当前位置:文档之家› 第四届“飞思卡尔杯”全国大学生智能汽车技术报告

第四届“飞思卡尔杯”全国大学生智能汽车技术报告

第四届“飞思卡尔杯”全国大学生智能汽车技术报告
第四届“飞思卡尔杯”全国大学生智能汽车技术报告

第四届“飞思卡尔杯”全国大学生智能汽车竞赛赛

技术报告

学校:长春大学

队伍名称:Beyond

参赛队员:熊本波

江家勇

邓娇

带队教师:李海富

长春大学

关于技术报告和研究论文使用授权的说明

本人完全了解第三届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。

参赛队员签名:

带队教师签名:

日期:

长春大学

目录

第一章 绪论 (1)

1.1前言 (1)

1.2 智能车竞赛介绍 (1)

1.3论文概述 (2)

第二章 智能车系统设计 (3)

2.1 智能车系统分析 (3)

2.2控制系统的总体结构 (3)

第三章智能车机械安装 (5)

3.1舵机的安装 (5)

3.2传感器的安装 (5)

3.3电路板的安装 (6)

3.4光电编码器的安装 (7)

第四章硬件电路部分 (8)

4.1传感器的选型 (8)

4.1.1摄像头选型 (8)

4.1.2速度传感器的选型 (8)

4.2电路板的总体布局 (9)

4.2.1 供电系统设计 (9)

4.2.2电机驱动部分 (10)

第五章 软件部分 (11)

5.1 摄像头辅助调试 (11)

5.2视频信号采集 (11)

5.3信号处理 (12)

5.4 舵机控制和速度调节 (13)

5.4.1 经典PID控制算法 (13)

5.4.2舵机转向控制算法 (14)

5.4.3 转向参考行的选择 (14)

5.4.4直流电机的控制算法 (15)

第六章 总结 (16)

参考文献 (17)

长春大学

第一章 绪论

1.1前言

在半导体技术日渐发展的今天,电子技术在汽车中的应用越来广泛,汽车电子化已成为行业发展的必然趋势。汽车电子化被认为是汽车技术发展进程中的一次革命,汽车电子化的程度被看作是衡量现代汽车水平的重要标志,是用来开发新车型,改进汽车性能最重要的技术措施。汽车制造商认为增加汽车电子设备的数量、促进汽车电子化是夺取未来汽车市场的重要的有效手段。

汽车电子是车体汽车电子控制装置和车载汽车电子控制装置的总称。车体汽车电子控制装置,包括发动机控制系统、底盘控制系统和车身电子控制系统(车身电子ECU)。汽车电子最显著特征是向控制系统化推进,用传感器、微处理器MPU、执行器、数十甚至上百个电子元器件及其零部件组成的电控系统,正获得极其广泛的市场。

作为全球最大的汽车电子半导体器件供应商,飞思卡尔一直致力于汽车电子半导体器件的开发与推广。飞思卡尔在不同的半导体器件市场拥有领先的地位。其中8位和32位微控制器市场占有率第一,传感器市场占第三位,其丰富的半导体器件可用于所有汽车电子控制单元中。9S12微控制器是基于16位HCS12 CPU及0.25微米、高速、高性能5.0V FLASH存储器技术的中档芯片,其较高的性能价格比使其非常适合应用于中高档汽车电子控制系统。

1.2 智能车竞赛介绍

“飞思卡尔杯” 全国大学生智能汽车竞赛是由教育部批准并委托自动化分教指委主办,飞思卡尔公司协办,面向全国大学生的重要赛事。它是以迅猛发展的汽车电子为背景,涵盖了自动控制、模式识别、传感技术、电子电气、计算机、机械等多个学科交叉的科技创意性比赛。根据比赛章程,全国大学生智能汽车竞赛是在统一汽车模型平台上,使用飞思卡尔半导体公司的8位、16位微控制器作为核心控制模块,通过增加道路传感器、设计电机驱动电路、编写相应软件以及装配模型车,制作一个能够自主识别道路的模型汽车。改装后的模型汽车按照规定路线行进,以完成时间最短者为优胜。竞赛以“立足培养,重在参与,鼓励探索,追求卓越”为指导思想,旨在促进高等学校素质教育,培养大学生的综合知识运用能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能,倡导理论

长春大学

联系实际、求真务实的学风和团队协作的人文精神,为优秀人才的脱颖而出创造条件。

该竞赛与教育部已举办的数学建模、电子设计、机械设计、结构设计4大专业竞赛不同,是以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科交叉的科技创意性比赛。引导和激励学生实事求是、刻苦钻研、勇于创新、多出成果、提高素质,发现和培养一批在学术科技上有作为、有潜力的优秀人才。

1.3论文概述

本设计以飞思卡尔MC9S12DP256单片机作为核心控制器,以面阵CMOS传感器JK-007作为图像采集传感器,获取跑道图像,运用数字图像处理技术进行图像的分割和赛道特征的提取,通过PID算法来控制自适应模糊控制器(伺服电机)从而控制模型车转向,使车模能按照比赛规定的跑道和规则最快地完成任务。

整个智能车系统包括图像采集部分、跑道图像预处理和跑道特征提取算法、伺服电机控制、后轮直流电机驱动器等几个子系统组成。

长春大学

第二章 智能车系统设计

2.1 智能车系统分析

在智能车比赛中一辆好的车必须有一个完善的控制系统,这必将离不开对车模的机械、硬件以及软件各个部分进行调整和测试,各个部分相会协调配合才能让智能车在赛道上驰骋。

我们的智能车选用飞思卡尔16位单片机MC9S12DP256B为控制核心,以黑白CMOS摄像头为图像采集传感器,通过LM1881将视频信号进行分离送单片机进行处理,用飞思卡尔公司的双H桥MC33886芯片驱动后轮直流电机,伺服电机直接用单片机控制。通过相关算法,控制舵机和后轮驱动电机,使小车沿着规定的赛道稳定快速的循迹。

2.2控制系统的总体结构

系统硬件结构图如图2.1所示

图2.1 系统硬件结构

长春大学

大赛规则中规定:禁止改动车底盘结构、轮距、轮径及轮胎;禁止采用其它型号的驱动电机,禁止改动驱动电机的传动比;禁止改造滚珠轴承;禁止改动舵机,但可以更改舵机输出轴上连接件;禁止改动驱动电机以及电池,车模主要前进动力来源于车模本身直流电机及电池。虽然大赛规则中都不允许更改上述结构,但小车某些机械结构的变化对小车的性能会产生比较大的影响。小车的整体结构我们未做大的调整,但是在细节方面我们进行了精心设计。系统图像传感器主要是黑白CMOS 黑白摄像头, 算法部分主要采用PID算法,具体将会在后续章节详细介绍。

长春大学

第三章 智能车机械安装

车模机械性能的好坏对车模速度的影响是很大的,因此,良好的机械性能是小车能够快速稳定沿着跑道运行的基础。

3.1舵机的安装

按照车模说明书所说的安装方法,将舵机头朝后,安装在前悬挂中间。此安装方法的优点是安装结构比较紧凑,节省空间,但是前轮左右臂长不等长,车模在转向的时候容易出现不对称,但是为了节省空间,我们采用了车模说明书上介绍的安装方法。

3.2传感器的安装

摄像头传感器的安装对车模重心的影响是很大的,摄像头安装的位置与车模的前瞻量以及视野宽度也有直接关系,所以摄像头安装的位置应同时考虑到机械性能的需要和图像的要求。 由于车模的重心越低越好,在满足图像采集的情况下,应尽可能的降低摄像头的高度,而车体重心前后的位置保持在车体中间偏后的位置较好,因为重心太靠前车模容易甩尾,太靠后车模舵机转向不足,由于车模是后轮驱动,后轮需要更大的压力来确保其动力输出,所以重心在车身中间偏后一点的位置是最理想的。

为了解决这个问题我们采用了质量轻强度大的铝合金杆作为传感器的支架,并用一块三角形薄铁板作为支架底座,而且铝合金支架安装在薄铁板上的位置处于小车中间偏后的位置,增强了支架的稳定性并将传感器在小车行驶过程中的震动降到很低。为了便于采集摄像头传回信号,我们的摄像头采用旋转180゜倒立安装,这样的信号采集,恰好符合飞思卡尔MC9S12DP256单片机的AD采集顺序,方便了数据的处理。摄像头安装支架及其安装位置如图3.1所示:

长春大学

图3.1 摄像头安装

3.3电路板的安装

电路板是这个系统的核心,为了节省空间、尽量减少小车整体质量我们将所有电路集中在一块板子上,考虑到电路板的安装应尽可能小的影响小车重心,我们将控制板设计成正好嵌入到底盘,安装方法如图3.2:

长春大学

图3.2 电路板安装

3.4光电编码器的安装

通过直接选购光电编码器安装在主驱动齿轮或差速齿轮上,通过齿轮转动来测速这种方案也为大多数队伍所采用。我们也最终选用了此方案。如图3.3和图3.4所示,为我们最后采用的方案。

图3.3 光电编码器后视图 图3.4 光电编码器侧视图

长春大学

第四章 硬件电路部分

4.1传感器的选型

4.1.1摄像头选型

为了降低电路功耗、简化电源设计,我们选择了使用CMOS摄像头。此外,为了获得较大的视野范围,我们选用了1/3CMOS,配合3.6mm镜头。图4.1是我们的摄像头采集回来的图像。

图4.1摄像头采集回来的图像

4.1.2速度传感器的选型

我们选择了一款国产型号为YZ30D,脉冲数为200线的光电编码器。

之所以选择该方案主要是考虑其有如下优点是:光电编码器工作稳定可靠,获取信息准确,精度高,不需要额外信号处理电路。劣势是:体积重量较大,因为是直接接触齿轮传动,导致此方案需要比对射光电码盘更高的安装精度,安装稍有不当将会导致后轮负载急剧增大,进而成为整车前进阻力影响整车性能

长春大学

4.2电路板的总体布局

考虑到车模重心越低越好,将电路板紧贴底盘比较合适,整个控制部分都集中于一个PCB板上,PCB板中间开椭圆形孔,车模减震支架能正好穿过,控制板能很好的嵌入底盘。此外,椭圆形孔还将PCB板分为左右两部分,右半部分只有MC9S12DP256B单片机和拨码盘,将电源模块、电机驱动部分和视频分离芯片放置于左半部分,这样布局能很好的避免电机驱动部分对单片机的干扰。具体布局如图4.2所示:

图4.2 控制板元件布局

4.2.1 供电系统设计

竞赛组委会规定使用的电池为车模自带7.2V/2000mAh Ni-cd可充电蓄电池,而MC9S12DP256B、MC33886等均要求5伏供电,因此必须使用稳压芯片将7.2V稳压到5V。

电源芯片的选型我们开始的方案采用LM7805和LM2576作为系统供电芯片,但是78xx系列的芯片都要求输入电压要比输出电压高出2v~3V以上,否则就不能正常工作,7805直接输入不接输出的情况下,其内部还会有3mA的电流消耗(静态电流)。而LM2576属于开关电源型的,效率高,但是成本也高,并且开关电源的纹波比较大,最终我们选用低压差线性稳压器LM2940作为系统供电芯片。为了能让单片机稳定的工作,我们对单片机进行单独供电。

长春大学

图4.3 供电系统

4.2.2电机驱动部分

电机驱动芯片采用飞思卡尔公司的MC33886双H桥来驱动后轮直流电机,采用两片MC33886并联,这样能够增大后轮电机驱动电流。

图4.4电机驱动部分

长春大学

第五章 软件部分

5.1 摄像头辅助调试

在摄像头辅助调节方面,我们未采用无线串口的方式进行调试,而是通过摄像头与电视盒直接连接显示在显示器上,这样做的优点是直观,图像清晰,方便对摄像头的校准,缺点是不能直观的反映出单片机采集到的视频信号,在小车跑的过程中不能直接把道路信息传递到PC机。

图5.1 摄像头辅助调试图5.2 电视盒

5.2视频信号采集

我们使用黑白全电视信号格式CMOS摄像头采集赛道信息。摄像头视频信号中除了包含图像信号之外,还包括了行同步信号、行消隐信号、场同步信号、场消隐信号以及槽脉冲信号、前均衡脉冲、后均衡脉冲等。因此,若要对视频信号进行采集,就必须通过视频同步分离电路准确地把握各种信号间的逻辑关系。我们使用了LM1881芯片对黑白全电视信号进行视频同步分离,得到行同步、场同步信号,具体原理不再赘述。视频同步分离电路原理图5.3所示:

长春大学

图5.3 视频同步分离电路

本队采用328Lines的CMOS黑白摄像头每帧信息共328行,其中场头消隐22行,场尾消隐11行(以LM1881分离出来的场信号跳变沿作分界),即有效的图像信息为287行。在单片机内存有限的情况下,如此大的信息量不可能完全被采集。根据摄像头安装位置和俯仰角度大小,以及考虑到图像的畸变等因素,本队采取跳行采集,所跳行数从远到近逐渐增多,保证采集到的信息与实际路面相符,在一定程度上纠正了图像的畸变,使得对路面信息状况的摄取更加准确。根据需要共采集30行信息,每行采集30个点,从而形成30*30像素的图像数组用于路况分析。

5.3信号处理

由于摄像头输出的黑白全电视信号为PAL制式模拟信号,所以必须经过相应的图像处理模块进行相应转换之后才能由单片机进行处理。CMOS视频模拟信号经

LM1881视频分离芯片分离出场信号和行信号,以场信号和行信号作为视频信号时序根据,使用S12单片机片内AD对模拟信号进行采集。

由于摄像头自身特性,图像会产生梯形式变形,这使得摄像头看到的的信息不真实。这样测量回来的二位数据矩阵图像的第一行对应的是最远处,有点不符合平常习惯,故我们将摄像头调转180度,正好使测量回来的二位数据矩阵图像的第一行对应的是最近处,矩阵的每一个元素对应一个像素点的阈值。远处的图像小,近处的图像大,黑线为梯形状。

根据采集点电平高低(数值大小)来提取前方路面黑线信息,低电平(数值小)表示黑线,高电平(数值大)表示白色路面,通过提取黑线位置来判断路况,测试

长春大学

赛道上的黑白比在50%左右。本智能车每行采集30个有效点,其中赛道黑线采集1至4个有效点(最远处1个点最近处4个点),以第19个点为中心,提取每场采集到的30行信息,用于赛道分析。

5.4 舵机控制和速度调节 5.4.1 经典PID控制算法

PID 控制是工程实际中应用最为广泛的调节器控制规律之一,问世至今已有70多年的历史,以其结构简单、稳定可靠和调整方便等优点成为工业过程控制的主要技术之一。单位反馈的PID 控制原理框图如图5.4所示:

图5.4单位反馈的PID 控制原理图

上图中e 代表理想输入与实际输出的误差,这个误差信号被送到控制器(Controller),控制器算出误差信号的积分值和微分值,并将它们与原误差信号进行线性组合,得到输出量u。u 的计算公式如下:

p i d de

u k e k edt k dt

=++? (1)

其中, 、、分别称为比例系数、积分系数和微分系数。 p k i k d k 接着u 被送到了执行机构(Plant),这样就获得了新的输出信息Y,这个新的输出信号被再次送到感应器以实现新的误差信号,调节过程就是这样周而复始的进行。

增大微分系数可以加快动态系统响应,但容易引起震荡。一般增大比例系数能够减小上升时间,但不能消除稳态误差。增大积分系数能够消除稳态误差,但会使瞬时响应变差。增大微分系数能够增强系统的稳定特性,减小超调,并且改善瞬时响应。

d k p k i k d k 对连续系统中的积分项和微分项在计算机上的实现,是将上式转换成差分方程,由此实现数字PID 调节器。

Controller Plant

+

长春大学

位置式PID 控制算法:

用矩形数值积分代替上式中的几分项,对导数项用后向差分逼近,得到数字PID 控制器的基本算式——位置算式:

111n

n n n p n k d k i e e u k e e T T T T -=??-=++ ??

∑? (2)

其中T 是采样时间,、、为三个待调参数。

p k i T d T 增量式PID 控制算法:

对位置式加以变换,可以得到PID 算法的另一种实现形式——增量式:

1111

[()(2)]d n n n p n n n n n n i T u u u k e e e e e e T T

---?=-=-++-+2- (3)

5.4.2舵机转向控制算法

分析采集到的信息,路况可以分为左右单弯、S 弯和直线三大类,根据黑线偏

离设定的中心量的大小,采用采用位置式PID 算法,在本智能车代码中这样实现:(I 和D 系数赋予0,只用P)

[][]()()_xian _js _xian _ks _js-zhuanwan 751_0k */s xielv hei zhuanwan hei zhuanwan zhuanwan =--xielv:舵机控制量

hei_xian[zhuanwan_js]:转弯结束点的黑线位置 hei_xian[zhuanwan_ks]:转弯开始点的黑线位置

根据xielv 数值的大小再进行相应的判断,进而控制舵机的左右转向。

5.4.3 转向参考行的选择

转向参考行是指图像中用于计算黑线与车模偏差的那行。转向参考行直接决定了车模入弯时转向的提前量,转向参考行越远,车模的转向就越提前,切弯了量也就越大。由于舵机和车架本身有一定的反应延时,车模转向需要有一定的提前量。但是这个提前量也不宜太大,否则在进入像180°弯这样的急弯时,车模会过早走到内线,对车模入弯角度不利。因此,转向参考行不是越远越好。通常情况下,我们小车的转向参考行在第12行,距车头约0.3米。当有效前瞻量小于12行时,则取有效前瞻中最远的那行作为转向参考行。由于近端的图像信息比远端可靠,因此取较近的转向参考行还可以确保舵角的可靠性,远端的图像只与速度分配有关。即使远端黑线的识别出现问题,只会对车速产生影响,并且这个影响多数是使车速降低,不会导致车模冲出跑道。这使车模拥有更高的容错能力。

长春大学

5.4.4直流电机的控制算法

对于直流电机的控制,是通过和光电编码器组成一个闭环反馈控制,在直道时直流电机加速,在遇到弯道时进行提前减速,以利于小车更好的适应各种赛道环境。为了使车模出弯的加速点提前,我们利用之前控制舵角的xielv项对车速进行了微调。当车模与黑线的偏差增大时,给定速度降低,当车模与黑线的偏差减小时,给定速度增加。这样可以在一定程度上使车模入弯时减速提前,出弯时加速提前。测试发现,采用这种方法还可以增加车模的沿线能力。然而,这对出弯加速的提前量仍然是很有限的,仅仅是微调作用,也许只有利用旋转摄像头或是准确的路径记忆才能够解决车模加速滞后的问题。

长春大学

第六章 总结

有幸我们参加了第四届“飞思卡尔”杯全国大学生智能车大赛,这是一项综合性很强的比赛,集控制,电子、机械、建模仿真于一体,需各方面知识的相互配合,但这正是我们所欠缺的,但经过这几个月的不断学习在这方面我们已经积累了很多的知识。

自三月初报名以来我们小组从原来的了解到现在的熟练,一步一步的成长了起来。在比赛初期我们通过查阅各种资料,对各种元器件进行选型、自行设计原理图绘制了PCB、组装调试车模、编写小车的相关控制程序,在很多问题上经过组员的相互讨论,最终完成了预期目标。

在本次大赛中我们收获很多,了解并能熟练运用Freescale16位单片机。在提高小车车速的问题上也不是只由软件控制来决定的,还与小车的机械结构有着密切的联系。调试时在很多问题上我们都进行了深入的探讨,也大大提高了组员的相互学习效率。

在这几个月的调试过程中有痛苦也有欢乐,也许我们的知识还不够丰富,考虑问题也不够全面,不管结果如何,我们相信这个过程将是我们最难忘的记忆。

参考文献

【1】卓晴,黄开胜,邵贝贝·学做智能车——挑战“飞思卡尔”杯·北京:北京航空航天大学出版社,2007.3

【2】孙同景,陈桂友·Freescale 9s12 十六位单片机原理及嵌入式开发技术·北京:机械工程出版社,2008.5

【3】童诗白·模拟电子技术基础·北京:高等教育出版社,2001

【4】阎石·数字电子技术基础·北京:高等教育出版社,1998

【5】蔡庆楠,蔡兴旺,潘锦洲·上海大学S.U.L.挑战者队技术报告

【6】戴伦学,谭源庆,钟小帆·中南民族大学火箭队技术报告

【7】柯超,闫琪,吴汉·湖北汽车工程学院鹰眼一队技术报告

飞思卡尔智能车比赛细则

2016

目录

第十一届竞赛规则导读 参加过往届比赛的队员可以通过下面内容了解第十一届规则主要变化。如果第一次参加比赛,则建议对于本文进行全文阅读。 相对于前几届比赛规则,本届的规则主要变化包括有以下内容: 1.本届比赛新增了比赛组别,详细请参见正文中的图1和第四章的“比赛任务” 中的描述; 2.第十届电磁双车组对应今年的A1组:双车追逐组。其它组别与新组别的对应 关系请参见图2; 3.为了提高车模出界判罚的客观性,规则提出了两种方法:路肩法和感应铁丝 法,详细请见赛道边界判定”; 4.改变了原有的光电计时系统,所有赛题组均采用磁感应方法计时,详细请参 见“计时裁判系统”; 5.取消了第十届的发车灯塔控制的方式; 6.赛道元素进行了简化,详细请参见“赛道元素”; 7.赛道材质仍然为PVC耐磨塑胶地板,但赛题组A2不再需要赛道。 8.对于车模所使用的飞思卡尔公司MCU的种类、数量不再限制。 9.比赛时,每支参赛队伍的赛前准备时间仍然为20分钟,没有现场修车环节。

一、前言 智能车竞赛是从2006开始,由教育部高等教育司委托高等学校自动化类教学指导委员会举办的旨在加强学生实践、创新能力和培养团队精神的一项创意性科技竞赛。至今已经成功举办了十届。在继承和总结前十届比赛实践的基础上,竞赛组委会努力拓展新的竞赛内涵,设计新的竞赛内容,创造新的比赛模式,使得围绕该比赛所产生的竞赛生态环境得到进一步的发展。 为了实现竞赛的“立足培养、重在参与、鼓励探索、追求卓越”的指导思想,竞赛内容设置需要能够面向大学本科阶段的学生和教学内容,同时又能够兼顾当今时代科技发展的新趋势。 第十一届比赛的题目在沿用原来根据车模识别赛道传感器种类进行划分的基础类组别之上,同时增加了以竞赛内容进行划分的提高类组别,并按照“分赛区普及,全国总决赛提高”的方式,将其中一个类别拓展出创意类组别。第十一届比赛的题目各组别分别如下: ●基础类包括B1光电组、B2摄像头组、B3电磁直立组、B4电轨组; ●提高类包括A1双车追逐组、A2信标越野组; ●创意类包括I1 电轨节能组。 图 1 不同组别,不同挑战度 每个组别在选用的车模、赛道识别方法、完成任务等方面存在差别,对于参赛选手不同学科知识和能力要求也不同,制作的挑战度也有较大的区别。相比较而言,

飞思卡尔智能车竞赛新手入门建议

每年都会有很多新人怀着满腔热情来做智能车,但其中的很多人很快就被耗光了热情和耐心而放弃。很多新人都不知道如何入手,总有些有劲无处使的感觉,觉得自己什么都不会,却又不知道该干什么。新人中存在的主要问题我总结了以下几点: l缺乏自信,有畏难情绪 作为新人,一切都是新的。没有设计过电路,没有接触过单片机,几乎什么都不会。有些新人听了两次课,看了两篇技术报告,就发现无数不懂不会的东西,于是热情在消退,信心在减弱。这些都是放弃的前兆。殊不知,高手都是从新人过来的,没有谁天生什么都会做。一件事件,如果还没开始做,就自己否定自己,认为自己做不到,那么肯定是做不到的。 l习惯了被动接收知识,丧失了主动学习的能力。 现在的学生大多从小习惯了被灌输知识,只学老师教的,只学老师考的。殊不知一旦走向社会,将不再有老师来教,不再有应付不完的考试。做智能车和传统的教学不同,学生将从被动学习的地位转变为主动学习。就算有指导老师,有指导的学长,但也都处于被动地位,往往都不会主动来教。有的学生一开始就没有转变思想,还希望就像实验课一样,老师安排好步骤1,2,3……,然后自己按照老师安排好的步骤按部就班的完成。这样的学生,往往都丧失了提出问题和分析问题的能力,只是一个应付考试的机器。要知道,解决问题的第一步是提出问题,如果总等着别人来教,那么问题永远会挡在你面前。 l缺乏团队精神和合作意识 智能车比赛是以团队的形式参赛,只依靠个人能力单兵作战就能取得好成绩的是很少很少的。当今社会,任何人的成功都离不开身后的团队的支撑。智能车是一个很复杂的系统,电路、机械、传感器、单片机、底层驱动、控制算法……。如果所有的任务都是一个人去完成,固然锻炼了自己,但想做的很好却很不现实。很多新人,来到实验室,来到一个陌生的环境和团队,连向学长请教,和同学交流的勇气都没有,又如何融入团队呢。除了要主动融入团队,还要培养自己的团队意识。团队精神往往表现为一种责任感,如果团队遇到问题,每个人都只顾自己,出了错误,不想着解决问题,而是互相推诿埋怨。这样的团队,肯定是无法取得好成绩的。 l缺乏耐心和细心的精神 其实把一件事做好很简单,细心加上耐心。不细心就想不到,没有耐心,即使想到了也做不到。做事怕麻烦,将就,说白了就是惰性在作祟。明明可以把支架做的更轻更漂亮,明明可以把程序写的更简洁,明明可以把电路设计得更完善……。其实,每个人都有很大潜力,如果不逼自己一次,你永远不知道自己的潜力有多

飞思卡尔杯智能车竞赛报告总结

1.1. 系统分析 智能车竞赛要求设计一辆以组委会提供车模为主体的可以自主寻线的模型车,最后成绩取决于单圈最快时间。因此智能车主要由三大系统组成:检测系统,控制系统,执行系统。其中检测系统用于检测道路信息及小车的运行状况。控制系统采用大赛组委会提供的16位单片机MC9S12XS128作为主控芯片,根据检测系统反馈的信息新局决定各控制量——速度与转角,执行系统根据单片机的命令控制舵机的转角和直流电机的转速。整体的流程如图1.1,检测系统采集路径信息,经过控制决策系统分析和判断,由执行系统控制直流电机给出合适的转速,同时控制舵机给出合适的转角,从而控制智能车稳定、快速地行驶。 图2.1 1.2. 系统设计 参赛小车将电感采集到的电压信号,经滤波,整流后输入到XS128单片机,用光电编码器获得实时车速,反馈到单片机,实现完全闭环控制。速度电机采用模糊控制,舵机采用PD控制,具体的参数由多次调试中获得。考滤到小车设计的综合性很强,涵盖了控制、传感、电子、电气、计算机和机械等多个学科领域,因此我们采用了模块化设计方法,小车的系统框图如图2.2。

第五届全国大学生智能汽车竞赛技术报告 图2.2 1.3. 整车外观 图2.3

1.4. 赛车的基本参数 智能车竞赛所使用的车模是东莞市博思公司生产的G768型车模,由大赛组委会统一提供,是一款带有摩擦式差速器后轮驱动的电动模型车。车模外观如图3.1。车模基本参数如表3.1。 图3.1 表3.1车模基本参数 1.5. 赛车前轮定位参数的选定

第五届全国大学生智能汽车竞赛技术报告 现代汽车在正常行驶过程中,为了使汽车直线行驶稳定,转向轻便,转向后能自动回正,减少轮胎和转向系零件的磨损等,在转向轮、转向节和前轴之间须形成一定的相对安装位置,叫车轮定位,其主要的参数有:主销后倾、主销内倾、车轮外倾和前束。模型车的前轮定位参数都允许作适当调整,故此我们将自身专业课所学的理论知识与实际调车中的赛车状况相结合,最终得出赛车匹配后的前轮参数[6]。 1.5.1. 主销后倾角 主销后倾角是指在纵向平面内主销轴线与地面垂直线之间的夹角γ,如图3-2。模型车的主销后倾角可以设置为0、 2°?3°、 4°?6°,可以通过改变上横臂轴上的黄色垫片来调整,一共有四个垫片,前二后二时为0°,前一后三为2°?3°,四个全装后面时为4°?6°。 由于主销后倾角过大时会引起转向沉重,又因为比赛所用舵机特性偏软,所以不宜采用大的主销后倾角,以接近0°为好,即垫片宜安装采用前二后二的方式,以便增加其转向的灵活性。如图3.3。 图3.2 图3.3 1.5. 2. 主销内倾角 主销内倾角是指在横向平面内主销轴线与地面垂直线之间的夹角β,如图3.4,它的作用也是使前轮自动回正。对于模型车,通过调整前桥的螺杆的长度可以改变主销内倾角的大小,由于前轴与主销近似垂直的关系,故主销内倾角

飞思卡尔 智能车舵机控制

智能车的制作中,看经验来说,舵机的控制是个关键.相比驱动电机的调速,舵机的控制对于智能车的整体速度来说要重要的多. PID算法是个经典的算法,一定要将舵机的PID调好,这样来说即使不进行驱动电机的调速(匀速),也能跑出一个很好的成绩. 机械方面: 从我们的测试上来看,舵机的力矩比较大,完全足以驱动前轮的转向.因此舵机的相应速度就成了关键.怎么增加舵机的响应速度呢?更改舵机的电路?不行,组委会不允许.一个非常有效的办法是更改舵机连接件的长度.我们来看看示意图: 从上图我们能看到,当舵机转动时,左右轮子就发生偏转.很明显,连接件长度增加,就会使舵机转动更小的转角而达到同样的效果.舵机的特点是转动一定的角度需要一定的时间.不如说(只是比喻,没有数据),舵机转动10度需要2ms,那么要使轮子转动同样的角度,增长连接件后就只需要转动5度,那么时间是1ms,就能反应更快了.据经验,这个舵机的连接件还有必要修改.大约增长0.5倍~2倍. 在今年中,有人使用了两个舵机分别控制两个轮子.想法很好.但今年不允许使用了.

接下来就是软件上面的问题了. 这里的软件问题不单单是软件上的问题,因为我们要牵涉到传感器的布局问题.其实,没有人说自己的传感器布局是最好的,但是肯定有最适合你的算法的.比如说,常规的传感器布局是如下图: 这里好像说到了传感器,我们只是略微的一提.上图只是个示意图,意思就是在中心的地方传感器比较的密集,在两边的地方传感器比较的稀疏.这样做是有好处的,大家看车辆在行驶到转弯处的情况: 相信看到这里,大家应该是一目了然了,在转弯的时候,车是偏离跑道的,所以两边比较稀疏还是比较科学的,关于这个,我们将在传感器中在仔细讨论。 在说到接下来的舵机的控制问题,方法比较的多,有人是根据传感器的状态,运用查表法差出舵机应该的转角,这个做法简单,而且具有较好的滤波"效果",能够将错误的传感器状态滤掉;还有人根据计算出来的传感器的中心点(比

飞思卡尔智能车电机资料

3.1.6驱动电机介绍 驱动电机采用直流伺服电机,我们在此选用的是RS-380SH型号的伺服电机,这是因为直流伺服电机具有优良的速度控制性能,它输出较大的转矩,直接拖动负载运行,同时它又受控制信号的直接控制进行转速调节。在很多方面有优越性,具体来说,它具有以下优点: (1)具有较大的转矩,以克服传动装置的摩擦转矩和负载转矩。 (2)调速范围宽,高精度,机械特性及调节特性线性好,且运行速度平稳。 (3)具有快速响应能力,可以适应复杂的速度变化。 (4)电机的负载特性硬,有较大的过载能力,确保运行速度不受负载冲击的 影响。 (5)可以长时间地处于停转状态而不会烧毁电机,一般电机不能长时间运行于 停转状态,电机长时间停转时,稳定温升不超过允许值时输出的最大堵转转矩称为连续堵转转矩,相应的电枢电流为连续堵转电流。 图3.1为该伺服电机的结构图。图3.2是此伺服电机的性能曲线。 图3.1 伺服电机的结构图

图3.2 伺服电机的性能曲线 3.1.7 舵机介绍 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图3.3所示。图3.4为舵机的控制线。

第六届“飞思卡尔”全国大学生智能车全国赛比赛规则

第六届全国大学生“飞思卡尔”杯智能汽车竞赛 比赛规则与赛场纪律 参赛选手须使用竞赛秘书处统一指定的竞赛车模套件,采用飞思卡尔半导体公司的8位、16位微控制器作为核心控制单元,自主构思控制方案进行系统设计,包括传感器信号采集处理、电机驱动、转向舵机控制以及控制算法软件开发等,完成智能车工程制作及调试,于指定日期与地点参加各分赛区的场地比赛,在获得决赛资格后,参加全国决赛区的场地比赛。参赛队伍的名次(成绩)由赛车现场成功完成赛道比赛时间为主,技术报告、制作工程质量评分为辅来决定。大赛根据车模检测路径方案不同分为电磁、光电与摄像头三个赛题组。车模通过感应由赛道中心电线产生的交变磁场进行路经检测的属于电磁组;车模通过采集赛道图像(一维、二维)进行进行路经检测的属于摄像头组;车模通过采集赛道上少数孤立点反射亮度进行路经检测的属于光电组。 竞赛秘书处制定如下比赛规则适用于各分赛区预赛以及全国总决赛,在实际可操作性基础上力求公正与公平。 一、器材限制规定 1. 须采用统一指定的车模。本届比赛指定采用三种车模,分别用于三个 赛题组: 编 号车模外观和规格 赛 题 组 供 应 厂 商 A 型车模 光 电 组 东 莞 市 博 思 电 子 数 码 科 技 有 限 公 司

车模:G768 电机:RS380-ST/3545, 舵机:FUTABA3010 B 型 车 模 车模型号 电机:540,伺服器:S-A6 电 磁 组 北 京 科 宇 通 博 科 技 有 限 公 司 C 型 车 模 车模型号:N286 电机:RN260-CN 38-18130 伺服器:FUTABA3010 摄 像 头 组 东 莞 市 博 思 电 子 数 码 科 技 有 限 公 司 细节及改动限制见附件一。

飞思卡尔项目书

飞思卡尔智能车比赛项目 参赛时间:2011.7.16 — 2011.7.20 赛前准备时间:2010.7 ---2011.7 飞思卡尔智能车比赛简介: 为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,受教育部高等教育司委托(教高司函[2005]201号文,附件1),由教育部高等学校自动化专业教学指导分委员会(以下简称自动化分教指委)主办全国大学生智能汽车竞赛。该竞赛是以智能汽车为研究对象的创意性科技竞赛,是面向全国大学生的一种具有探索性工程实践活动,是教育部倡导的大学生科技竞赛之一。该竞赛以“立足培养,重在参与,鼓励探索,追求卓越”为指导思想,旨在促进高等学校素质教育,培养大学生的综合知识运用能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能,倡导理论联系实际、求真务实的学风和团队协作的人文精神,为优秀人才的脱颖而出创造条件。 该竞赛由竞赛秘书处设计、规范标准硬软件技术平台,竞赛过程包括理论设计、实际制作、整车调试、现场比赛等环节,要求学生组成团队,协同工作,初步体会一个工程性的研究开发项目从设计到实现的全过程。该竞赛融科学性、趣味性和观赏性为一体,是以迅猛发展、前景广阔的汽车电子为背景,涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械与汽车等多学科专业的创意性比赛。该竞赛规则透明,评价标准客观,坚持公开、公平、公正的原则,力求向健康、普及、持续的方向发展。 该竞赛以飞思卡尔半导体公司为协办方,得到了教育部相关领导、飞思卡尔公司领导与各高校师生的高度评价,已发展成全国30个省市自治区近300所高校广泛参与的全国大学生智能汽车竞赛。2008年起被教育部批准列入国家教学质量与教学改革工程资助项目中科技人文竞赛之一(教高函[2007]30号文)。 全国大学生智能汽车竞赛原则上由全国有自动化专业的高等学校(包括港、澳地区的高校)参赛。竞赛首先在各个分赛区进行报名、预赛,各分赛区的优胜队将参加全国总决赛。每届比赛根据参赛队伍和队员情况,分别设立光电组、摄像头组、电磁组、创意组等多个赛题组别。每个学校可以根据竞赛规则选报不同组别的参赛队伍。全国大学生智能汽车竞赛组织运行模式贯彻“政府倡导、专家主办、学生主体、社会参与”的16字方针,充分调动各方面参与的积极性。 全国大学生智能汽车竞赛一般在每年的10月份公布次年竞赛的题目和组织方式,并开始接受报名,次年的3月份进行相关技术培训,7月份进行分赛区竞赛,8月份进行全国总决赛。 飞思卡尔智能车比赛技术要求:

飞思卡尔智能车设计报告

飞思卡尔智能车设计报告

目录 1.摘要 (3) 2.关键字 (3) 3.系统整体功能模块 (3) 4.电源模块设计 (4) 5.驱动电路设计 (4) 6.干簧管设计 (5) 7.传感器模块设计 (6) 8.传感器布局 (6) 9.软件设计 (7) 9.1控制算法 (7) 9.2软件系统实现(流程图) (10) 10.总结 (11) 11.参考文献 (12)

1.摘要 “飞思卡尔”杯全国大学生智能汽车竞赛是由教育部高等自动化专业教学指导分委员会主办的一项以智能汽车为研究对象的创意性科技竞赛,是面向全国大学生的一种具有探索性工程实践活动,是教育部倡导的大学生科技竞赛之一。该竞赛以“立足培养,重在参与,鼓励探索,追求卓越”为指导思想,旨在促进高等学校素质教育,培养大学生的综合知识运用能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能,倡导理论联系实际、求真务实的学风和团队协作的人文精神,为优秀人才的脱颖而出创造条件。该竞赛以汽车电子为背景,涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科的科技创意性比赛。 本文介绍了飞思卡尔电磁组智能车系统。本智能车系统是以飞思卡尔32 位单片机K60为核心,用电感检测赛道导线激发的电磁信号, AD 采样获得当前传感器在赛道上的位置信息,通过控制舵机来改变车的转向,用增量式PID进行电机控制,用编码器来检测小车的速度,共同完成智能车的控制。 2.关键字 电磁、k60、AD、PID、电机、舵机 3.系统整体功能模块 系统整体功能结构图

4.电源模块设计 电源是一个系统正常工作的基础,电源模块为系统其他各个模块提供所需要的能源保证,因此电源模块的设计至关重要。模型车系统中接受供电的部分包括:传感器模块、单片机模块、电机驱动模块、伺服电机模块等。设计中,除了需要考虑电压范围和电流容量等基本参数外,还要在电源转换效率、噪声、干扰和电路简单等方面进行优化。可靠的电源方案是整个硬件电路稳定可靠运行的基础。 全部硬件电路的电源由7.2V,2A/h的可充电镍镉电池提供。由于电路中的不同电路模块所需要的工作电流容量各不相同,因此电源模块应该包含多个稳压电路,将充电电池电压转换成各个模块所需要的电压。 电源模块由若干相互独立的稳压电源电路组成。在本系统中,除了电机驱动模块的电源是直接取自电池外,其余各模块的工作电压都需要经电源管理芯片来实现。 由于智能车使用7.2V镍镉电池供电,在小车行进过程中电池电压会有所下降,故使用低压差电源管理芯片LM2940。LM2940是一款低压稳压芯片,能提供5V的固定电压输出。LM2940低压差稳压芯片克服了早期稳压芯片的缺点。与其它的稳压芯片一样,LM2940需要外接一个输出电容来保持输出的稳定性。出于稳定性考虑,需要在稳压输出端和地之间接一个47uF低等效电阻的电容器。 舵机的工作电压是6伏,采用的是LM7806。 K60单片机和5110液晶显示器需要3.3伏供电,采用的是LM1117。 5.驱动电路设计 驱动电路采用英飞凌的BTS7960,通态电阻只有16mΩ,驱动电流可达43A,具有过压、过流、过温保护功能,输入PWM频率可达到25KHz,电源电压5.5V--27.5V。BTS7960是半桥驱动,实际使用中要求电机可以正反转,故使用两片接成全桥驱动。如图下图所示。

飞思卡尔智能车比赛个人经验总结

先静下心来看几篇技术报告,可以是几个人一起看,边看边讨论,大致了解智能车制作的过程及所要完成的任务。 看完报告之后,对智能车也有了大概的了解,其实总结起来,要完成的任务也很简单,即输入模块——控制——输出。 (1)输入模块:各种传感器(光电,电磁,摄像头),原理不同,但功能都一样,都是用来采集赛道的信息。这里面就包含各种传感器的原理,选用,传感器电路的连接,还有传感器的安装、传感器的抗干扰等等需要大家去解决的问题。 (2)控制模块:传感器得到了我们想要的信息,进行相应的AD转换后,就把它输入到单片机中,单片机负责对信息的处理,如除噪,筛选合适的点等等,然后对不同的赛道信息做出相应的控制,这也是智能车制作过程中最为艰难的过程,要想出一个可行而又高效的算法,确实不是一件容易的事。这里面就涉及到单片机的知识、C语言知识和一定的控制算法,有时为了更直观地动态控制,还得加入串口发送和接收程序等等。 (3)输出模块:好的算法,只有通过实验证明才能算是真正的好算法。经过分析控制,单片机做出了相应的判断,就得把控制信号输出给电机(控制速度)和舵机(控制方向),所以就得对电机和舵机模块进行学习和掌握,还有实现精确有效地控制,又得加入闭环控制,PID算法。 明确了任务后,也有了较为清晰的控制思路,接下来就着手弄懂每一个模块。虽然看似简单,但实现起来非常得不容易,这里面要求掌握电路的知识,基本的机械硬件结构知识和单片机、编程等计算机知识。最最困难的是,在做的过程中会遇到很多想得到以及想不到的事情发生,一定得细心地发现问题,并想办法解决这些问题。 兴趣是首要的,除此之外,一定要花充足的时间和精力在上面,毕竟,有付出就会有收获,最后要明确分工和规划好进度。

飞思卡尔智能车竞赛策略和比赛方案综述

飞思卡尔智能车竞赛策略和比赛方案综述 一、竞赛简介 起源: “飞思卡尔杯”智能车大赛起源于韩国,是韩国汉阳大学汽车控制实验室在飞思卡尔半导体公司资助下举办的以HCSl2单片机为核心的大学生课外科技竞赛。组委会提供一个标准的汽车模型、直流电机和可充电式电池,参赛队伍要制作一个能够自主识别路径的智能车,在专门设计的跑道上自动识别道路行驶,谁最快跑完全程而没有冲出跑道并且技术报告评分较高,谁就是获胜者。其设计内容涵盖了控制、模式识别、传感技术、汽车电子、电气、计算机、机械、能源等多个学科的知识,对学生的知识融合和实践动手能力的培养,具有良好的推动作用。 全国大学生“飞思卡尔”杯智能汽车竞赛是在规定的模型汽车平台上,使用飞思卡尔半导体公司的8位、16位微控制器作为核心控制模块,通过增加道路传感器、电机驱动电路以及编写相应软件,制作一个能够自主识别道路的模型汽车,按照规定路线行进,以完成时间最短者为优胜。因而该竞赛是涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科的比赛。 该竞赛以飞思卡尔半导体公司为协办方,自2006年首届举办以来,成功举办了五届,得到了教育部吴启迪副部长、张尧学司长及理工处领导、飞思卡尔公司领导与各高校师生的高度评价,已发展成全国30个省市自治区200余所高校广泛参与的全国大学生智能汽车竞赛。2008年第三届被教育部批准列入国家教学质量与教学改革工程资助项目中9个科技人文竞赛之一(教高函[2007]30号文,附件2),2009年第四届被邀申请列入国家教学质量与教学改革工程资助项目。 分赛区、决赛区比赛规则 在分赛区、决赛区进行现场比赛规则相同,都分为初赛与决赛两个阶段。在计算比赛成绩时,分赛区只是通过比赛单圈最短时间进行评比。决赛区比赛时,还需结合技术报告分数综合评定。 1.初赛与决赛规则 1)初赛规则 比赛场中有两个相同的赛道。 参赛队通过抽签平均分为两组,并以抽签形式决定组内比赛次序。比赛分为两轮,两组同时在两个赛道上进行比赛,一轮比赛完毕后,两组交换场地,再进行第二轮比赛。在每轮比赛中,每辆赛车在赛道上连续跑两圈,以计时起始线为计时点,以用时短的一圈计单轮成绩;每辆赛车以在两个单轮成绩中的较好成绩为赛车成绩;计时由电子计时器完成并实时在屏幕显示。 从两组比赛队中,选取成绩最好的25支队晋级决赛。技术评判组将对全部晋级的赛车进行现场技术检查,如有违反器材限制规定的(指本规则之第一条)当时取消决赛资格,由后备首名晋级代替;由裁判组申报组委会执委会批准公布决赛名单。 初赛结束后,车模放置在规定区域,由组委会暂时保管。

全国大学生飞思卡尔杯智能汽车竞赛

第七届全国大学生“飞思卡尔”杯智能汽车竞赛 竞速比赛规则与赛场纪律 参赛选手须使用竞赛秘书处统一指定的竞赛车模套件,采用飞思卡尔半导体公司的8位、16位、32位微控制器作为核心控制单元,自主构思控制方案进行系统设计,包括传感器信号采集处理、电机驱动、转向舵机控制以及控制算法软件开发等,完成智能车工程制作及调试,于指定日期与地点参加各分(省)赛区的场地比赛,在获得决赛资格后,参加全国决赛区的场地比赛。参赛队伍的名次(成绩)由赛车现场成功完成赛道比赛时间来决定,参加全国总决赛的队伍同时必须提交车膜技术报告。大赛根据车模检测路径方案不同分为电磁、光电与摄像头三个赛题组。车模通过感应由赛道中心电线产生的交变磁场进行路经检测的属于电磁组;车模通过采集赛道图像(一维、二维)或者连续扫描赛道反射点的方式进行进行路经检测的属于摄像头组;车模通过采集赛道上少数孤立点反射亮度进行路经检测的属于光电组。 竞赛秘书处制定如下比赛规则适用于各分(省)赛区预赛以及全国总决赛,在实际可操作性基础上力求公正与公平。 一、器材限制规定 编 号 车模外观和规格赛题组供应厂商A 型 车 模 车模:G768 电机:RS380-ST/3545,摄像头 组 东莞市博 思电子数 码科技有 限公司

舵机:FUTABA3010 B 型 车 模 车模型号 电机:540,伺服器:S-D6光电组 北京科宇 通博科技 有限公司 C 型 车 模 车模型号:N286 电机:RN260-CN 38-18130 伺服器:FUTABA3010电磁组 东莞市博 思电子数 码科技有 限公司 各赛题组车模运行规则: a)光电组,摄像头组:车模正常运行。 车模使用A型车模(摄像头组)、B型车模(光电组)。车模运行方向为,转向轮在前,动力轮在后。如图1所示:

飞思卡尔智能车程序

Main.c #include /* common defines and macros */ #include /* derivative information */ #pragma LINK_INFO DERIVATIVE "mc9s12db128b" #include "define.h" #include "init.h" // variable used in video process volatile unsigned char image_data[ROW_MAX][LINE_MAX] ; // data array of picture unsigned char black_x[ROW_MAX] ; // 0ne-dimensional array unsigned char row ; // x-position of the array unsigned char line ; // y-position of the array unsigned int row_count ; // row counter unsigned char line_sample ; // used to counter in AD unsigned char row_image ; unsigned char line_temp ; // temperary variable used in data transfer unsigned char sample_data[LINE_MAX] ; // used to save one-dimension array got in interruption // variables below are used in speed measure Unsigned char pulse[5] ; // used to save data in PA process Unsigned char counter; // temporary counter in Speed detect Unsigned char cur_speed; // current speed short stand; short data; unsigned char curve ; // valve used to decide straight or turn short Bounds(short data); short FuzzyLogic(short stand); /*----------------------------------------------------------------------------*\ receive_sci \*----------------------------------------------------------------------------*/ unsigned char receive_sci(void) // receive data through sci { unsigned char sci_data; while(SCI0SR1_RDRF!=1); sci_data=SCI0DRL; return sci_data; } /*----------------------------------------------------------------------------*\ transmit_sci \*----------------------------------------------------------------------------*/ void transmit_sci(unsigned char transmit_data) // send data through sci { while(SCI0SR1_TC!=1); while(SCI0SR1_TDRE!=1);

飞思卡尔智能车大赛技术报告

第九届“飞思卡尔”杯全国大学生智能车竞赛光电组技术报告 学校:中北大学 伍名称:ARES 赛队员:贺彦兴 王志强 雷鸿 队教师:闫晓燕甄国涌

关于技术报告和研究论文使用授权的说明书本人完全了解第八届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:2014-09-15日

摘要 本文介绍了第九届“飞思卡尔杯全国大学生智能车大赛光电组中北大学参赛队伍整个系统核心采用飞思卡尔单片机MC9S12XS128MAA ,利用TSL1401线性CCD 对赛道的行扫描采集信息来引导智能小车的前进方向。机械系统设计包括前轮定位、方向转角调整,重心设计器件布局设计等。硬件系统设计包括线性CCD传感器安装调整,电机驱动电路,电源管理等模块的设计。软件上以经典的PID算法为主,辅以小规Bang-Bang 算法来控制智能车的转向和速度。在智能车系统设计开发过程中使用Altium Designer设计制作pcb电路板,CodeWarriorIDE作为软件开发平台,Nokia5110屏用来显示各实时参数信息并利用蓝牙通信模块和串口模块辅 助调试。关键字:智能车摄像头控制器算法。

目录 1绪论 (1) 1.1 竞赛背景 (1) 1.2国内外智能车辆发展状况 (1) 1.3 智能车大赛简介 (2) 1.4 第九届比赛规则简介 (2) 2智能车系统设计总述 (2) 2.1机械系统概述 (3) 2.2硬件系统概述 (5) 2.3软件系统概述 (6) 3智能车机械系统设计 (7) 3.1智能车的整体结构 (7) 3.2前轮定位 (7) 3.3智能车后轮减速齿轮机构调整 (8) 3.4传感器的安装 (8) 4智能车硬件系统设计 (8) 4.1XS128芯片介绍 (8) 4.2传感器板设计 (8) 4.2.1电磁传感器方案选择 (8) 4.2.2电源管理模 (9) 4.2.3电机驱动模块 (10) 4.2.4编码器 (11) 5智能车软件系统设 (11) 5.1程序概述 (11) 5.2采集传感器信息及处理 (11) 5.3计算赛道信息 (13) 5.4转向控制策略 (17) 5.5速度控制策略 (19) 6总结 (19)

飞思卡尔智能车竞赛摄像头组——技术报告 精品

"飞思卡尔"杯全国大学生智能汽车竞赛 技术报告

关于技术报告和研究论文使用授权的说明 本人完全了解第八届"飞思卡尔"杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名:孟泽民 章志诚 徐晋鸿 带队教师签名:陈朋 朱威 日期:2013.8.15

摘要 本文设计的智能车系统以MK60N512ZVLQ10微控制器为核心控制单元,通过Ov7620数字摄像头检测赛道信息,使用K60的DMA模块采集图像,采用动态阈值算法对图像进行二值化,提取黑色引导线,用于赛道识别;通过编码器检测模型车的实时速度,使用PID 控制算法调节驱动电机的转速和转向舵机的角度,实现了对模型车运动速度和运动方向的闭环控制。为了提高模型车的速度并让其更稳定,我们使用自主编写的Labview上位机、SD卡模块、无线模块等调试工具,进行了大量硬件与软件测试。实验结果表明,该系统设计方案可行。 关键词:MK60N512VMD100,Ov7620,DMA,PID,Labview,SD卡

Abstract In this paper we will design a smart car system based on MK60N512ZVLQ10 as the micro-controller unit. We use a Ov7620 digital image camera to obtain lane image information. The MCU gets the image by its DMA module. Then convert the original image into the binary image by using dynamic threshold algorithm in order to extract black guide line for track identification. An inferred sensor is used to measure the car`s moving speed. We use PID control method to adjust the rotate speed of driving electromotor and direction of steering electromotor,to achieve the closed-loop control for the speed and direction. To increase the speed of the car and make it more reliable,a great number of the hardware and software tests are carried on and the advantages and disadvantages of the different schemes are compared by using the Labview simulation platform designed by ourselves,the SD card module and the wireless module. The results indicate that our design scheme of the smart car system is feasible. Keywords: MK60N512VMD100,DMA,Ov7620,PID,Labview,SD card

第七届飞思卡尔智能车国赛预赛排名

光电组预赛排名 序号学校名称队伍名称比赛成绩名次 1 北京科技大学北京科技大学光电一队13.011 1 2 北京工业大学G-Tank 13.156 2 3 山东大学光电一队13.271 3 4 中南大学比亚迪双鱼座2012 13.6 5 4 5 华南理工大学木棉一队13.712 5 6 国防科技大学光电铁军一师13.803 6 7 华中科技大学华中科技大学一队13.838 7 8 乐山师范学院乐师5队13.889 8 9 武汉大学有时想起14.692 9 10 华南农业大学珠江学院野狼战队14.805 10 11 湖北汽车工业学院光电二队14.883 11 12 东北大学秦皇岛分校东秦3队14.958 12 13 中国地质大学(武汉)地大御风队14.992 13 14 合肥工业大学工大光电二队14.993 14 15 成都学院成大二队15.015 15 16 南京师范大学ALPS 15.125 16 17 北京理工大学北京理工大学光电一队15.252 17 18 杭州电子科技大学杭电光电一队15.262 18 19 山东工商学院迅雷1队15.33 19 20 皖西学院电协飞车15.349 20 21 天津大学天津大学光电一队16.086 21 22 广州大学华软软件学院华软电子一队16.203 22 23 兰州交通大学CRH2 16.231 23 24 四川师范大学成都学院川成一队16.274 24 25 浙江大学浙江大学华硕二队16.313 25 26 安徽大学追风队16.351 26 27 哈尔滨工程大学极品飞车2号16.468 27 28 哈尔滨工业大学航天福道光电之星1队16.53 28 29 浙江工业大学之江学院T-Force 16.721 29 30 河北联合大学轻工学院光电1队16.821 30 31 成都信息工程学院极速闪电16.995 31 32 辽宁工业大学疾速飞鹰17.211 32 33 东华大学东华光电飞龙2 17.225 33 34 河南工业大学奋进队17.234 34 35 南昌航空大学零速队17.299 35 36 河北大学工商学院灵锐一队17.836 36 37 安徽工程大学光影蓝宙17.993 37 38 哈尔滨华德学院华德蹑影驭风队18.024 38 39 山东轻工业学院Atomhachiko 18.356 39

飞思卡尔智能车电机

飞思卡尔智能车电机公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

3.1.6驱动电机介绍 驱动电机采用直流伺服电机,我们在此选用的是RS-380SH型号的伺服电机,这是因为直流伺服电机具有优良的速度控制性能,它输出较大的转矩,直接拖动负载运行,同时它又受控制信号的直接控制进行转速调节。在很多方面有优越性,具体来说,它具有以下优点: (1)具有较大的转矩,以克服传动装置的摩擦转矩和负载转矩。 (2)调速范围宽,高精度,机械特性及调节特性线性好,且运行速度平稳。 (3)具有快速响应能力,可以适应复杂的速度变化。 (4)电机的负载特性硬,有较大的过载能力,确保运行速度不受负载 冲击的影响。 (5)可以长时间地处于停转状态而不会烧毁电机,一般电机不能长时 间运行于停转状态,电机长时间停转时,稳定温升不超过允许值 时输出的最大堵转转矩称为连续堵转转矩,相应的电枢电流为连 续堵转电流。 图为该伺服电机的结构图。图是此伺服电机的性能曲线。

图伺服电机的结构图 图伺服电机的性能曲线 3.1.7 舵机介绍 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为 20ms,宽度为的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图所示。图为舵机的控制线。

飞思卡尔智能车大赛

飞思卡尔智能车大赛 目录[隐藏] 起源: 比赛规则: 起源: 比赛规则: [编辑本段] 起源: “飞思卡尔杯”智能车大赛起源于韩国,是韩国汉阳大学汽车控制实验室在飞思卡尔半导体公司资助下举办的以HCSl2单片机为核心的大学生课外科技竞赛。组委会提供一个标准的汽车模型、直流电机和可充电式电池,参赛队伍要制作一个能够自主识别路径的智能车,在专门设计的跑道上自动识别道路行驶,谁最快跑完全程而没有冲出跑道并且技术报告评分较高,谁就是获胜者。其设计内容涵盖了控制、模式识别、传感技术、汽车电子、电气、计算机、机械、能源等多个学科的知识,对学生的知识融合和实践动手能力的培养,具有良好的推动作用。 全国大学生“飞思卡尔”杯智能汽车竞赛是在规定的模型汽车平台上,使用飞思卡尔半导体公司的8位、16位微控制器作为核心控制模块,通过增加道路传感器、电机驱动电路以及编写相应软件,制作一个能够自主识别道路的模型汽车,按照规定路线行进,以完成时间最短者为优胜。因而该竞赛是涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科的比赛。 该竞赛以飞思卡尔半导体公司为协办方,自2006年首届举办以来,成功举办了三届,得到了教育部吴启迪副部长、张尧学司长及理工处领导、飞思卡尔公司领导与各高校师生的高度评价,已发展成全国30个省市自治区170余所高校广泛参与的全国大学生智能汽车竞赛。2008年第三届被教育部批准列入国家教学质量与教学改革工程资助项目中9个科技人文竞赛之一(教高函[2007]30号文,附件2),2009年第四届被邀申请列入国家教学质量与教学改革工程资助项目。 [编辑本段] 比赛规则: 参赛选手须使用竞赛秘书处统一指定并负责采购竞赛车模,采用飞思卡尔1 6位微控制器MC9S12DG128作为核心控制单元,自主构思控制方案及系统设计,包括传感器信号采集处理、控制算法及执行、动力电机驱动、转向舵机控制等,完成智能车工程制作及调试,于指定日期与地点参加各分赛区的场地比赛,在获得决赛资格

飞思卡尔智能车比赛技术报告

第三届“飞思卡尔”杯全国大学生 智能汽车邀请赛 技术报告 学校:北京理工大学 队伍名称:傲雄车队 参赛队员:刘鑫杨磊韩立博 带队教师:张幽彤冬雷 关于技术报告和研究论文使用授权的说明 本人完全了解第三届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名:刘鑫 杨磊 韩立博 带队教师签名:张幽彤 日期:2008.8.20 摘要 本文介绍了北理傲雄车队队员们在准备第三届Freescale智能车大赛过程中 的工作成果。智能车的硬件平台采用带MC9S12DP512处理器的S12环境,软件 平台为CodeWarrior IDE 4.6开发环境,车模采用大赛组委会统一提供的1:10 的 仿真车模。文中介绍了智能小车控制系统的软硬件结构和开发流程。 整个系统涉及车模机械结构调整、传感器电路设计及信号处理、控制算法和 策略优化等多个方面。为了提高智能赛车的行驶速度和可靠性,试验了多套方案,并进行升级,结合Labview 仿真平台进行了大量底层和上层测试,最终确定了现有的系统结构和各项控制参数。 关键字:智能车,激光管,PID控制 第一章引言 1 1.1 赛事介绍 1

1.2 方案介绍 1 1.3 技术报告内容安排 2 第二章技术方案概要说明3 第三章机械设计4 3.1 PCB板的安装 4 3.2 前轮参数调整 5 3.3 舵机的升高方案 6 3.4 齿轮传动机构调整7 3.5 速度传感器的安装固定7 3.6. 后轮差速机构调整8 第四章硬件电路设计9 4.1 S12单片机最小系统9 4.2 路线识别电路设计12 4.3 电源管理电路设计14 4.4 电机驱动电路设计15 4.5 串行通讯接口电路15 4.6 速度检测模块16 4.7 现场调试模块17 第五章软件设计19 5.1 主程序设计 19 5.2 总体控制流程图 19 5.3 工作原理20 5.4.1 PID控制20 5.4.2 PID参数的整定 21 5.5 小车控制策略22 5.6 软件开发环境22 第六章模型车各项参数26 6.1 车模基本尺寸26 6.2 电路功耗及电容总容量26 6.3 传感器及伺服电机数量26 6.4 赛道信息检测精度、频率 26 第七章结论27 7.1 本系统的所具有的特点27 7.2 本系统存在的问题27 7.3 本系统可行的改进措施28 参考文献29 附录A 模型车控制主程序代码I 第一章引言 1.1 赛事介绍 受教育部高等教育司委托,高等学校自动化专业教学指导分委员负责主办全国大学生智能车竞赛。该项比赛已列入教育部主办的全国五大竞赛之一。2008年8月26日,在沈阳东北大学举行第三届全国大学生智能车竞赛。本届的比赛,首先是在全国四大赛区进行预选赛,之后将有104只赛车到沈阳进行总决赛。在比赛中,参赛选手须使用大赛组委会统一提供的竞

相关主题
文本预览
相关文档 最新文档