当前位置:文档之家› 成分和组织对衬板钢在腐蚀料浆环境下的冲击磨损性能与机理的影响

成分和组织对衬板钢在腐蚀料浆环境下的冲击磨损性能与机理的影响

成分和组织对衬板钢在腐蚀料浆环境下的冲击磨损性能与机理的影响
成分和组织对衬板钢在腐蚀料浆环境下的冲击磨损性能与机理的影响

第25卷 第3期摩擦学学报V o l25, N o3 2005年5月TRIBOLOGY M ay,2005成分和组织对衬板钢在腐蚀料浆环境下的

冲击磨损性能与机理的影响

丁厚福,崔方明,杜晓东

(合肥工业大学材料科学与工程学院,安徽合肥 230009)

摘要:利用改造后的M L D-10型冲击磨损试验机研究了3种冶金矿山湿磨衬板钢在铁矿石酸性矿浆中的冲击腐蚀磨损行为;采用扫描电子显微镜观察了试样磨损表面形貌,用光学显微镜分析了垂直于试样磨损表面的亚表层金相组织.结果表明:低碳高合金钢的耐冲击腐蚀磨损性能优于高锰钢及中碳合金钢;低碳高合金钢的冲击腐蚀磨损机制主要为挤出硬化棱剥落、轻微的腐蚀磨损及浅层疲劳剥落,高锰钢的主要冲击腐蚀磨损机制为较深层的累积变形疲劳剥落和严重的腐蚀磨损,而中碳合金钢的主要冲击腐蚀磨损机制为深层脆性剥落和严重的腐蚀磨损.

关键词:衬板钢;成分;显微组织;冲击腐蚀磨损;磨损机制

中图分类号:T G142.72;T H117.3文献标识码:A文章编号:1004-0595(2005)03-0221-04

冶金矿山湿式磨机衬板使用工况条件恶劣,可同时发生腐蚀、冲击及磨损等多种损伤.目前国内主要使用ZGM n13钢制作球磨机衬板,但在冶金矿山恶劣的工况条件下,因其加工硬化不足,耐腐蚀性较差,以致衬板的使用寿命很短.

为此,国内外近年来纷纷研制了改性高锰钢、中碳合金钢及高铬铸铁等材质[1~3]用以取代高锰钢.但迄今为止,国内外新开发的各种钢铁材质球磨机衬板在冶金矿山湿式磨机中的使用寿命与高锰钢相比提高幅度不大.鉴于此,我们研制了一种低碳高合金钢衬板,其在铁矿山湿式磨机中的使用寿命是高锰钢的2倍以上[4].本文对比研究了低碳高合金钢、高锰钢及中碳合金钢在铁矿石酸性矿浆、冲击功2.7J条件下的冲击腐蚀磨损性能,并探讨了其冲击腐蚀磨损机理,期望为开发性能更好的耐冲击腐蚀磨损新材料提供参考.

1 实验部分

试验所用低碳高合金钢、高锰钢及中碳合金钢的化学成分及机械性能列于表1,其中低碳高合金钢经

表1 三种钢的化学成分及机械特性

Table1 Chemical composition and mechanical properties of three steels

M ater ials

Chem ical compos ition

C M n Cr Ni M o Si S P

M ech anical pr operties

H R C a k/J?cm-2

Low carbon high alloy steel0.15~0.30-7~10 1.5~2.50.7~1.00.3~0.60.035<0.03545~50>50 Hig h m anganese s teel 1.10~1.3012~14---0.3~0.8<0.03<0.07<21>147 M edium carbon alloyed steel0.30~0.40<1.53~4<1.0<1.0<1.00.035<0.03558~6220~30

1050℃加热油淬后250℃回火,其组织为单相板条马氏体;高锰钢经1050℃水韧处理得到单相奥氏体;中碳合金钢经900℃加热油淬后200℃回火,其组织为回火马氏体+少量贝氏体+微量残余奥氏体,马氏体形态基本为针片状.采用梅氏标准冲击试样测定冲击韧性.

所用冲击腐蚀磨损试验机由M LD-10型冲击磨损试验机经过改造而成.冲击腐蚀磨损试样的尺寸为10mm×10m m×30mm;将试样在超声波清洗仪中用丙酮清洗,经过干燥称重后安装于磨损试验机上进行冲击腐蚀磨损试验.试验的介质为铁矿石+水,水与铁矿石的体积比为5∶8,铁矿石粒度为2.36~

基金项目:教育部博士点基金资助项目(040309B2);安徽省自然科学基金资助项目(00046401);教育部重点科研基金资助项目(01104).收稿日期:2004-08-18;修回日期:2004-11-30/联系人丁厚福,e-m ail:hfutding@https://www.doczj.com/doc/e36695804.html,.

作者简介:丁厚福,男,1948年生,教授,博导,目前主要从事材料的强韧化及耐磨耐蚀材料研究.

3.33mm ,硬度16~18,料浆pH =3~5;该料浆对衬板钢产生较强的腐蚀作用,其中高硬度的铁矿石颗粒在冲击条件下对试样磨损表面产生犁削、凿削及局部高应力挤压作用.在试验过程中,试样随冲锤上、下往复运动,冲击频率为150次/min ,偶件GCr 15钢盘转动,铁矿石磨料通过搅拌装置不断进入摩擦副接触界面,冲击功为2.7J.试验过程中,每隔2h 取下试样,在超声波清洗仪中用丙酮清洗后干燥,用T G328A 型电光分析天平(精度0.1m g )称重,测得试样的磨损质量损失,取3次试验结果的平均值.用Hitachi-x-650型扫描电子显微镜(SEM )观察试样冲击腐蚀磨损表面形貌,用Olympus PM E 型光学显微镜观察冲击腐蚀磨损亚表层的金相组织,进而探讨3种钢的冲击腐蚀磨损机理.

2 结果与讨论

2.1 冲击腐蚀磨损性能

图1示出了低碳高合金钢、高锰钢及中碳合金钢

F ig 1 V ar iation in the w ear ma ss losses of thr ee

steels in acidic-ir onstone slur ry at an impa ct ener gy of 2.7J w it h test dur atio n 图1 在铁矿石酸性矿浆、2.7J 冲击功条件下3种钢的

磨损质量损失随时间变化的关系曲线

在2.7J 冲击功下的冲击腐蚀磨损质量损失随时间变

化的关系曲线.可以看出,低碳高合金钢的耐冲击腐蚀磨损性能优于高锰钢和中碳合金钢,而且随着冲击腐蚀磨损时间的延长,低碳高合金钢优良的耐冲击腐蚀磨损性能更加明显.与此同时,3种钢的耐冲击腐蚀磨损性能与其成分和组织存在一定的对应关系.以低碳高合金钢为例,其铬含量较高,耐腐蚀性能较优;适量的钼不仅有利于细化晶粒,而且有利于提高合金的晶间腐蚀抗力;2%左右的镍可以有效地改善合金的韧性.由于合适的成分设计决定了合金在铸态及热处理状态下的组织均为单相板条马氏体,这不仅对合金

的耐腐蚀性能有利,且使其韧性增强;此外,固溶于马氏体中含量较高的铬和镍元素使该合金的板条马氏体硬度高于一般低碳板条马氏体.综上所述,低碳高合金钢的成分与组织决定了其硬度、韧性及耐腐蚀性三者间的最佳配合,故其耐冲击腐蚀磨损性能最好.2.2 冲击腐蚀磨损机理

图2示出了3种钢在2.7J 冲击功条件下经8h 冲击腐蚀磨损试验后的磨损表面形貌SEM 照片.可以看出,低碳高合金钢的冲击腐蚀磨损表面存在小“腐蚀坑”和凸起的小块状或条状挤出棱[见图2(a)],这些挤出棱源于高硬度铁矿砂对试样磨损表面的局部高应力挤压,而低碳板条马氏体使得该合金钢试样在高冲击应力下产生一定程度的塑性变形.磨损表面的这些挤出棱含有较高密度的位错,并产生一定的加工硬化,故其被磨料磨损的速度相对其它区域而言较为缓慢,在冲击腐蚀磨损过程中可承受较大的接触应力,其根部硬化区与非硬化区的交界处易萌生出微裂纹并导致硬化棱沿根断裂,从而形成小坑.可以认为,图2(a )中的小“腐蚀坑”并非真正源于料浆的腐蚀作用,而是由于硬化的挤出棱沿根拔断所致.其原因在于,这种低碳高合金钢中的铬含量较高,且含适量的钼具有优良的耐腐蚀性能,在经历8h 冲击腐蚀磨损试验后其磨损表面不可能形成较深的小腐蚀坑.与此同时,其磨损表面还存在少量浅层块状剥落坑,对应于磨损表面局部区域浅硬化层的疲劳剥落.高锰钢冲击腐蚀磨损表面存在大量的挤出棱和大块深层剥落[见图2(b )].这与其单相奥氏体组织密切相关;高锰钢的韧性与塑性较好,在冲击和磨粒磨损的共同作用

下,磨损表面易形成大量挤出棱和一定厚度的形变硬

化层(硬度为510H V 200,原始硬度为337H V 200),硬化层可因亚表层裂纹的形成与扩展而产生局部块状剥落[5,6].当然,高锰钢磨损表面存在的大量挤出棱亦可加速腐蚀磨损进程.与低碳高合金钢和高锰钢不同,中碳合金钢冲击腐蚀磨损表面未见明显的塑性变形痕迹[见图2(c )],大块片状剥落的交汇处存在少量凸起的棱,这种棱与前两者的挤出棱完全不同,类似于回火马氏体准解理断口中的撕裂棱.这种磨损表面形貌与脆性较大的针片状马氏体有关.在较大冲击应力作用下,中碳合金钢试样表面易产生微裂纹,这种表层微裂纹向亚表层扩展,而料浆的浸入可加速裂纹的扩展,最终导致大块剥落.这种循环往复的微裂纹形成、扩展直至产生片状剥落的过程是影响中碳合金钢冲击腐蚀磨损性能的主要因素.此外,中碳合金钢钢的耐腐蚀性能较差,也会导致其耐冲击腐蚀磨损性能

222

摩 擦 学 学 报第25卷

不如高锰钢和低碳高合金钢.

图3示出了3种钢经8h 冲击腐蚀磨损试验后

磨损亚表层形貌的金相照片.可以看出,经8h 冲击腐蚀磨损试验后低碳高合金钢亚表层无明显滑移[

图3(a )],但冲击面发生弯曲,说明磨损表面产生了形变.高锰钢在相同试验条件下的冲击腐蚀磨损表面形成变形层并伴随加工硬化,随着应力、应变的累积,试样表层抵抗变形的能力逐渐降减[见图3(b)].根据Suh 等[7]的分层剥离理论,磨损失重的过程是磨损接触亚表层萌生裂纹和空洞并与表面近似平行地扩展、然后在最薄弱的地方回到表面、从而导致表层剥落的过程.正因为如此,经8h 冲击腐蚀磨损试验后,高锰钢试样的磨损亚表层出现了连续滑移带,并且冲击面崎岖不平;冲击变形层内产生了大量位错增殖及滑移运动,这些高密度位错必然产生塞积或互相交割、缠结,致使材料表面硬化,从而在硬化层和非硬化层的交界处形成裂纹.经过更长时间的冲击腐蚀磨损

后,裂纹扩展到表面,腐蚀介质随之渗入裂纹,从而加剧材料的腐蚀并最终导致硬化层全部剥落[8,9];在冲击力作用下,这种循环往复的硬化层形成和剥落过程即是高锰钢冲击腐蚀磨损的失效过程.经8h 冲击腐

蚀磨损试验后,中碳合金钢亚表层形成非常明显的裂纹[见图3(c)].其原因在于,该合金钢硬度高、韧性很低,在冲击腐蚀磨损过程中表面易生成裂纹,裂纹向亚表层扩展,最终导致试样磨损表面产生大块脆性崩落.

3 结论

a . 在铁矿石酸性矿浆、

2.7J 冲击功条件下,低碳高合金钢的耐冲击腐蚀磨损性能明显优于高锰钢

223

第3期丁厚福等: 成分和组织对衬板钢在腐蚀料浆环境下的冲击磨损性能与机理的影响

和中碳合金钢,而且冲击腐蚀磨损时间越长,低碳高合金钢的耐冲击腐蚀磨损性能的优越性越显著.

b. 低碳高合金钢优良的耐冲击腐蚀磨损性能与其优良的耐腐蚀性能及硬度和韧性的良好匹配密切相关,其冲击腐蚀磨损机制主要为挤出硬化棱的沿根剥落、浅层块状疲劳剥落及轻微腐蚀磨损;高锰钢的冲击腐蚀磨损机制主要为较深层的累积变形疲劳剥落和严重的腐蚀磨损;中碳合金钢的冲击腐蚀磨损机制主要为深层脆性剥落和严重的腐蚀磨损.

参考文献:

[1] 潘传宏.铸态奥氏体-贝氏体钢的冲击磨损性能[J].机械工程

材料,2001,25(12):32-33.

Pan C H.Development of an as-cast au stenite-bainite w ear-

resis tant steel[J].M aterials for M ech anical Engineerin g,

2001,25(12):32-33.

[2] 陈颜堂,白秉哲,方鸿生.中低碳空冷贝氏体钢的冲击磨损性能

[J].钢铁研究学报,2001,13(3):40-43.

Chen Y T,Bai B Z,Fang H S.Imp act w ear behavior of air-

cooled mediu m-low carbon bainitic steels[J].Journ al of Iron

and S teel Res earch,2001,13(3):40-43.

[3] 徐金城,王天民.低碳中锰抗磨球墨铸铁的研制及其磨粒磨损

性能的研究[J].摩擦学学报,2003,23(2):158-161.

XU J C,W ANG T M.S tu dy on the proces sing and abrasive

w ear-res istance of ductile cast ir on w ith low carbon and

medium man ganese[J].Trib ology,2003,23(2):158-161. [4] 李先芬,丁厚福.湿式磨机衬板新合金的研究和应用[J].材料

热处理学报,2003,24(3):61-65.

Li X F,Ding H F.Research on new alloy for w et milling lining

board and its application[J].T ransactions of M aterials Heat

T reatmen t,2003,24(3):61-65.

[5] T oro A,S inatora A,Tanaka D K,et al.Corrosion-erosion of

n itr og en bearing martens itic stainless steels in s eaw ater-quartz

s lurr y[J].W ear,2001,251:1257-1264.

[6] Sunds trom A,Rendona J,Olss on M.Wear beh aviour of s ome

low alloyed steels under combined impact/abrasion contact

conditions[J].W ear,2001,250:744-754.

[7] Yang Y Y,Fang H S,Zhen g Y K.T he failu re m odels induced

by w hite layers durin g im pact w ear[J].W ear,1995,185:17-

22.

[8] Chen je T W,Sim bi D J,Navara E.T he role of corros ive w ear

during laboratory milling[J].M inerals En gineering,2003,

16:619-624.

[9] Necille A,Hodgkiess T,Dallas J T.A s tu dy of the erosion-

corros ion behaviour of eng ineering s teels for mar ine pumping

app lications[J].W ear,1995,186-187:497-507.

Effect of Composition and Microstructure on Impact Wear Behavior and Mechanism of Liner Steels in Corrosive Slurry

DING Ho u-fu,CUI Fang-ming,DU Xiao-dong

(School of M aterials S cience and Eng ineer ing,H ef ei Univ ersity of T echnology,H ef ei230009,China)

Abstract:The impact corr osion and abr asion behavior of three steels used as the liner of w et-grinders in acidic-ironstone slur ry and at an im pact energ y of2.7J w as investigated using a mo dified impact co rrosive test r ig.T he w orn surface m orpho logies of the steels w er e observ ed using a scanning electron micr oscope, w hile the w o rn subsurface cross-sections of the steels after impact corr osive abrasio n in the acidic-ironstone slurry for8h w ere analy zed using an optical m icroscope.It w as found that the low carbon high-alloyed steel had m uch better impact corr osion and abr asion properties than the high mang anese steel and medium carbon alloy ed steel,w hich w as ascribed to the differences in the com positions and microstructures of the three steels.Mo reover,the lo w carbon high allo y steel w as mainly character ized by spalling of extruded har dened edge,slight cor rosive w ear,and slig ht fatig ue spalling during the impact corrosive abrasio n process. Different from the low carbo n high alloy steel,the high manganese steel was do minated by deeper fatigue spalling and heavy corro sive w ear under the same testing conditions,w hile the medium carbon allo yed steel w as characterized by deep brittle spalling and heavy corrosive w ear.

Key words:liner board steel;com positio n;m icrostr ucture;impact corro sion and abrasion behav io r;im pact corro sion and abrasio n mechanism

Author:DING Hou-fu,male,born in1948,Pr ofessor,e-mail:hfutding@https://www.doczj.com/doc/e36695804.html,

224摩 擦 学 学 报第25卷

储油罐爆炸的原因分析与控制

储油罐爆炸的原因分析与控制 储油罐是油库的重要设备,储存着大量易燃烧、易爆炸、易挥发、易流失的油品,一旦发生爆炸所造成的损失难以估计。近20年来,油罐发展呈大型化的明显趋势。随着油气储备量的增加,储油罐的规模和数量也大幅度地增加。因此,如何安全有效地管理储油罐、提高储油罐的安全可靠性,已是当前安全管理工作所面临的一个重大课题。 1爆炸原因分析 1.1明火 由明火引起的油罐火灾居第1位,其主要原因是在使用电气、焊修储油设备时,动火管理不善或措施不力而引起。例如,检修管线不加盲板;罐内有油时,补焊保温钉不加措施;焊接管线时,事先没清扫管线,管线没加盲板隔断;油罐周围的杂草、可燃物未清除干净等。另一个重要原因是在油库禁区及油蒸气易积聚的场所携带和使用火柴、打火机、灯火等违禁品或在上述场合吸烟等。 1.2静电 所谓静电火灾是指静电放电火花引燃可燃气体、可燃液体、蒸汽等易燃易爆物而造成的火灾或爆炸事故。 静电的实质是存在剩余电荷。当两种不同物体接触或摩擦时,物体之间就发生电子得失,在一定条件下,物体所带电荷不能流失而发生积聚,这就会产生很高的静电压,当带有不同电荷的两个物体分离或接触时,物体之间就会出现火花,产生静电放电(ESD)

静电放电的能量和带电体的性质及放电形式有关。静电放电的形式有电晕放电、刷形放电、火花放电等。其中火花放电能量较大,危险性最大。 静电引起火灾必须具备以下4个条件: (1)有产生静电的条件。一般可燃液体都有较大的电阻,在灌装、输送、运输或生产过程中,由于相互碰撞、喷溅与管壁摩擦或受到冲击时,都能产生静电。特别是当液体内没有导电颗粒、输送管道内表面粗糙、液体流速过快时,都会产生很强的摩擦,从而产生静电。 (2)静电得以积聚,并达到足以引起火花放电的静电电压。油料的物理特性决定了其内产生的静电电荷难以流失而大量积聚,其电压可达上万伏,遇到放电条件,极易产生放电引起火灾。 (3)静电火花周围有足够的爆炸性混合物。油品蒸发、喷溅时产生的油雾和储油罐良好的蓄积条件致使油面上部空间形成油气一空气爆炸性混合物。 (4)静电放电的火花能量达到爆炸性混舍物的最小引燃能量。当静电放电所产生的电火花能量达到或大干油品蒸气引燃的最小能量(0.2-0.25mJ)时,就会点燃可燃混合气体,造成燃烧爆炸。 因静电放电(ESD)引起的火灾爆炸事故屡见不鲜,而且静电火灾具有一定的突发性、易爆炸、扑救难度大、易造成人员伤亡等特点,故如何更好地做好防静电危害工作一直是安全管理工作的重要组成部分。 1.3自燃 自燃是物质自发的着火燃烧过程,通常是由缓慢的氧化还原反应而引起,即物质在没有火源的条件下,在常温中发生氧化还原反应而

金属腐蚀的分类

金属腐蚀的分类:按照反应的特性,金属腐蚀可分为1,化学腐蚀2,生物腐蚀3,电化学腐蚀。化学腐蚀是指氧化剂和金属表面接触,发生化学反应导致的腐蚀。生物腐蚀是指由各种微生物的生命活动引起的腐蚀。电化学腐蚀是指发生电化学反应导致的腐蚀。电化学腐蚀是最普遍和最严重的腐蚀,因此研究电化学腐蚀具有重要的意义! 电化学腐蚀的机理:金属材料与电解质溶液接触,通过电极反应产生的腐蚀。电化学腐蚀反应是一种氧化还原反应。在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂。 在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显着差别,进行两种反应的表面位置不断地随机变动。如果金属表面有某些区域主要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池。直接造成金属材料破坏的是阳极反应,故常采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上。 当金属被放置在水溶液中或潮湿的大气中,金属表面会形成一种微电池,也称腐蚀电池(其电极习惯上称阴、阳极,不叫正、负极)。阳极上发生氧化反应,使阳极发生溶解,阴极上发生还原反应,一般只起传递电子的作用。腐蚀电池的形成原因主要是由于金属表面吸附了空气中的水分,形成一层水膜,因而使空气中CO2,SO2,NO2等溶解在这层水膜中,形成电解质溶液,而浸泡在这层溶液中的金属又总是不纯的,如工业用的钢铁,实际上是合金,即除铁之外,还含有石墨、渗碳体(Fe3C)以及其它金属和杂质,它们大多数没有铁活泼。这样形成的腐蚀电池的阳极为铁,而阴极为杂质,又由于铁与杂质紧密接触,使得 腐蚀不断进行。 (1)析氢腐蚀(钢铁表面吸附水膜酸性较强时) 阳极(Fe):Fe=Fe2++2e- Fe2++2H2O=Fe(OH)2+2H+ 阴极(杂质):2H++2e-=H2 电池反应:Fe+2H2O=Fe(OH)2+H2↑ 由于有氢气放出,所以称之为析氢腐蚀。

化学成分对不锈钢的组织和性能的影响

化学成分对不锈钢的组织和性能的影响 1、铬(Cr):铬是决定不锈钢耐腐蚀性能的主要元素。 2、碳(C):碳具有双重作用。碳是不锈钢中仅次于铬的第二号常用元素,不锈钢的组织和性能在很大程度上取决于碳含量及其分布状态。 3、镍(Ni):镍是稳定奥氏体元素。镍是不锈钢中第三号常用元素,它在钢中起扩大奥氏体区、稳定奥氏体组织的作用。铬不锈钢加入一定量的镍后,组织的性能都发生明显变化。镍能有效地降低素体钢的脆性,改善其焊接性能,但对抗应力腐蚀性能有不利的影响,对于奥氏体钢,镍能降低钢的冷加工硬化趋势,改善冷加工性能,使钢在常温和低温下均具有很高的塑性和韧性。 4、锰和氮(Mn、N):锰和氮可以代替镍。锰是奥氏体形成的元素,它能抑制奥氏体的分解,使高温形成的奥氏体组织保持到室温。锰稳定奥氏体的作用为镍的1/2,2%的锰可以代替1%的镍。含锰钢具有冷加工硬化效应显著、耐磨性高的优点。缺点是对晶间腐蚀很敏感,并且不能通过加钛和铌来消除晶间腐蚀。 氮也是稳定奥氏体元素,氮和锰结合能取代比较贵的镍。氮稳定奥氏体的作用比镍大。与碳相当。氮代镍的比例约为0.025:1,一般认为氮可取代2.5% ~6.5%的镍。在奥氏体中氮也使最有效的固溶强化元素之一。氮和铬的亲和力要比碳与铬的亲和力小,奥氏体钢很少见到Cr2N的析出。因此,氮能在不降低腐蚀性能的基础上,提高不锈钢的强度,研制含氮不锈钢是近几年来不锈钢工业的趋势。 5、钛和铌(Ti、Nb):钛和铌可以防止晶间腐蚀。铬-镍奥氏体不锈钢在450~800 ℃温度区加热,常发生沿晶界的腐蚀破坏,成为晶间腐蚀。一般认为,晶间腐蚀是碳从饱和的奥氏体以Cr23C6形态析出,造成晶界处奥氏体贫铬所致。防止晶界贫铬是防止晶间腐蚀的有效方法。如将各种元素按与碳的亲和力大小排列,顺序为:钛、锆、钒、铌、钨、钼、铬、锰。钛和铌与碳的亲和力都比铬大,把它们加入钢中后,碳优先与它们结合生成碳化钛(TiC)和碳化铌(NbC),这样就避免了析出碳化铬而造成晶界贫铬。从而有效防止晶间腐蚀。 6、钼和铜(Mo、Cu):钼和铜可以提高腐蚀性能。不锈钢的钝化作用是在氧化性介质中形成的,通常所说的耐腐蚀,多指氧化介质而言。在非氧化性酸中,

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(最新版)

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(最新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0148

浅析垃圾焚烧炉过热器腐蚀原因及解决措 施(最新版) 摘要:垃圾焚烧发电是实现城市垃圾无害化、减量化和资源化处理的一种有效方法,目前正得到大力的推广。焚烧发电具有工艺简单,运行可靠,垃圾处理速度快,处理量大。但是由于垃圾成份相当复杂,用于焚烧垃圾的焚烧炉存在非常严重的磨损、腐蚀现象,在腐蚀现象中以高温过热器管的腐蚀问题最为严重。本文主要就这个问题展开讨论并提出预防措施。 关键词:垃圾焚烧炉;高温过热器管腐蚀;措施 一、垃圾焚烧发电工艺原理垃圾焚烧发电是将垃圾放在焚烧炉中进行燃烧,释放出热能,余热回收加热给水变成蒸汽,蒸汽在汽轮机中推动汽轮发电机旋转做功,将蒸汽的热能转化为电能,释放热能后的烟气经净化系统处理后排放,从而将垃圾由“废物”变为

可利用的“资源”。随着各种炉型技术的实践应用广泛开展,炉排式垃圾焚烧炉以适应性强,处理比较彻底的优势正成为目前国内垃圾焚烧的主流工艺。随着技术的不断的提高和发展,我国焚烧炉的垃圾处理容量也不断的提高,从初期的150t/d提高到现在的750t/d,规模日趋增大。 二、垃圾焚烧发电的特点一般来说,垃圾经焚烧处理后残余的固体废物约占20%(炉渣约占15%,飞灰约占5%),考虑炉渣的综合利用因素,减量化效果更为显著。这相比于垃圾填埋处理要永久性占用土地来说节约了大量的土地资源。垃圾中的可燃物在焚烧中基本上变为了可利用的热能。根据城市发展程度及地理位置、生活习惯不同,垃圾的热值有所不同,一般用于焚烧的垃圾要求低位热值大于4180KJ/Kg,垃圾发电量一般在250kwh/t以上(随热值的提高而增加)。另外,由于垃圾焚烧后的尾气经过了严格的净化处理,因此对环境的污染被控制到了最低。因此,垃圾焚烧处理的特点是处理量大、减量效果好、无害化彻底,且有热能回收作用,是真正实现垃圾处理的“无害化、资源化、减量化”的技术手段。因此,对

储油罐危险因素分析(通用版)

储油罐危险因素分析(通用版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0998

储油罐危险因素分析(通用版) 油罐及输油设施由于设计、制造、施工质量问题、防腐缺陷、设备附件及附属设备设施损坏、安全设施不全或失效等因素,均可导致储罐内液体油品泄漏,在遇有明火、电气火花或高温物体表面时,有发生燃烧引起火灾爆炸的危险。 1)设计不合理造成泄漏 油罐结构设计不合理,油罐布置不合理,油罐地基下沉,造成油罐变形产生裂缝、油罐材料选材选型不合理、强度不够、规格不符、油罐附属设施如油泵和输出管管道不配套,管道没有弹性连接,柔性不周、管道强度不符合要求等。 2)施工质量问题造成泄漏 油罐加工质量或施工质量可造成泄漏,如油罐及附属设施强力

组装、设备变形、错位产生裂缝;油罐及附属设施焊接缺陷如补口补伤,焊缝错边,棱角,气孔,裂缝未溶合等内部缺陷将造成应力集中,产生疲劳裂纹,逐渐扩张能导致油罐泄漏。 3)设备腐蚀造成泄漏 油罐及附属设备设施及输送管道防腐工程存在缺陷,可导致油罐腐蚀,油罐壁厚减薄,导致油罐锈蚀穿孔,引起泄漏。 4)附件失效造成泄漏 油罐及附属设备管道附件如液位计、温度压力仪表、安全排放阀、切断阀、呼吸阀、放空阀、排污阀、管道法兰等处长期使用因磨损、变形而失效等原因造成泄漏。 XXX图文设计 本文档文字均可以自由修改

金属的腐蚀和防护(教案)

第二节金属的腐蚀和防护(第1课时) 榆中七中孙志彪 【教学目标】:1、了解金属腐蚀的危害,认识金属腐蚀造成的经济影响.2、应用原电池原理,了解金属电化腐蚀的原因,能解释金属发生电化学腐蚀的原因3.了解一些选择防铁锈方法时应考虑的因素,通过实验探究防止金属腐蚀的措施, 【教学重点】:金属电化腐蚀【教学难点】:金属电化腐蚀;钢铁腐蚀【教学方法】:启发式、讨论式、实验法【教具】:实验投影仪教学过程:【引言】在日常生活中,金属腐蚀的现象随处可见。现在,请各小组代表把课前搜索的信息给全班同学展示一下。三个小组代表分别发言【学生演讲】(二分钟)介绍金属腐蚀造成的影响。【设问、过渡】钢铁为什么会生锈?我们怎么样利用化学知识来减小金属腐蚀?让我们一起来学习有关金属腐蚀的知识。以铁生锈为例来简单说明:【板书】金属的腐蚀与防护【小结】金属腐蚀就是游离态的金属单质被氧化成化合态的金属氧化物或其他化合物的过程,可表示为:【板书】金属腐蚀的实质:M → M n++ ne- 金属腐蚀的分类:化学腐蚀与电化学腐蚀【提问】举例说明什么是化学腐蚀和电化学腐蚀? 【学生回答】铁和氯气直接反应而腐蚀;钢管被原油中的含硫化合物腐蚀均为化学腐蚀。钢铁在潮湿的空气中生锈是电化学腐蚀。【过渡】钢铁在潮湿的空气里所发生的腐蚀,就是电化学腐蚀的最普通的例子。在一般情况下,金属腐蚀大多是电化学腐蚀。【提问】电化学腐蚀是怎样形成的?它具有哪些特征?让我们通过实验来研究学习有关电化学腐蚀的知识。【过渡】上学期我们已学习了有关原电池的知识,现在我们从金属腐蚀的角度来分析铜--锌原电池实验的原理。【课件演示】铜-锌原电池实验做如下实验:锌片投入稀硫酸中——腐蚀的种类及特点;用铜丝接触锌片——腐蚀的种类及特点。【投影、复习】原电池反应:Zn(-):Zn→ Zn2+ +2e- (氧化反应) Cu(+):2H++ 2e-

蒸汽过热器管断裂失效分析

蒸汽过热器管断裂失效分析 王印培陈进 (华东理工大学化机所上海200237) 摘要:某奥氏体不锈钢制蒸汽过热器管在加碱煮炉过程中发生断裂。采用力学性能测定宏微观检验及能谱分析,对该断裂管进行了分析研究。结果表明,蒸汽过热管断裂失效是由碱脆造成的。 主题词:碱脆;不锈钢;失效分析 1 概述 某炼油厂新建制氢装置的转化炉蒸汽过热器管在中压汽包加碱煮炉过程中多处发生断裂。蒸汽过热器管外径Φ89mm,壁厚6.5mm,材料为1Cr19Ni9奥氏体不锈钢。经现场检查,断裂均发生于与集汽管相连的蒸汽过热器的弯管上,裂纹大多位于焊接热影响区,为环向裂纹,在裂口周围管外有结碱。典型的裂纹宏观形貌见图1和图2。 图1 蒸汽过热器直管段裂纹宏观形貌图2 蒸汽过热器弯头裂纹宏观形貌

蒸汽过热器与中压汽包相连通,管外被转化炉炉气加热,管内为过热蒸汽。转化炉投入运行前先烘炉并对中压汽包进行加碱煮炉,煮炉碱液按每立方米各加入NaOH,Na2PO44kg的要求配制,并保证65%~75% 液位。经采样分析炉水碱度达到不小于45mg?L要求。烘炉与煮炉先后结束后(10d),转化炉对流段入口温度保持在525℃,中压汽包仍保压运行。运行一天后发现蒸汽过热器泄漏蒸汽,漏点不断扩大,迫使转化炉降温停炉。根据现场操作记录,在煮炉过程中,蒸汽过热器的蒸汽温度在200℃以上的时间达78h,其中300℃以上的达60h。 2 化学成分分析与铁素体含量测定 对蒸汽过热器直管、弯头和焊缝金属的化学成分进行分析,结果见表1。由表可见,蒸汽过热器直管与弯头的化学成分符合GB13296-1991对1Cr19Ni9钢的要求。 采用铁素体含量测定仪对蒸汽过热器中已开裂的直管、弯头及其焊缝处的铁素体含量进行测定,结果直管的铁素体含量平均为1.5%(共8点),最高为1.84%;弯头的铁素体含量平均为0.35%(共8点),最高为0.38%;焊缝处铁素体含量平均为319%,最高为6.47%。可见,蒸汽过热器管铁素体含量正常。 3 蒸汽过热器管内壁渗透液检验 为检验过热器管焊缝以外其它部位是否有裂纹,将过热器直管(部分)及弯头沿对称轴切开,进行内壁渗透液检验。结果显示,除了已穿透的裂纹及部分分叉外,未发现其它裂纹。 4 力学性能测试 力学性能试样均为两种状态,即过热器管的使用态和重新固溶热处理状态。重新固溶热处理工艺为1050℃水冷。 4.1 拉伸性能 按GB6397-1986标准,在过热器直管段取样,试样为矩形截面全厚度试样。拉伸试验按GB228-1987标准进行。试验温度为室温。试样数量为使用态和重新固溶态各两根。试验结果见表2。

锅炉过热器爆管原因分析及对策(正式)

编订:__________________ 审核:__________________ 单位:__________________ 锅炉过热器爆管原因分析及对策(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8363-82 锅炉过热器爆管原因分析及对策(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 摘要:锅炉承压部件的安全运行对整个电厂的安全至关重要。文章结合微水电厂实际,分析了过热器爆管泄漏的机理、原因及实际采取的一些对策,以求对锅炉过热器设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事故的63.2%,而承压部件泄漏事故又占锅炉事故的86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结合微水电厂实际,分析过热器爆管泄漏的机理、原因及采取的一些对策。 微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐

射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用?38×4.5的20号碳钢管组成。第一级过热器和屏过热器用?42×5的12Cr1 MoV钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集 针对12Cr1 MoV钢分析,试验表明当12Cr1 MoV 钢严重球化到5级时,钢的室温强度极限下降约11kg /mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢的蠕变极限和持久强度下降。通过580℃下对12Cr1 MoV钢的持久爆管试验,可以看出到了球化4级的钢管,其持久强度降低1/3。影响珠光体耐热钢发生球化的因素主要有温度、时间、应力和钢材的化学成份等。在钢中掺入“V”这种强碳化物元素,

储油罐危险因素分析

编号:SM-ZD-69214 储油罐危险因素分析Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

储油罐危险因素分析 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 油罐及输油设施由于设计、制造、施工质量问题、防腐缺陷、设备附件及附属设备设施损坏、安全设施不全或失效等因素,均可导致储罐内液体油品泄漏,在遇有明火、电气火花或高温物体表面时,有发生燃烧引起火灾爆炸的危险。 1)设计不合理造成泄漏 油罐结构设计不合理,油罐布置不合理,油罐地基下沉,造成油罐变形产生裂缝、油罐材料选材选型不合理、强度不够、规格不符、油罐附属设施如油泵和输出管管道不配套,管道没有弹性连接,柔性不周、管道强度不符合要求等。 2)施工质量问题造成泄漏 油罐加工质量或施工质量可造成泄漏,如油罐及附属设施强力组装、设备变形、错位产生裂缝;油罐及附属设施焊接缺陷如补口补伤,焊缝错边,棱角,气孔,裂缝未溶合等内部缺陷将造成应力集中,产生疲劳裂纹,逐渐扩张能导致

高中化学选修四 金属的腐蚀与防护

第三单元金属的腐蚀与防护 [学习目标定位] 1.认识金属腐蚀的危害,并能解释金属发生电化学腐蚀的原因,能正确书写析氢腐蚀和吸氧腐蚀的电极反应式和总反应式。2.熟知金属腐蚀的防护方法。 一金属的电化学腐蚀 1.金属腐蚀 (1)概念:金属或合金与周围环境中的物质发生化学反应而腐蚀损耗的现象。 (2)根据与金属接触的气体或液体物质不同,金属腐蚀可分为两类: ①化学腐蚀:金属与其他物质直接接触发生氧化还原反应而引起的腐蚀。腐蚀的速率随温度升高而加快。 ②电化学腐蚀:不纯的金属或合金发生原电池反应,使较活泼的金属失去电子被氧化而引起的腐蚀。 (3)用铝制饭盒盛放醋酸,一段时间后,饭盒被腐蚀,该种腐蚀属于化学腐蚀,反应的化学方程式为2Al+6CH3COOH===2(CH3COO)3Al+3H2↑;若用铝饭盒盛放食盐(含水时),一段时间后,饭盒被腐蚀,这种腐蚀属于电化学腐蚀,反应原理是(写电极反应式和总反应式)负极:Al-3e-===Al3+,正极:O2+2H2O+4e-===4OH-,总反应:4Al+3O2+6H2O===4Al(OH)3。2.钢铁的电化学腐蚀 根据钢铁表面水溶液薄膜的酸碱性不同,钢铁的电化学腐蚀分为析氢腐蚀和吸氧腐蚀,如图所示: (1)钢铁的析氢腐蚀:当钢铁表面的电解质溶液酸性较强时,腐蚀过程中有H2放出。Fe是负极,C是正极。发生的电极反应式及总反应式为 负极:Fe-2e-===Fe2+; 正极:2H++2e-===H2↑; 总反应:Fe+2H+===Fe2++H2↑。 (2)钢铁的吸氧腐蚀:当钢铁表面的电解质溶液呈中性或呈弱酸性并溶有O2时,将会发生吸氧腐蚀。电极反应式及总反应式为 负极:2Fe-4e-===2Fe2+; 正极:2H2O+O2+4e-===4OH-;

材料成分结构性能三者间的关系

从钢铁材料看材料成分-结构-性能关系 钢铁从被利用开始至今一直是人类不可替代的原材料,是衡量一个国家综合国力和工业水平的重要指标。 我们都知道初铁外,C的含量对钢铁的机械性能起着重要作用,钢是含碳量为0.03%-2%的铁碳合金。随着碳含量的升高,碳钢的硬度增加、韧性下降。同时含碳量对工艺性能也有很大影响。对可锻性而言,低碳钢比高碳钢好。由于钢加热呈单相奥氏体状态时,塑性好、强度低,便于塑性变形,所以一般锻造都是在奥氏体状态下进行。对焊接性而言,一般来说含碳量越低,钢的焊接性能越好,所以低碳钢比高碳钢更容易焊接。而那些比例极小的合金加入,可以对钢的性能产生很大影响。可以说普通钢、优质钢和高级优质钢就是在这些比例极小的成分作用下分别出来的。那些合金成分的加入可以使钢的组织结构和性能都发生一定的变化,从而具有一些特殊性能。比如说,铬的加入不仅能提高金属的耐腐蚀性和抗氧化性,也能提高钢的淬透性,显著提高钢的强度、硬度和耐磨性;锰可提高钢的强度,提高对低温冲击的韧性;稀土元素可提高强度,改善塑性、体温脆性、耐腐蚀性及焊接性能等等。 钢铁材料的结构特征包括晶体结构、相结构和显微组织结构。钢铁是属于由金属键构成的晶体,因此就具有金属晶体的特性,如延展性。同时这也注定钢的机械性能不仅与其化学性能有关,而其晶体的结构和晶粒的大小影响更大。 铁碳合金的基本组元是纯Fe和Fe3C。铁存在同素异构转变,即在固态下有不同的结构。不同结构的铁与碳可以形成不同的固溶体。碳溶解于 -Fe中形成的固溶体成为铁素体,其含碳量非常低,所以性能与纯铁相似,硬度低、塑性高,并有铁磁性。其显微组织与工业纯铁也相似。碳溶于 -Fe形成的固溶体为奥氏体,具有面心立方结构,可以溶解较多的碳。在一般情况下,奥氏体是一种高温组织,故奥氏体的硬度较低,塑性高。通常在对钢铁材料进行热变形加工,都应将其加热呈奥氏体状态。 由此,从钢铁材料中,我们看到,材料的成分,结构和性能是密不可分的三者。成分和结构往往可以极大的影响材料的性能,而成分和结构之间也是相互影响的。 1、C的含量对钢铁的机械性能起着重要作用,随着碳含量的升高,碳钢的硬度增加、韧性下降。同时含碳量对工艺性能也有很大影响对可锻性而言,低碳钢比高碳钢好。对焊接性而言,一般来说含碳量越低,钢的焊接性能越好。 2、合金成分的加入可以使钢的组织结构和性能都发生一定的变化,从而具有一些特殊性能。比如说,铬的加入不仅能提高金属的耐腐蚀性和抗氧化性,也能提高钢的淬透性,显著提高钢的强度、硬度和耐磨性。 3、钢铁是属于由金属键构成的晶体,因此就具有金属晶体的特性,如延展性。同时这也注定钢的机械性能不仅与其化学性能有关,而其晶体的结构和晶粒的大小影响更大。 4、铁存在同素异构转变,即在固态下有不同的结构。不同结构的铁与碳可以形成不同的固溶体。碳溶解于 -Fe中形成的固溶体成为铁素体,其含碳量非常低,所以性能与纯铁相似,硬度低、塑性高,并有铁磁性。其显微组织与工业纯铁也相似。碳溶于 -Fe形成的固溶体为奥氏体,具有面心立方结构,可以溶解较多的碳。

锅炉受热面高温腐蚀原因分析及防范措施

锅炉受热面高温腐蚀原因分析及防范措施 Cause Analysis and Protective Measues to High-temperature Corrosion On Heating Surface of Boiler 张翠青 (内蒙古达拉特发电厂,内蒙古达拉特 014000) [摘要]达拉特发电厂B&WB-1025/18.44-M型锅炉在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,根据腐蚀部位、形态和产物进行分析,锅炉受热面的腐蚀属于高温腐蚀,其原因主要与炉膛结构、煤、灰、烟气特性及运行调整有关,并提出了防范调整措施。 [关键词] 锅炉受热面;高温腐蚀;机理原因分析;防范措施

达拉特发电厂#1~#4炉是北京B&WB公司设计制造的B&WB-1025/18.4-M型亚临界自然循环固态排渣煤粉炉。锅炉采用前后墙对冲燃烧方式。设计煤种为东胜、神木地区长焰煤。在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,两台炉腐蚀的产物、形状及部位相似。腐蚀区域水冷壁在标高16~38米之间及屏式过热器、高温过热器沿管排高度,腐蚀深度在0.4~1.0mm之间,最深处达1.7mm,腐蚀面积达500平方米左右。腐蚀给机组安全运行带来严重隐患。 1.腐蚀机理原因 1.1锅炉炉膛结构 锅炉炉膛结构设计参数见下表: 高40%多,同时上排燃烧器至屏过下边缘高度值比推荐范围的下限还低1.8米,这就导致燃烧器布置过于集中、燃烧器区域局部热负荷偏大、该区域内燃烧温度过高,实测炉膛温度达1370~1430℃。燃烧温度偏高直接导致水冷壁管壁温度过高,理论计算该区域水冷壁表面温度为452℃。大量的试验研究表明当水冷壁管壁温度大于400℃以后,就会产生明显的高温腐蚀。 1.2 煤、灰、烟气因素 蒙达公司实际燃煤是东胜、神木煤田的长焰煤和不粘结煤的混煤。:燃煤中碱性氧化物含量较高,灰中钠、钾盐类含量高,平均值达3.85%,含硫量偏高。 1.3 运行调整不当 为了分析运行调整因素对腐蚀的影响,在A、B侧水冷壁标高20、25、28米处安装了三排烟气取样点,每排三个,共18个。分析烟气成分后发现,燃用含硫量高的煤种时,由于燃烧配风调整不合理,省煤器后氧量偏大(实侧值 气体,加剧了高温腐蚀的产生与发展。 4.35%),导致燃烧过程中生成大量的SO 2 2.腐蚀类型 所取垢样中,硫酸酐及三氧化二铁的含量最高,具有融盐型腐蚀的特征,属于融盐型高温腐蚀。从近表层腐蚀产物的分析结果看,S和Fe元素含量最高,具有硫化物型腐蚀特征,说明存在较严重的硫化物型腐蚀。因此,达拉特发电厂的锅炉高温腐蚀是以融盐型腐蚀为主并有硫化物腐蚀的复合型腐蚀。 3.防止受热面高温腐蚀的措施 2.1.采用低氧燃烧技术组 由于供给锅炉燃烧室空气量的减少,因此燃烧后烟气体积减小,排烟温度下 的百分数和过量空气百分数之间降,锅炉效率提高。燃油和煤中的硫转化为SO 3 的转化明显下降。的关系是,随着过量空气百分数的降低,燃料中的硫转化为SO 3

储油罐爆炸的原因分析与控制

编号:SM-ZD-97719 储油罐爆炸的原因分析与 控制 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

储油罐爆炸的原因分析与控制 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 储油罐是油库的重要设备,储存着大量易燃烧、易爆炸、易挥发、易流失的油品,一旦发生爆炸所造成的损失难以估计。近20年来,油罐发展呈大型化的明显趋势。随着油气储备量的增加,储油罐的规模和数量也大幅度地增加。因此,如何安全有效地管理储油罐、提高储油罐的安全可靠性,已是当前安全管理工作所面临的一个重大课题。 1 爆炸原因分析 1.1 明火 由明火引起的油罐火灾居第1位,其主要原因是在使用电气、焊修储油设备时,动火管理不善或措施不力而引起。例如,检修管线不加盲板;罐内有油时,补焊保温钉不加措施;焊接管线时,事先没清扫管线,管线没加盲板隔断;油罐周围的杂草、可燃物未清除干净等。另一个重要原因是在油库禁区及油蒸气易积聚的场所携带和使用火柴、打火机、灯火等违禁品或在上述场合吸烟等。

金属的腐蚀与防护 教学设计教案

第3节化学能转化为电能——电池 第3课时金属的腐蚀与防护 【学习目标】 1、能够运用原电池原理解释金属发生电化学腐蚀的原因。 2、学会利用原电池原理和电解原理设计防护的方法。 3、认识金属腐蚀的危害和防护的必要性。 【预习】 三、金属的腐蚀与防护 1、金属电化学腐蚀的原理 (1)金属腐蚀。 金属腐蚀常见的类型:。 (2)电化学腐蚀 ①概念:当两种金属(或合金)且又同时暴露在里或与接触时,由于形成原电池而发生的腐蚀就是电化学腐蚀。 电化学腐蚀过程中由于电解质溶液的不同,又可分为和两种。 ②吸氧腐蚀 见课本27页图1-3-13:表示的是一块铆有铁铆钉的铜板暴露在潮湿空气中的腐蚀情况,其中为负极,为正极,铜板表面凝结有一层水膜,空气中CO2及沿海地区空气中的NaCl等物质溶解在水膜中形成电解质溶液,从而构成原电池。 电极反应为:负极:正极: 然后OH-与Fe2+结合为Fe(OH)2,故该原电池的总反应为: Fe(OH)2与潮湿空气反应生成Fe(OH)3:方程式为: 生成的Fe(OH)3分解,从而生成铁锈(Fe2O3·nH2O),该过程主要消耗O2,称为吸氧腐蚀。③析氢腐蚀 同样是上述腐蚀,若空气中SO2含量较高,处于酸雨的环境下,使水膜酸度较高,即电解质溶液为酸性溶液,正极反应就变为: 总反应为:。该过程为析氢腐蚀。 无论是析氢腐蚀,还是吸氧腐蚀,都使金属成为原电池的负极,金属电子变为金属阳离子而被腐蚀,且金属越越易发生电化学腐蚀。 【例1】下列关于铁器的使用注意事项不正确的是() A、避免长期接触潮湿空气 B、避免与酸性物质接触 C、不能接触干燥的空气 D、不能盛放硫酸铜溶液 【例2】下列现象中,不是由于原电池反应造成的是( ) A、含杂质的锌与盐酸反应比纯锌与盐酸反应速率快。 B、金属在潮湿的空气中易腐蚀。 C、纯铁和盐酸反应,如滴入几滴硫酸铜溶液,则可加快反应速率。 D、化工厂中的铁锅炉易腐蚀而损坏。 2、金属的防护 金属的腐蚀主要是电化学腐蚀,只要破坏了原电池的构成要素就可减少电化学腐蚀的发生,常见有以下几种金属防护方法: (1)让金属制品处于的环境。该方法破坏了电解质溶液的存在,金属不易被腐蚀。 (2)在金属表面加一层。常见的方法是刷一层、、、 、等保护层,效果较好的方法还有在金属表面镀上一层金属防护层。

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(新编版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 浅析垃圾焚烧炉过热器腐蚀原因及解决措施(新编版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

浅析垃圾焚烧炉过热器腐蚀原因及解决措 施(新编版) 摘要:垃圾焚烧发电是实现城市垃圾无害化、减量化和资源化处理的一种有效方法,目前正得到大力的推广。焚烧发电具有工艺简单,运行可靠,垃圾处理速度快,处理量大。但是由于垃圾成份相当复杂,用于焚烧垃圾的焚烧炉存在非常严重的磨损、腐蚀现象,在腐蚀现象中以高温过热器管的腐蚀问题最为严重。本文主要就这个问题展开讨论并提出预防措施。 关键词:垃圾焚烧炉;高温过热器管腐蚀;措施 一、垃圾焚烧发电工艺原理垃圾焚烧发电是将垃圾放在焚烧炉中进行燃烧,释放出热能,余热回收加热给水变成蒸汽,蒸汽在汽轮机中推动汽轮发电机旋转做功,将蒸汽的热能转化为电能,释放热能后的烟气经净化系统处理后排放,从而将垃圾由“废物”变为

可利用的“资源”。随着各种炉型技术的实践应用广泛开展,炉排式垃圾焚烧炉以适应性强,处理比较彻底的优势正成为目前国内垃圾焚烧的主流工艺。随着技术的不断的提高和发展,我国焚烧炉的垃圾处理容量也不断的提高,从初期的150t/d提高到现在的750t/d,规模日趋增大。 二、垃圾焚烧发电的特点一般来说,垃圾经焚烧处理后残余的固体废物约占20%(炉渣约占15%,飞灰约占5%),考虑炉渣的综合利用因素,减量化效果更为显著。这相比于垃圾填埋处理要永久性占用土地来说节约了大量的土地资源。垃圾中的可燃物在焚烧中基本上变为了可利用的热能。根据城市发展程度及地理位置、生活习惯不同,垃圾的热值有所不同,一般用于焚烧的垃圾要求低位热值大于4180KJ/Kg,垃圾发电量一般在250kwh/t以上(随热值的提高而增加)。另外,由于垃圾焚烧后的尾气经过了严格的净化处理,因此对环境的污染被控制到了最低。因此,垃圾焚烧处理的特点是处理量大、减量效果好、无害化彻底,且有热能回收作用,是真正实现垃圾处理的“无害化、资源化、减量化”的技术手段。因此,对

基本热处理对45钢组织和性能影响

基本热处理对45钢组织和性能影响 作者:学号:班级:材料成型6班 小组成员: 关键词 45钢、热处理、组织、性能、正火、淬火、回火。 摘要 热处理是一种很重要的金属加工工艺方法,也是充分发挥金属材料性能潜力的重要手段。热处理的主要目的是改变钢的性能,其中包括使用性能和工艺性能。钢的热处理工艺特点是将钢加热到一定的温度,经一定时间的保温,然后以某种速度冷却,使得钢的组织和性能发生改变。 45钢经过热处理后组织、性能也会发生显著变化。在热处理操作中,加热温度、保温时间和冷却方法是最重要的三个基本工艺因素,正确选择规范,是保证工件获得合格性能的关键。本文将介绍本次45热处理过程、问题分析和结果。通过45钢基本热处理结果来验证热处理给45钢的组织和性能的影响。同时着重介绍45钢的水淬(860℃)和中温回火(400℃)。 一、式样 二、处理工艺选择 860℃加热保温15min,直接在水中冷却至室温,然后中温400℃回火1h。 三、实验原理 所谓淬火就是将钢加热到 Ac3(亚共析钢)或Ac1 (过共析钢)以上30~50℃,保温后放入各种不同的冷却介质中( V冷应大于V临),以获得马氏体组织。碳钢经淬火后的组织由马氏体及一定数量的残余奥氏体所组成。 为了正确地进行钢的淬火,必须考虑下列三个重要因素:淬火加热的温度、保温时间和 冷却速度。

(1)淬火温度的选择 选定正确的加热温度是保证淬火 质量的重要环节。淬火时的具体加热温度主要取决于钢的含碳量,可根据 相图确定(如图4所示)。对亚共析钢,其加热温度为A c3+30~50℃,若加热温度不足(低于A c3),则淬火组织中将出现铁素体而造成强度及硬度的降低。对过共析钢,加热温度为A c1+30~50℃,淬火后可得到细小的马氏体与粒状渗碳体。后者的存在可提高钢的硬度和耐磨性。 (2)保温时间的确定 淬火加热时间是将试样加热到淬火温度所需的时间及在淬火温度停留保温所需时间的 总和。加热时间与钢的成分、工件的形状尺寸、所需的加热介质及加热方法等因素有关,一般可按照经验公式来估算,碳钢在电炉中加热时间的计算如表1所示。 表1 碳钢在箱式电炉中保温时间的确定 (3)冷却速度的影响 冷却是淬火的关键工序,它直接影响到钢 淬火后的组织和性能。冷却时应使冷却速度 大于临界冷却速度,以保证获得马氏体组织; 在这个 前提下又应尽量缓慢冷却,以减少钢中的内 应力,防止变形和开裂。为此,可根据C曲

油罐内部防腐

油罐所储存的油品往往含有氢、硫酸、有机和无机盐以及水分等腐蚀性化学物质,加上罐外壁受环境因素影响,油罐的寿命会大大缩短。如果不能对金属油罐进行及时的防腐处理,轻则表面腐蚀并对油品造成污染,使油品胶质、酸碱度、盐分增加,影响油品质量;重则因腐蚀使油罐穿孔造成油品泄漏,不但形成能源浪费、污染环境,而且容易造成火灾、爆炸,其危险性可想而知。因此,对油罐的腐蚀种类、腐蚀的主要部位、腐蚀机理等进行分析研究,采用合理的、先进的、经济的防护方法,对金属油罐进行防腐蚀处理是非常必要的。 油罐的腐蚀种类 1、化学腐蚀。主要发生在干燥环境下的罐体外壁,一般腐蚀程度较轻; 2、浓度腐蚀。主要发生在油罐内壁液面以下,是由氧的浓度差引起的; 3、原电池腐蚀(电化学腐蚀)。主要发生在罐底、罐壁和罐顶,是油罐内部最主要、最严重、危害最大的一种腐蚀; 4、硫酸盐还原菌及其他细菌引起的腐蚀。主要发生在罐底; 5、摩擦腐蚀。主要发生在浮顶罐的浮动伸缩部位。 油罐的腐蚀机理 重质油罐主要包括原油罐、污油罐和各类专用润滑油、专用燃料油罐等。油罐的腐蚀主要是由于重质油中的无机盐、酸、硫化物等对钢铁造成的腐蚀。此类油罐腐蚀最为严重的部位是罐底部分。由于罐底水含有厌氧细菌(硫酸盐还原菌)、有机物、硫酸盐、氧在这些油品中的溶解度很低,罐底水处于缺氧状态,正好是硫酸盐还原菌生存的适宜环境,因而上述较重油品储罐罐底内部腐蚀是以酸腐蚀和硫酸盐还原菌引起的坑蚀为主。其次是水、油界面部位的腐蚀,油、气界面的腐蚀也较严重,顶部气相腐蚀则较轻。轻质油品主要包括汽油、煤油、柴油等。这类油料储罐的罐体外壁容易发生化学腐蚀,油罐内部则容易发生其余几种形式的腐蚀。由于氧在轻油中的溶解度很高,一部分溶解氧可以进入罐底水中,所以罐底仍存在轻度的电池微腐蚀和氧浓差电池腐蚀。而且这类油料储罐的具体腐蚀情况也随介质的不同而有所差异。汽油中加的四乙基铅,煤油中加的硫化物和抗静电剂等对碳钢都有腐蚀作用。汽油罐顶部和汽油气液界面腐蚀较严重,而这些部位煤油引起的腐蚀较次之,柴油腐蚀轻微,底部水相腐蚀也较轻。无论是重质油罐,还是轻质油罐,其顶部腐蚀的主要原因都是由水蒸气、空气中的氧及油品中的挥发性硫化氢造成的电化学腐蚀,对某些油品而言,这种腐蚀显得更加严重一些;而罐壁气液交替部位的腐蚀主要是由于氧的浓度差电池引起的,氧浓度高的部位为阴极,氧浓度低的部位为阳极;罐底腐蚀主要由于罐底钢板直接与罐底水层相接触,而罐底水中含有各种水溶性盐、酸,这些盐和酸的水溶液都是电解质,能够产生局部电解过程,所以罐底部分是遭受腐蚀最严重的部位。 油罐内部的防护措施 1、油罐材质的选择 一般宜选用含碳量小于0.2%和硫、磷含量低于0.3%的钢材。不同存储介质的

铁碳合金成分组织性能之间的关系

相图分析——典型合金结晶——铁碳合金成分与性能关系、应用 三、铁碳合金成分、组织、性能之间的关系 从对Fe-Fe3C相图的分析可知,在一定的温度下,合金的成分决定了组织,而组织又决定了合金的性能。任何铁碳合金室温组织都是由铁素体和渗碳体两相组成,但成分(含碳量)不同,组织中两个相的相对数量,相对分布及形态也不同,因而不同成分的铁碳合金具有不同的组织和性能。 1、碳的质量分数对组织的影响 铁碳合金的室温组织随碳的质量分数的增加,组织的变化规律如下: F+P→P→P+Fe3CⅡ→P+Fe3CⅡ+Ldˊ→Ldˊ+Fe3CⅠ 从以上变化可以看出,铁碳合金室温组织随碳的质量分数的增加,铁素体的相对量减少,而渗碳体的相对量增加。具体来说,对钢部分而言,随着含碳量的增加,亚共析钢中的铁素体量随着减少,过共析钢中的二次渗碳体量随着增加;对铸铁部分而言,随着碳的质量分数的增加,亚共晶白口铸铁中的珠光体和二次渗碳体量减少;过共晶白口铸铁中一次渗碳体和共晶渗碳体量随着增加。铁碳合金室温组织的相组成相对量、组织组成物相对量如图所示。 2、碳的质量分数对力学性能的影响 铁碳合金的力学性能决定于铁素体与渗碳体的相对量及它们的相对分布状况。当碳的质量分数Wc<%时,随碳的质量分数的增加,钢的强度,硬度呈直线上升,而塑性、韧性随之降低。原因是钢组织中渗碳体的相对量增多,铁素体的相对量减少;当碳的质量分数Wc>%时,随碳的质量分数的继续增加,硬度仍然增加,而强度开始明显下降,塑性、韧性继续降低。原因是钢中的二次渗碳体沿晶界析出并形成完整的网络。导致了钢脆性的增加。为保证钢有足够的强度和一定的塑性及韧性,机械工程中使用的钢其碳质量分数一般不大于%。Wc>%的白口铸铁,由于组织中渗碳体量太多,性能硬而脆,难以切削加工,在机械工程中很少直接应用。

10Cr9MoVNb钢的组织和性能

10Cr9Mo1VNbN钢的组织和性能 与奥氏体类耐热钢相比,铁素体类耐热钢的蠕变断裂强度低。但是铁素体类耐热钢导热性能好、热膨胀系数小、抗应力腐蚀性能好,并且还具有抗核辐射效突性好、抗氦脆性好等特点。10Cr9MoVNb钢是铁素体类耐热钢,我们就该钢的热处理工艺对组织和性能的影响,特别是该钢在回火过程中组织变化规律进行了研究和分析。 1试验方法 试验钢是在成都无缝钢管厂用10t电弧炉冶炼,并重熔成It锭。试验钢的化学成分(%)为: C0.10,Si 0.36,Mn0.48,S0.007,P0.012,Cr9.38,Mo0.93, V0.24,Nb0.08,N0.050,AI0.04。 试验用料取自必172minX8mm的钢管。首先选择4个因素(奥氏体化温度,奥氏体化之后的冷却速度,回火温度,回火时间),3个水平进行正交试验,确定了最佳热处理制度。然后以最佳热处理制度处理一批试样,测定了室温拉伸性能、室温冲击韧性、600℃瞬时拉伸性能和600℃持久拉伸性能。另外,为了研究高温强化机理,着重研究了最佳正火条件下,回火温度对试验钢组织的影响。为此,用光学显微镜和电子显微镜观察组织,以电子衍射法分析析出相的结构,并以能谱分析法确定了相的成分。 2试验结果 2.1机械性能正交试验结果,热处理制度对试验钢的室温拉伸性能、室温冲击韧性和600℃瞬时拉伸性能的影响,如表1所示。正交试验显著性分析结果如表2所示。由表可知,在试验条件范围内,奥氏体化温度和冷却速度对机械性能的影响一般来讲不显著;而回火温度和回火时间对机械性能的影响有的稍显著,有的显著。综合分析试验结果,试验钢的最佳热处理制度为在1050C奥氏体化lh,空冷,然后在780C回火lh。按此制度处理的试验钢性能为室温σb715MPa,δ524.4%,,Ψ74.6%,,Ak v150J;600℃σ0.2300MPa,σb340MPa,δ535.0%,Ψ87.0%。 2.2显微组织 2.2.1正火试样显微组织试验钢正火(1050C,lh)试样显微组织如图表1。由图可知,试验钢正火组织主要是有大量位错缠结的板条状马氏体,另外还有少量自回火板条状马氏体和少量未溶碳化物。 2.2.2因火试样光学显微组织正火之后在不同温度回火(lh)试样用光学显微镜观察发现,马氏体的板条形貌一直保持到400℃,在更高的温度回火的试样,马氏体的板条状形貌逐渐消失,但是直至780C回火试样仍有部分板条状形貌隐约可见,如图Za所示。另外,700C回火试样,用光学显微镜可观察到马氏体分解析出的细小碳化物。当回火温度升高到800oC,可明显地观察到析出的碳化物。 2.2.3回火试样电子显微组织用电子显微镜观察发现,在400C以下回火试样马氏体板条完整,板条边界清晰可见,板条内有大量缠结的位错。500℃和600℃回火试样马氏体板条仍较完整,位错密度仍然相当大。700℃回火试样仍然是板条状马氏体,但有的板条边界不太清楚,位错密度降低,位错缠结形成的胞状结构胞壁变薄。780℃回火试样位错密度进一步降低,可见,在500’C以下回火试样中析出相为平行排列的针状碳化物,它分布在马氏体板条内。随着回火温度的提高,碳化物形状由针状变为粒状或杆状,板条界面上亦有析出。回火温度在500℃以下,析出相为M6C型碳化物,600℃回火时析出相为M23C6型碳化物,780C回火试样中除M23C6型碳化物之外,还有MC型碳化物。能谱分析证明,M6C型碳化物中M主要是Fe,另外还有少量Cr;而在M23C6型碳化物中M主要是Cr和Fe,另外还有M。和V。随着回火温度的提高,M23C6中Cr/Fe比值稍有增加。在780℃回火析出的MC型碳化物中,M主要是V,另外还有Cr、Nb、 2.3持久拉伸性能和时效组织试验钢以最佳工艺进行热处理的试样,在600’C做持久拉伸试验,其试验数据位于外国同类钢的持久拉伸性能数据带内。600℃,105h持久强度极限为130MPa。600℃1423h时效组织仍然有板条束形貌,并且胞状结构也明显可见。 2.4讨论根据试验结果粗略计算,正火后780℃回火的试验钢基体中Cr含量为9.23%,固溶强化

相关主题
文本预览
相关文档 最新文档