振时钟电路 (2) 2.1.2 复位电路 (3) 2.2电流驱动系统 (3) 2.3发光二极管演示系统 (5) 2.4独立键盘系统 (5) 3 软件设计 (6) 3.1软件执行过程 (6) 3.2子程序模块 (6) 4 调试分析 (8) 5 结论及进一步设想 (9) 参考文献 (9) 课设体会 (10) 附录1 电路原理图 (11) 附录2 程序清单 (12)

基于单片机的继电器控制系统设计 胡启洋沈阳航空航天大学自动化学院 摘要:本文设计了一种基于单片机的继电器控制系统,由单片机、继电器、驱动电路、发光二极管、独立键盘等部分组成,主要使用了单片机开发板上STC公司生产的89C54RD+型号单片机及其最小系统、ULN2003A达林顿管驱动芯片、JQC-3F-05VDC-1ZS 型号继电器、四个发光二极管,运用定时器精准定时对继电器开关进行控制,并在继电器输出端使用发光二极管显示。在以上基础上,实现了8路继电器的循环控制功能。 关键词:单片机;继电器;驱动电路。 0 前言 继电器是当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。它可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。继电器具有动作快、工作稳定、使用寿命长、体积小等优点。广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。 继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等。 电磁继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸合的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用下返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,可以这样来区分:继电器线圈为通电时处于断开状态的静触点,成为“常开触点”;处于接通状态的静触点称为“常闭触点”。 1 总体方案设计 针对本课题的设计任务,进行分析得到:本次设计通过单片机I/O口输出高低电平控制继电器的输入端,采用ULN2003A型号的达林顿管驱动芯片加大输入电流,使用内部定时器中断进行精准计时,实现继电器通断时间分别为1秒、2秒的精准控制,并实现通过继电器进行八路发光二级管循环1秒的控制。 该继电器控制系统的设计,在总体上大致可分为以下几个部分组成:1.单片机及其最小系统电路,为了使单片机正常工作,需要加入晶振电路,为了使单片机方便使用,需要

各种继电器图形符号及其作用、特点

6.2.4 继电器 在机电控制系统中,虽然利用接触器作为电气执行元件可以实现最基本的自动控制,但对于稍复杂的情况就无能为力。在极大多数的机电控制系统中,需要根据系统的各种状态或参数进行判断和逻辑运算,然后根据逻辑运算结果去控制接触器等电气执行元件,实现自动控制的目的。这就需要能够对系统的各种状态或参数进行判断和逻辑运算的电器元件,这一类电器元件就称为继电器。 继电器实质上是一种传递信号的电器,它是一种根据特定形式的输入信号转变为其触点开合状态的电器元件。一般来说,继电器由承受机构、中间机构和执行机构三部分组成。承受机构反映继电器的输入量,并传递给中间机构,与预定的量(整定量)进行比较,当达到整定量时(过量或欠量),中间机构就使执行机构动作,其触点闭合或断开,从而实现某种控制目的。 继电器作为系统的各种状态或参量判断和逻辑运算的电器元件,主要起到信号转换和传递作用,其触点容量较小。所以,通常接在控制电路中用于反映控制信号,而不能像接触器那样直接接到有一定负荷的主回路中。这也是继电器与接触器的根本区别。 继电器的种类很多,按它反映信号的种类可分为电流、电压、速度、压力、温度等;按动作原理分为电磁式、感应

式、电动式和电子式;按动作时间分为瞬时动作和延时动作。电磁式继电器有直流和交流之分,它们的重要结构和工作原理与接触器基本相同,它们各自又可分为电流、电压、中间、时间继电器等。下面介绍几种常用的继电器。 1. 中间继电器 中间继电器是用来转换和传递控制信号的元件。他的输入信号是线圈的通电断电信号,输出信号为触点的动作。它本质上是电压继电器,但还具有触头多(多至六对或更多)、触头能承受的电流较大(额定电流5A~10A)、动作灵敏(动作时间小于0.05s)等特点。中间继电器的图形符号如图6.28所示,其文字符号用KA表示。 中间继电器的主要技术参数有额定电压、额定电流、触点对数以及线圈电压种类和规格等。选用时要注意线圈的电压种类和规格应和控制电路相一致。 图6.28 中间继电器的图形符号 2. 电压继电器 电压继电器是根据电压信号工作的,根据线圈电压的大

常用继电器-接触器控制电路解析

常用继电器-接触器控制电路解析 1.利用速度继电器对三相异步电动机反接制动 原理:SB2按下→KM1有电且自锁→电机全压启动,转速很快达到120r/min,此时速度继电器触点动作,为反接制动做好准备→当SB1按下→KM1失电,同时KM2得电并自锁保持,串接制动电阻R反接制动(将电流消耗到电阻R上)→转速迅速下降,当转速小于100r/min时,速度继电器的触点复位→切断KM2,使其失电,制动过程结束。 2.三相异步电动机Y-?起动 原理:SB1(起动按钮)按下→KM1得电并且自锁,同时时间继电器KT得电(开始计时),KM3得电→KM1,KM3得电,三相异步电动机接成Y型起动→当设定的时间到达后,延时继电器KT的延时断开触点使KM3失电,延时继电器KT的延时接通触点使KM2得电→此时KM1得电,KM2得电,KM3失电→三相异步电动机接成?起动。

3.定子串电阻降压启动 原理:SB1按下→KM2得电,并且自锁,同时时间继电器,KT得电开始计时→KM2得电,定子串接电阻R降压启动→当设定的时间到后,KT的延时接通触点使KM1得电,并且自锁→KM1得电,在主电路中相当于短接了电阻R,三相异步电动机全压运行。 4.自耦变压器降压启动(带指示灯) 原理:SB2按下→KM1得电并且自锁,同时KT得电(开始计时)→KM1有电,在主电路中,自耦变压器抽头降压启动→当设定时间到后,延时继电器常开触点闭合,中间继电器K得电并自锁→使得KM1断电,KM2得电→三相异步电动机全压工作。 控制电路中的变压器使指示灯工作在安全电压下(一般,交流36V)→HL3为上电指示灯(K和KM1均不得电);HL2为降压启动指示灯(K失电,但KM1得电);HL3为全压工作指示灯(KM2得电)。

继电器控制电路

三极管驱动继电器电路图分析 利用三极管饱和导通和截止的的特性,本身就可以实现接通和断开的功能,但由于它的带载功率有限,所以需配继电器扩流,并且可以扩充触点的数量,该电路是PNP三极管,所以采用集电极接低电平方式输出,P37为上拉电阻,当基极没有输入脉冲或电压时,基极为高电平,因为这是反极性三极管,所以平时是截止的,只有基极输入低电平,降低基极电压,这时三极管导通,继电器线圈得电吸合,原常闭触点断开,常开触点吸合,完成设备的接通与断开功能。图中二极管反向接在线圈两端,是保护线圈不受反峰电压的冲击,对继电器起到保护作用。 三极管驱动继电器电路 我用的是S9013,请问这个电路该怎样画,S9013是不是一个NPN型三极管,还有我用的是STC89C52芯片。 常用的小型继电器工作电压有5V和12V两种,你使用的时候最好有一个9V或者12V的电压(如果你选12V的继电器,那么电压要再高一些). 单片机IO口输出控制信号,最好采用低电平控制导通的方式,也就是IO口输出0控制导通,1截止,因为IO口的灌电流较大而拉电流能力不足.这时候三极管应该选择PNP的,比如9012,8550之类的. 你选择的9013理论上可行,但实际使用中一般不这么做. 下面是接法:(以PNP三极管为例) 单片机IO口输出控制信号接三极管基极,继电器的线圈正极接三极管的C 极,线圈负极接一个小电阻比如75欧之后接电源负极(也就是继电器一定要在集

电极通路上),三极管的E极接电源正极,然后在线圈的正负极之间并联一个二极管比如1N4007. 三极管驱动继电器 2009-09-23 21:49:47| 分类:Electronic&&Elec | 标签:|字号大中小订阅 继电器线圈需要流过较大的电流(约50mA)才能使继电器吸合,一般的集成电路不能提供这样大的电流,因此必须进行扩流,即驱动。 图1.21所示为用NPN型三极管驱动继电器的电路图,图中阴影部分为继电器电路,继电器线圈作为集电极负载而接到集电极和正电源之间。当输入为0V时,三极管截止,继电器线圈无电流流过,则继电器释放(OFF);相反,当输入为+VCC时,三极管饱和,继电器线圈有相当的电流流过,则继电器吸合(ON)。 图1.21 用NPN三极管驱动继电器电路图 当输入电压由变+VCC为0V时,三极管由饱和变为截止,这样继电器电感线圈中的电流突然失去了流通通路,若无续流二极管D将在线圈两端产生较大的反向电动势,极性为下正上负,电压值可达一百多伏,这个电压加上电源电压作用在三极管的集电极上足以损坏三极管。故续流二极管D的作用是将这个反向电动势通过图中箭头所指方向放电,使三极管集电极对地的电压最高不超过+VCC +0.7V。 图1.21中电阻R1和R2的取值必须使当输入为+VCC时的三极管可靠地饱和,即有。 例如,在图1.21中假设Vcc = 5V,,,则有。 而 则

相关主题
文本预览
相关文档 最新文档