当前位置:文档之家› 二叉树遍历的超简单方法

二叉树遍历的超简单方法

二叉树遍历的超简单方法
二叉树遍历的超简单方法

现在以上面的二叉树为例子,说下三种遍历的方法

先序遍历(简称根左右):

1)从最上的第一层根结点F开始,按照根左右的原则,写出先序遍历顺序:FCE

2)继续对第二层进行分析,第二层有结点C和E。可以看见C、A、D和E、G可以组成两组小二叉树,那么现在对这两组小二叉树进行先序遍历,得出答案分别是CAD和EG。好了,现在把我们刚做出的答案CAD和EG代进去第一步做出的答案FCE里面,就得出答案:FC(AD)E(G)了

3)同理对第三层进行分析,D、B和G、H、P可以组成两组小二叉树,我们就对他们进行先序遍历,结果就是DB和GHP了。同样地,把这两个答案代进上一步的结果里面,答案就是FC(AD(B))E(G(HP))4)把第三步答案里面的括号全部去掉,得出最终答案FCADBEGHP

中序遍历(简称左根右):

1)从最上的第一层根结点F开始,按照左根右的原则,写出先序遍历顺序:CFE

2)继续对第二层进行分析,写出答案(A)C(D)FE(G)

3)对第三层进行分析,写出答案(A)C((B)D)FE((H)G(P))4)去掉括号,得出:ACBDFEHGP

后序遍历(简称左右根):

1)从最上的第一层根结点F开始,按照左右根的原则,写出先序遍历顺序:CEF

2)继续对第二层进行分析,写出答案(AD)C(G)EF

3)对第三层进行分析,写出答案(A(B)D)C((HP)G)EF

4)去掉括号,得出:ABDCHPGEF

创建一个二叉树并输出三种遍历结果

实验报告 课程名称数据结构 实验项目实验三--创建一个二叉树并输出三种遍历结果 系别■计算机学院 _________________ 专业_______________ 班级/学号_____________ 学生姓名___________ 实验日期— 成绩______________________________ 指导 教师

实验题目:实验三创建一个二叉树并输出三种遍历结果 实验目的 1)掌握二叉树存储结构; 2)掌握并实现二叉树遍历的递归算法和非递归算法; 3)理解树及森林对二叉树的转换; 4)理解二叉树的应用一哈夫曼编码及WPL计算。 实验内容 1)以广义表或遍历序列形式创建一个二叉树,存储结构自选; 2)输出先序、中序、后序遍历序列; 3)二选一应用题:1)树和森林向二叉树转换;2)哈夫曼编码的应用问题。 题目可替换上述前两项实验内容) 设计与编码 1)程序结构基本设计框架 (提示:请根据所选定题目,描述程序的基本框架,可以用流程图、界面描述图、 框图等来表示) 2)本实验用到的理论知识遍历二叉树,递归和非递归的方法 (应用型

(提示:总结本实验用到的理论知识,实现理论与实践相结合。总结尽量简明扼要,并与本次实验密切相关,要求结合自己的题目并阐述自己的理解和想法) 3) 具体算法设计 1) 首先,定义二叉树的存储结构为二叉链表存储,每个元素的数 据类型Elemtype,定义一棵二叉树,只需定义其根指针。 2) 然后以递归的先序遍历方法创建二叉树,函数为CreateTree(),在输 入字符时要注意,当节点的左孩子或者右孩子为空的时候,应当输入一 个特殊的字符(本算法为“ #”),表示左孩子或者右孩子为空。 3) 下一步,创建利用递归方法先序遍历二叉树的函数,函数为 PreOrderTreeQ,创建非递归方法中序遍历二叉树的函数,函数为 InOrderTree(),中序遍历过程是:从二叉树的根节点开始,沿左子树 向下搜索,在搜索过程将所遇到的节点进栈;左子树遍历完毕后,从 栈顶退出栈中的节点并访问;然后再用上述过程遍历右子树,依次类 推,指导整棵二叉树全部访问完毕。创建递归方法后序遍历二叉树的 函数,函数为LaOrderTree()。 (提示:该部分主要是利用C、C++ 等完成数据结构定义、设计算法实现各种操作,可以用列表分步形式的自然语言描述,也可以利用流程图等描述) 4) 编码 #include #include #include typedef char DataType; #define MaxSize 100 typedef struct Node { DataType data; struct Node *lchild; struct Node *rchild; } *BiTree,BitNode;

二叉树的各种算法

二叉树的各种算法.txt男人的承诺就像80岁老太太的牙齿,很少有真的。你嗜烟成性的时候,只有三种人会高兴,医生你的仇人和卖香烟的。 /*用函数实现如下二叉排序树算法: (1)插入新结点 (2)前序、中序、后序遍历二叉树 (3)中序遍历的非递归算法 (4)层次遍历二叉树 (5)在二叉树中查找给定关键字(函数返回值为成功1,失败0) (6)交换各结点的左右子树 (7)求二叉树的深度 (8)叶子结点数 Input 第一行:准备建树的结点个数n 第二行:输入n个整数,用空格分隔 第三行:输入待查找的关键字 第四行:输入待查找的关键字 第五行:输入待插入的关键字 Output 第一行:二叉树的先序遍历序列 第二行:二叉树的中序遍历序列 第三行:二叉树的后序遍历序列 第四行:查找结果 第五行:查找结果 第六行~第八行:插入新结点后的二叉树的先、中、序遍历序列 第九行:插入新结点后的二叉树的中序遍历序列(非递归算法) 第十行:插入新结点后的二叉树的层次遍历序列 第十一行~第十三行:第一次交换各结点的左右子树后的先、中、后序遍历序列 第十四行~第十六行:第二次交换各结点的左右子树后的先、中、后序遍历序列 第十七行:二叉树的深度 第十八行:叶子结点数 */ #include "stdio.h" #include "malloc.h" #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0

#define INFEASIBLE -1 #define OVERFLOW -2 typedef int Status; typedef int KeyType; #define STACK_INIT_SIZE 100 // 存储空间初始分配量 #define STACKINCREMENT 10 // 存储空间分配增量 #define MAXQSIZE 100 typedef int ElemType; typedef struct BiTNode{ ElemType data; struct BiTNode *lchild,*rchild;//左右孩子指针 } BiTNode,*BiTree; Status SearchBST(BiTree T,KeyType key,BiTree f,BiTree &p) { if(!T){p=f;return FALSE;} else if(key==T->data){p=T;return TRUE;} else if(keydata)return SearchBST(T->lchild,key,T,p); else return(SearchBST(T->rchild,key,T,p)); } Status InsertBST(BiTree &T,ElemType e) { BiTree s,p; if(!SearchBST(T,e,NULL,p)) { s=(BiTree)malloc(sizeof(BiTNode)); s->data=e;s->lchild=s->rchild=NULL; if(!p)T=s; else if(edata)p->lchild=s; else p->rchild=s; return TRUE; } else return FALSE; } Status PrintElement( ElemType e ) { // 输出元素e的值 printf("%d ", e ); return OK; }// PrintElement

数据结构C语言实现二叉树三种遍历

实验课题一:将下图中得二叉树用二叉链表表示: 1用三种遍历算法遍历该二叉树,给出对应得输出结果; 2写一个函数对二叉树搜索,若给出一个结点,根据其就是否属于该树,输出true或者f alse。 3写函数完成习题4、31(C++版)或4、28(C版教科书)。 #include "stdio、h" #include”malloc、h" typedefstruct BiTNode { char data; structBiTNode *lchild,*rchild; }BiTNode,*BiTree; BiTree Create(BiTreeT) { char ch; ch=getchar(); if(ch=='#’) T=NULL; else { T=(BiTNode *)malloc(sizeof(BiTNode)); T-〉data=ch; T->lchild=Create(T—〉lchild); T—〉rchild=Create(T-〉rchild); } return T; } int node(BiTree T) { int sum1=0,a,b; ?if(T) { if(T!=NULL) ??sum1++;

?a=node(T->lchild); sum1+=a; b=node(T—>rchild); sum1+=b; ?} return sum1; } int mnode(BiTree T) { ?int sum2=0,e,f; if(T) { ?if((T->lchild!=NULL)&&(T-〉rchild!=NULL))?sum2++; ?e=mnode(T-〉lchild); sum2+=e; f=mnode(T-〉rchild); sum2+=f; ?} return sum2; } void Preorder(BiTree T) { if(T) { printf("%c”,T->data); Preorder(T—>lchild); Preorder(T-〉rchild); } } int Sumleaf(BiTree T) { int sum=0,m,n; if(T) { if((!T-〉lchild)&&(!T-〉rchild)) sum++; m=Sumleaf(T->lchild); sum+=m; n=Sumleaf(T—>rchild); sum+=n; } return sum; }

C语言实现二叉树的前序遍历(递归)

C语言实现二叉树的前序遍历算法实现一: #include #include typedef struct BiTNode//定义结构体 { char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; void CreateBiTree(BiTree &T) //前序创建树 { char ch; scanf("%c",&ch); if(ch==' ') T=NULL; else { T=(struct BiTNode *)malloc(sizeof(struct BiTNode)); T->data=ch; CreateBiTree(T->lchild); CreateBiTree(T->rchild); } } int print(BiTree T)//前序遍历(输出二叉树) { if(T==NULL)return 0; else if(T->lchild==NULL && T->rchild==NULL)return 1; else return print(T->lchild)+print(T->rchild); } void main()//主函数 { BiTree T; CreateBiTree(T); printf("%d\n",print(T)); } 算法实现二: #include

#include struct BiTNode//定义结构体 { char data; struct BiTNode *lchild,*rchild; }; int num=0; void CreatBiTree(struct BiTNode *&p) //前序创建树 { char ch; scanf("%c",&ch); if(ch==' ') p=NULL; else { p=(struct BiTNode *)malloc(sizeof(struct BiTNode)); p->data=ch; CreatBiTree(p->lchild); CreatBiTree(p->rchild); } } void print(struct BiTNode *p) //前序遍历(输出二叉树){ if(p!=NULL) { if(p->lchild==NULL&&p->rchild==NULL) else { print(p->lchild); print(p->rchild); } } } void main()//主函数 { struct BiTNode *p; CreatBiTree(p); print(p); printf("%d\n",num); } 供测试使用的数据

二叉树遍历C语言(递归,非递归)六种算法

数据结构(双语) ——项目文档报告用两种方式实现表达式自动计算 专业: 班级: 指导教师: 姓名: 学号:

目录 一、设计思想 (01) 二、算法流程图 (02) 三、源代码 (04) 四、运行结果 (11) 五、遇到的问题及解决 (11) 六、心得体会 (12)

一、设计思想 二叉树的遍历分为三种方式,分别是先序遍历,中序遍历和后序遍历。先序遍历实现的顺序是:根左右,中序遍历实现的是:左根右,后续遍历实现的是:左右根。根据不同的算法分,又分为递归遍历和非递归遍历。 递归算法: 1.先序遍历:先序遍历就是首先判断根结点是否为空,为空则停止遍历,不为空则将左子作为新的根结点重新进行上述判断,左子遍历结束后,再将右子作为根结点判断,直至结束。到达每一个结点时,打印该结点数据,即得先序遍历结果。 2.中序遍历:中序遍历是首先判断该结点是否为空,为空则结束,不为空则将左子作为根结点再进行判断,打印左子,然后打印二叉树的根结点,最后再将右子作为参数进行判断,打印右子,直至结束。 3.后续遍历:指针到达一个结点时,判断该结点是否为空,为空则停止遍历,不为空则将左子作为新的结点参数进行判断,打印左子。左子判断完成后,将右子作为结点参数传入判断,打印右子。左右子判断完成后打印根结点。 非递归算法: 1.先序遍历:首先建立一个栈,当指针到达根结点时,打印根结点,判断根结点是否有左子和右子。有左子和右子的话就打印左子同时将右子入栈,将左子作为新的根结点进行判断,方法同上。若当前结点没有左子,则直接将右子打印,同时将右子作为新的根结点判断。若当前结点没有右子,则打印左子,同时将左子作为新的根结点判断。若当前结点既没有左子也没有右子,则当前结点为叶子结点,此时将从栈中出栈一个元素,作为当前的根结点,打印结点元素,同时将当前结点同样按上述方法判断,依次进行。直至当前结点的左右子都为空,且栈为空时,遍历结束。 2.中序遍历:首先建立一个栈,定义一个常量flag(flag为0或者1),用flag记录结点的左子是否去过,没有去过为0,去过为1,默认为0.首先将指针指向根结点,将根结点入栈,然后将指针指向左子,左子作为新的结点,将新结点入栈,然后再将指针指向当前结点的左子,直至左子为空,则指针返回,flag置1,出栈一个元素,作为当前结点,打印该结点,然后判断flag,flag为1则将指针指向当前结点右子,将右子作为新的结点,结点入栈,再次进行上面的判断,直至当前结点右子也为空,则再出栈一个元素作为当前结点,一直到结束,使得当前结点右子为空,且栈空,遍历结束。 3.后续遍历:首先建立两个栈,然后定义两个常量。第一个为status,取值为0,1,2.0代表左右子都没有去过,1代表去过左子,2,代表左右子都去过,默认为0。第二个常量为flag,取值为0或者1,0代表进左栈,1代表进右栈。初始时指针指向根结点,判断根结点是否有左子,有左子则,将根结点入左栈,status置0,flag置0,若没有左子则判断结点有没有右子,有右子就把结点入右栈,status置0,flag置1,若左右子都没有,则打印该结点,并将指针指向空,此时判断flag,若flag为0,则从左栈出栈一个元素作为当前结点,重新判断;若flag为1则从右栈出栈一个元素作为当前结点,重新判断左右子是否去过,若status 为1,则判断该结点有没有右子,若有右子,则将该结点入右栈,status置1,flag置1,若没有右子,则打印当前结点,并将指针置空,然后再次判断flag。若当前结点status为2,且栈为空,则遍历结束。若指针指向了左子,则将左子作为当前结点,判断其左右子情况,按上述方法处理,直至遍历结束。

二叉树的建立及几种简单的遍历方法

#include "stdio.h" #include "stdlib.h" #define STACK_INIT_SIZE 100 //栈存储空间初始分配量 #define STACKINCREMENT 10 //存储空间分配增量 //------二叉树的存储结构表示------// typedef struct BiTNode{ int data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; //-----顺序栈的存储结构表示------// typedef struct{ BiTree *top; BiTree *base; int stacksize; }SqStack; //*************************************************** //构造一个空栈s SqStack *InitStack(); //创建一颗二叉树 BiTree CreatBiTree(); //判断栈空 int StackEmpty(SqStack *S); //插入元素e为新的栈顶元素 void Push(SqStack *S,BiTree p); //若栈不为空,则删除s栈顶的元素e,将e插入到链表L中void Pop(SqStack *S,BiTree *q); //非递归先序遍历二叉树 void PreOrderTraverse(BiTree L); //非递归中序遍历二叉树 void InOrderTraverse(BiTree L); //非递归后序遍历二叉树 void PostOrderTraverse(BiTree L); //递归后序遍历二叉树 void PostOrder(BiTree bt); //递归中序遍历二叉树 void InOrder(BiTree bt); //递归先序遍历二叉树 void PreOrder(BiTree bt); //***************************************************

二叉树三种遍历算法代码_

二叉树三种遍历算法的源码 二叉树三种遍历算法的源码背诵版 本文给出二叉树先序、中序、后序三种遍历的非递归算法,此三个算法可视为标准算法,直接用于考研答题。 1.先序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize]; int top; }SqStack; void PreOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { visite(p->data); push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) //通过下一次循环中的内嵌while实现右子树遍历 { p=pop(s); p=p->rchild; }//endif }//endwhile }//PreOrderUnrec 2.中序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize];

int top; }SqStack; void InOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) { p=pop(s); visite(p->data); //访问根结点 p=p->rchild; //通过下一次循环实现右子树遍历}//endif }//endwhile }//InOrderUnrec 3.后序遍历非递归算法 #define maxsize 100 typedef enum{L,R} tagtype; typedef struct { Bitree ptr; tagtype tag; }stacknode; typedef struct { stacknode Elem[maxsize]; int top; }SqStack; void PostOrderUnrec(Bitree t)

二叉树遍历课程设计心得【模版】

目录 一.选题背景 (1) 二.问题描述 (1) 三.概要设计 (2) 3.1.创建二叉树 (2) 3.2.二叉树的非递归前序遍历示意图 (2) 3.3.二叉树的非递归中序遍历示意图 (2) 3.4.二叉树的后序非递归遍历示意图 (3) 四.详细设计 (3) 4.1创建二叉树 (3) 4.2二叉树的非递归前序遍历算法 (3) 4.3二叉树的非递归中序遍历算法 (4) 4.4二叉树的非递归后序遍历算法 (5) 五.测试数据与分析 (6) 六.源代码 (6) 总结 (10) 参考文献: (11)

一.选题背景 二叉树的链式存储结构是用指针建立二叉树中结点之间的关系。二叉链存储结构的每个结点包含三个域,分别是数据域,左孩子指针域,右孩子指针域。因此每个结点为 由二叉树的定义知可把其遍历设计成递归算法。共有前序遍历、中序遍历、后序遍历。可先用这三种遍历输出二叉树的结点。 然而所有递归算法都可以借助堆栈转换成为非递归算法。以前序遍历为例,它要求首先要访问根节点,然后前序遍历左子树和前序遍历右子树。特点在于所有未被访问的节点中,最后访问结点的左子树的根结点将最先被访问,这与堆栈的特点相吻合。因此可借助堆栈实现二叉树的非递归遍历。将输出结果与递归结果比较来检验正确性。。 二.问题描述 对任意给定的二叉树(顶点数自定)建立它的二叉链表存贮结构,并利用栈的五种基本运算(置空栈、进栈、出栈、取栈顶元素、判栈空)实现二叉树的先序、中序、后序三种遍历,输出三种遍历的结果。画出搜索顺序示意图。

三.概要设计 3.1.创建二叉树 3.2.二叉树的非递归前序遍历示意图 图3.2二叉树前序遍历示意图3.3.二叉树的非递归中序遍历示意图 图3.3二叉树中序遍历示意图

二叉树的层次遍历算法

二叉树层次遍历算法实现 问题描述 对任意输入的表示某二叉树的字符序列,完成二叉树的层次遍历算法,并输出其遍历结果。 注:所需Queue ADT的实现见附录。 输入描述 从键盘上输入一串字符串,该字符串为二叉树的先序遍历结果,其中如果遍历到空树时用字符”#”代替。 输出描述 从显示器上输出二叉树的按层次遍历结果。 输入与输出示例 输入: +A##/*B##C##D## 输出: +A/*DBC 输入: ABD##GJ###CFH##I### 输出: ABCDGFJHI 附录(仅供参考): #include #include #define TRUE 1 #define FALSE 0 #define MAX_QUEUE_SIZE 100

//注:需要定义ElementType类型,如果是二叉树, // 则应定义为指向二叉树中结点的指针类型 //格式如: // typedef Tree ElementType; // 队列存储结构采用循环队列 struct QueueRecord; typedef struct QueueRecord *Queue; int IsEmpty(Queue Q); int IsFull(Queue Q); Queue CreateQueue(int MaxElements); void DisposeQueue(Queue Q); void MakeEmpty(Queue Q); int Enqueue(ElementType X, Queue Q); ElementType Front(Queue Q); int Dequeue(Queue Q, ElementType &X); #define MinQueueSize ( 5 ) struct QueueRecord { int Capacity; int Front; int Rear; ElementType *Array; }; int IsEmpty(Queue Q) { return ((Q->Rear + 1)% Q->Capacity == Q->Front); } int IsFull(Queue Q) { return ((Q->Rear + 2) % Q->Capacity == Q->Front); } Queue CreateQueue(int MaxElements) { Queue Q; if (MaxElements < MinQueueSize) return NULL; Q = (Queue)malloc(sizeof(struct QueueRecord));

二叉树遍历算法的实现

二叉树遍历算法的实现 题目:编制二叉树遍历算法的实现的程序 一.需求分析 1.本演示程序中,二叉树的数据元素定义为非负的整型(unsigned int)数据,输 入-1表示该处没有节点 2.本演示程序输入二叉树数据均是按先序顺序依次输入 3.演示程序以用户和计算机对话方式执行,即在计算机终端上显示“提示信息” 之后,由用户在键盘上输入演示程序中规定的运算命令;相应的输入数据和运 算结果显示在其后 4.本实验一共包括三个主要程序,分别是:1)二叉树前序,中序,后序遍历递归 算法实现2)二叉树前序中序遍历非递归算法实现3)二叉树层次遍历算法实现 5.本程序执行命令包括:1)构建二叉树2)二叉树前序递归遍历3)二叉树中序 递归遍历4)二叉树后序递归遍历5)二叉树前序非递归遍历6)二叉树中序非 递归遍历7)二叉树层次遍历 6.测试数据 (1)7 8 -1 9 10 -1 -1 -1 6 11 -1 -1 12 13 -1 -1 14 -1 -1 (2)1 -1 -1 (3)7 8 -1 -1 9 -1 -1 二.概要设计 1.为实现二叉树的遍历算法,我们首先给出如下抽象数据类型 1)二叉树的抽象数据类型 ADT BiTree{ 数据对象D:D是具有相同特性的数据元素的集合 数据关系R: 若D=Φ,则R=Φ,称BiTree是空二叉树; 若D≠Φ,则R={H},H是如下二元关系: (1)在D中存在唯一的成为根的数据元素root,它在关系H下无前驱; (2)若D-{H}≠Φ,则存在D-{root}={D1,D r},且D1∩D r=Φ (3)若D1≠Φ,则D1中存在唯一的元素x1,∈H,且存在D1上的 关系H1?H;若Dτ≠Φ,则D r中存在唯一的元素x r,∈ H,且存在D r上的关系H r?H;H={,,H1,H r}; (4)(D1,{H1})是符合本定义的二叉树,成为根的左子树,(D r,{H r})是 一颗符合本定义的二叉树,成为根的右字树。 基本操作P: InitBiTree(&T); 操作结果:构造空二叉树 DestroyBiTree(&T) 初始条件;二叉树存在 操作结果:销毁二叉树 CreateBiTree(&T,definition);

实验 二叉树遍历算法及应用

实验二叉树遍历算法及应用 实验报告二叉树的遍历应用算法测试实验日期:______________ 学生姓 名:______________ 班级:_______________ 一、实习目的: 1、深入了解二叉树的存储结构及二叉树的遍历方法; 2、掌握二叉树的遍历算法及应用。 二、实习内容及要求 ----------------------------------------------------------------------------------------------------------------------------------------- 应用遍历思想,建立一棵如下图所示的二叉树,并能够完成如下操作: 1. 输出该二叉树的先序、中序、后序遍历序列; 2. 拷贝该树,生成一棵新树; 3. 将原树拆分成左右2棵树,并分别输出该二叉树左子树的遍历序列和右子树的遍历序列; 4. 利用遍历算法输出复制生成的树中结点总数、叶子总数、二叉树高度,并能够输出此二叉树中的叶子 结点。 ----------------------------------------------------------------------------------------------------------------------------------------- 附加:应用二叉树的顺序存储结构,实现建树。 并设计一个算法,实现能够输入一棵树中的双亲结点,输出该双亲结点的所有孩子结点的算法。

三、数据结构设计 (请将数据结构设计填写在此部分。) 四、测试 分别给出以下三棵树的测试结果

用递归和非递归算法实现二叉树的三种遍历

○A ○C ○D ○B ○E○F G 《数据结构与算法》实验报告三 ——二叉树的操作与应用 一.实验目的 熟悉二叉链表存储结构的特征,掌握二叉树遍历操作及其应用 二. 实验要求(题目) 说明:以下题目中(一)为全体必做,(二)(三)任选其一完成 (一)从键盘输入二叉树的扩展先序遍历序列,建立二叉树的二叉链表存储结构;(二)分别用递归和非递归算法实现二叉树的三种遍历; (三)模拟WindowsXP资源管理器中的目录管理方式,模拟实际创建目录结构,并以二叉链表形式存储,按照凹入表形式打印目录结构(以扩展先序遍历序列输入建立二叉链表结构),如下图所示: (基本要求:限定目录名为单字符;扩展:允许目录名是多字符组合) 三. 分工说明 一起编写、探讨流程图,根据流程图分工编写算法,共同讨论修改,最后上机调试修改。 四. 概要设计 实现算法,需要链表的抽象数据类型: ADT Binarytree { 数据对象:D是具有相同特性的数据元素的集合 数据关系R: 若D为空集,则R为空集,称binarytree为空二叉树;

若D不为空集,则R为{H},H是如下二元关系; (1)在D中存在唯一的称为根的数据元素root,它在关系H下无前驱; (2)若D-{root}不为空,则存在D-{root}={D1,Dr},且D1∩Dr为空集; (3)若D1不为空,则D1中存在唯一的元素x1,∈H,且存在D1上的关系H1是H的子集;若Dr不为空集,则Dr中存在唯一的元素 Xr,∈H,且存在Dr上的关系Hr为H的子集;H={,,H1,Hr}; (4) (D1,{H1})是一颗符合本定义的二叉树,称为根的左子树,(Dr,{Hr}) 是一颗符合本定义的二叉树,称为根的右子树。 基本操作: Creatbitree(&S,definition) 初始条件:definition给出二叉树S的定义 操作结果:按definition构造二叉树S counter(T) 初始条件:二叉树T已经存在 操作结果:返回二叉树的总的结点数 onecount(T) 初始条件:二叉树T已经存在 操作结果:返回二叉树单分支的节点数 Clearbintree(S) 初始条件:二叉树S已经存在 操作结果:将二叉树S清为空树 Bitreeempty(S) 初始条件:二叉树S已经存在 操作结果:若S为空二叉树,则返回TRUE,否则返回FALSE Bitreedepth(S,&e) 初始条件:二叉树S已经存在 操作结果:返回S的深度 Parent(S) 初始条件:二叉树S已经存在,e是S中的某个结点 操作结果:若e是T的非根结点,则返回它的双亲,否则返回空Preordertraverse(S) 初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。 操作结果:先序遍历S,对每个结点调用函数visit一次且仅一次。 一旦visit失败,则操作失败。 Inordertraverse (S,&e) 初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。

二叉树的遍历算法实验报告

二叉树实验报告 09信管石旭琳 20091004418 一、实验目的: 1、理解二叉树的遍历算法及应用 2、理解哈夫曼树及其应用。 3、掌握哈夫曼编码思想。 二、实验内容: 1、建立二叉树二叉链表 2、实现二叉树递归遍历算法(中序、前序、后序) 3、求二叉树高度 4、求二叉树结点个数 5、求二叉树叶子个数 6、将序号为偶数的值赋给左子树 三、主要程序: #include #include typedef int ElemType; struct BiTNode { ElemType data; struct BiTNode *lch,*rch; }BiTNode,*BiTree; struct BiTNode *creat_bt1(); struct BiTNode *creat_bt2(); void preorder (struct BiTNode *t); void inorder (struct BiTNode *t); void postorder (struct BiTNode *t); void numbt (struct BiTNode *t); int n,n0,n1,n2; void main() { int k; printf("\n\n\n"); printf("\n\n 1.建立二叉树方法1(借助一维数组建立)"); printf("\n\n 2.建立二叉树方法2(先序递归遍历建立)"); printf("\n\n 3.先序递归遍历二叉树"); printf("\n\n 4.中序递归遍历二叉树"); printf("\n\n 5.后序递归遍历二叉树"); printf("\n\n 6.计算二叉树结点个数"); printf("\n\n 7.结束程序运行");

二叉树的遍历实验报告

二叉树的遍历实验报告 一、需求分析 在二叉树的应用中,常常要求在树中查找具有某种特征的结点,或者对树中全部结点逐一进行某种处理,这就是二叉树的遍历问题。 对二叉树的数据结构进行定义,建立一棵二叉树,然后进行各种实验操作。 二叉树是一个非线性结构,遍历时要先明确遍历的规则,先访问根结点还时先访问子树,然后先访问左子树还是先访问有右子树,这些要事先定好,因为采用不同的遍历规则会产生不同的结果。本次实验要实现先序、中序、后序三种遍历。 基于二叉树的递归定义,以及遍历规则,本次实验也采用的是先序遍历的规则进行建树的以及用递归的方式进行二叉树的遍历。 二、系统总框图

三、各模块设计分析 (1)建立二叉树结构 建立二叉树时,要先明确是按哪一种遍历规则输入,该二叉树是按你所输入的遍历规则来建立的。本实验用的是先序遍历的规则进行建树。 二叉树用链表存储来实现,因此要先定义一个二叉树链表存储结构。因此要先定义一个结构体。此结构体的每个结点都是由数据域data 、左指针域Lchild 、右指针域Rchild 组成,两个指针域分别指向该结点的左、右孩子,若某结点没有左孩子或者右孩子时,对应的指针域就为空。最后,还需要一个链表的头指针指向根结点。 要注意的是,第一步的时候一定要先定义一个结束标志符号,例如空格键、#等。当它遇到该标志时,就指向为空。 建立左右子树时,仍然是调用create ()函数,依此递归进行下去,

直到遇到结束标志时停止操作。 (2)输入二叉树元素 输入二叉树时,是按上面所确定的遍历规则输入的。最后,用一个返回值来表示所需要的结果。 (3)先序遍历二叉树 当二叉树为非空时,执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (4)中序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (5)后序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (6)主程序 需列出各个函数,然后进行函数调用。 四、各函数定义及说明 因为此二叉树是用链式存储结构存储的,所以定义一个结构体用以存储。 typedef struct BiTNode { char data; struct BiTNode *Lchild; struct BiTNode *Rchild;

二叉树的建立和遍历的实验报告

竭诚为您提供优质文档/双击可除二叉树的建立和遍历的实验报告 篇一:二叉树遍历实验报告 数据结构实验报告 报告题目:二叉树的基本操作学生班级: 学生姓名:学号: 一.实验目的 1、基本要求:深刻理解二叉树性质和各种存储结构的特点及适用范围;掌握用指针类型描述、访问和处理二叉树的运算;熟练掌握二叉树的遍历算法;。 2、较高要求:在遍历算法的基础上设计二叉树更复杂操作算法;认识哈夫曼树、哈夫曼编码的作用和意义;掌握树与森林的存储与便利。二.实验学时: 课内实验学时:3学时课外实验学时:6学时三.实验题目 1.以二叉链表为存储结构,实现二叉树的创建、遍历(实验类型:验证型)1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…建立树2…前序

遍历树3…中序遍历树4…后序遍历树5…求二叉树的高度6…求二叉树的叶子节点7…非递归中序遍历树0…结束2)实验要求:在程序中定义下述函数,并实现要求的函数功能:createbinTree(binTree structnode*lchild,*rchild; }binTnode;元素类型: intcreatebinTree(binTree voidpreorder(binTreevoidInorder(binTree voidpostorder(binTreevoidInordern(binTreeintleaf(bi nTree intpostTreeDepth(binTree 2、编写算法实现二叉树的非递归中序遍历和求二叉树高度。1)问题描述:实现二叉树的非递归中序遍历和求二叉树高度2)实验要求:以二叉链表作为存储结构 3)实现过程: 1、实现非递归中序遍历代码: voidcbiTree::Inordern(binTreeinttop=0;p=T;do{ while(p!=nuLL){ stack[top]=p;;top=top+1;p=p->lchild;}; if(top>0){ top=top-1;p=stack[top];

数据结构C语言实现二叉树三种遍历(考试类别)

实验课题一:将下图中的二叉树用二叉链表表示: A B C D E F G H 1 用三种遍历算法遍历该二叉树,给出对应的输出结果; 2 写一个函数对二叉树搜索,若给出一个结点,根据其是否属于该树,输出true或者false。 3 写函数完成习题4.31(C++版)或4.28(C版教科书)。 #include "stdio.h" #include"malloc.h" typedef struct BiTNode { char data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; BiTree Create(BiTree T) { char ch; ch=getchar(); if(ch=='#') T=NULL; else { T=(BiTNode *)malloc(sizeof(BiTNode)); T->data=ch; T->lchild=Create(T->lchild); T->rchild=Create(T->rchild); } return T; } int node(BiTree T) { int sum1=0,a,b; if(T) {

if(T!=NULL) sum1++; a=node(T->lchild); sum1+=a; b=node(T->rchild); sum1+=b; } return sum1; } int mnode(BiTree T) { int sum2=0,e,f; if(T) { if((T->lchild!=NULL)&&(T->rchild!=NULL)) sum2++; e=mnode(T->lchild); sum2+=e; f=mnode(T->rchild); sum2+=f; } return sum2; } void Preorder(BiTree T) { if(T) { printf("%c",T->data); Preorder(T->lchild); Preorder(T->rchild); } } int Sumleaf(BiTree T) { int sum=0,m,n; if(T) { if((!T->lchild)&&(!T->rchild)) sum++; m=Sumleaf(T->lchild); sum+=m; n=Sumleaf(T->rchild); sum+=n;

C#实现二叉树遍历算法

C#实现二叉树遍历算法 用C#2.0实现了二叉树的定义,怎么构造一颗已知的二叉树,用几种常规的算法(先序,中序,后序,层次)遍历二叉树。希望能给有需要人带来帮助,也希望能得到大家的指点。有关C#数据结构的书在书店里找到,网上也是极少,如果你有好的学习资源别忘了告诉我。先谢了。数据结构对一个程序员来说,现在是太重要了,数据结构学得好的人,逻辑思维一定很强,在程序设计的时候,就不会觉得太费劲了。而且是在设计多层应用程序的时候,真是让人绞尽脑汁啊。趁自己还年轻,赶紧练练脑子。哈哈,咱们尽快进入主题吧。 本程序中将用到一棵已知的二叉树如图(二叉树图)所示。 下面简单介绍一下几种算法和思路: 先序遍历: 1. 访问根结点 2. 按先序遍历左子树; 3. 按先序遍历右子树; 4. 例如:遍历已知二叉树结果为:A->B->D->G->H->C->E->F

中序遍历: 1. 按中序遍历左子树; 2. 访问根结点; 3. 按中序遍历右子树; 4. 例如遍历已知二叉树的结果:B->G->D->H->A->E->C->F 后序遍历: 1. 按后序遍历左子树; 2. 按后序遍历右子树; 3. 访问根结点; 4. 例如遍历已知二叉树的结果:G->H->D->B->E->F->C->A 层次遍历: 1. 从上到下,从左到右遍历二叉树的各个结点(实现时需要借辅助容器); 2. 例如遍历已知二叉树的结果:A->B->C->D->E->F->G->H 附加整个解决方案代码: 二叉遍历算法解决方案 using System; using System.Collections.Generic;

数据结构C语言实现二叉树三种遍历

冲刺拼搏,在前进中寻找乐趣。 实验课题一:将下图中的二叉树用二叉链表表示: 1 用三种遍历算法遍历该二叉树 给出对应的输出结果; 2 写一个函数对二叉树搜索 若给出一个结点 根据其是否属于该树 输出true或者false 3 写函数完成习题4.31(C++版)或4.28(C版教科书) #include "stdio.h" #include"malloc.h" typedef struct BiTNode { char data; struct BiTNode *lchild *rchild; }BiTNode *BiTree; BiTree Create(BiTree T) { char ch; ch=getchar(); if(ch=='#') T=NULL; else { T=(BiTNode *)malloc(sizeof(BiTNode)); T->data=ch; T->lchild=Create(T->lchild); T->rchild=Create(T->rchild); } return T; } int node(BiTree T) { int sum1=0 a b; if(T)

if(T!=NULL) sum1++; a=node(T->lchild); sum1+=a; b=node(T->rchild); sum1+=b; } return sum1; } int mnode(BiTree T) { int sum2=0 e f; if(T) { if((T->lchild!=NULL)&&(T->rchild!=NULL)) sum2++; e=mnode(T->lchild); sum2+=e; f=mnode(T->rchild); sum2+=f; } return sum2; } void Preorder(BiTree T) { if(T) { printf("%c" T->data); Preorder(T->lchild); Preorder(T->rchild); } } int Sumleaf(BiTree T) { int sum=0 m n; if(T) { if((!T->lchild)&&(!T->rchild))

相关主题
文本预览
相关文档 最新文档