当前位置:文档之家› 知识总结高考物理必知的34个易错点、 易忘点详解

知识总结高考物理必知的34个易错点、 易忘点详解

知识总结高考物理必知的34个易错点、 易忘点详解
知识总结高考物理必知的34个易错点、 易忘点详解

[知识总结]高考物理必知的34个易错点、易忘点详解

1.受力分析,往往漏“力”百出

对物体受力分析,是物理学中最重要、最基本的知识,分析方法有“整体法”与“隔离法”两种。对物体的受力分析可以说贯穿着整个高中物理始终,如力学中的重力、弹力(推、拉、提、压)与摩擦力(静摩擦力与滑动摩擦力),电场中的电场力(库仑力)、磁场中的洛伦兹力(安培力)等。在受力分析中,最难的是受力方向的判别,最容易错的是受力分析往往漏掉某一个力。在受力分析过程中,特别是在“力、电、磁”综合问题中,第一步就是受力分析,虽然解题思路正确,但考生往往就是因为分析漏掉一个力(甚至重力),就少了一个力做功,从而得出的答案与正确结果大相径庭,痛失整题分数。还要说明的是在分析某个力发生变化时,运用的方法是数学计算法、动态矢量三角形法(注意只有满足一个力大小方向都不变、第二个力的大小可变而方向不变、第三个力大小方向都改变的情形)和极限法(注意要满足力的单调变化情形)。

2.对摩擦力认识模糊摩擦力包括静摩擦力,因为它具有“隐敝性”、“不定性”特点和“相对运动或相对趋势”知识的介入而成为所有力中最难认识、最难把握的一个力,任何一个题目一旦有了摩擦力,其难度与复杂程度将会随之加大。最典型的就是“传送带问题”,这问题可以将摩擦力各种可能情况全部包括进去,建议同学们从下面四个方面好好认识摩擦力:

(1)物体所受的滑动摩擦力永远与其相对运动方向相反。这里难就难在相对运动的认识;说明一下,滑动摩擦力的大小略小于最大静摩擦力,但往往在计算时又等于最大静摩擦力。还有,计算滑动摩擦力时,那个正压力不一定等于重力。

(2)物体所受的静摩擦力永远与物体的相对运动趋势相反。显然,最难认识的就是“相对运动趋势方”的判断。可以利用假设法判断,即:假如没有摩擦,那么物体将向哪运动,这个假设下的运动方向就是相对运动趋势方向;还得说明一下,静摩擦力大小是可变的,可以通过物体平衡条件来求解。

(3)摩擦力总是成对出现的。但它们做功却不一定成对出现。其中一个最大的误区是,摩擦力就是阻力,摩擦力做功总是负的。无论是静摩擦力还是滑动摩擦力,都可能是动力。

(4)关于一对同时出现的摩擦力在做功问题上要特别注意以下情况:

可能两个都不做功。(静摩擦力情形)

可能两个都做负功。(如子弹打击迎面过来的木块)

可能一个做正功一个做负功但其做功的数值不一定相等,两功之和可能等于零(静摩擦可不做功)、可能小于零(滑动摩擦)也可能大于零(静摩擦成为动力)。

可能一个做负功一个不做功。(如,子弹打固定的木块)

可能一个做正功一个不做功。(如传送带带动物体情形)

(建议结合讨论“一对相互作用力的做功”情形)

3.对弹簧中的弹力要有一个清醒的认识弹簧或弹性绳,由于会发生形变,就会出现其弹力随之发生有规律的变化,但要注意的是,这种形变不能发生突变(细绳或支持面的作用力可以突变),所以在利用牛顿定律求解物体瞬间加速度时要特别注意。还有,在弹性势能与其他机械能转化时严格遵守能量守恒定律以及物体落到竖直的弹簧上时,其动态过程的分析,即有最大速度的情形。

4.对“细绳、轻杆”要有一个清醒的认识在受力分析时,细绳与轻杆是两个重要物理

模型,要注意的是,细绳受力永远是沿着绳子指向它的收缩方向,而轻杆出现的情况很复杂,可以沿杆方向“拉”、“支”也可不沿杆方向,要根据具体情况具体分析。

5.关于小球“系”在细绳、轻杆上做圆周运动与在圆环内、圆管内做圆周运动的情形比较这类问题往往是讨论小球在最高点情形。其实,用绳子系着的小球与在光滑圆环内运动情形相似,刚刚通过最高点就意味着绳子的拉力为零,圆环内壁对小球的压力为零,只有重力作为向心力;而用杆子“系”着的小球则与在圆管中的运动情形相似,刚刚通过最高点就意味着速度为零。因为杆子与管内外壁对小球的作用力可以向上、可能向下、也可能为零。还可以结合汽车驶过“凸”型桥与“凹”型桥情形进行讨论。

6.对物理图像要有一个清醒的认识物理图像可以说是物理考试必考的内容。可能从图像中读取相关信息,可以用图像来快捷解题。随着试题进一步创新,现在除常规的速度(或速率)-时间、位移(或路程)-时间等图像外,又出现了各种物理量之间图像,认识图像的最好方法就是两步:一是一定要认清坐标轴的意义;二是一定要将图像所描述的情形与实际情况结合起来。(关于图像各种情况我们已经做了专项训练。)

7.对牛顿第二定律F=ma要有一个清醒的认识

第一、这是一个矢量式,也就意味着a的方向永远与产生它的那个力的方向一致。(F可以是合力也可以是某一个分力)

第二、F与a是关于“m”一一对应的,千万不能张冠李戴,这在解题中经常出错。主要表现在求解连接体加速度情形。

第三、将“F=ma”变形成F=m△v/△t,其中,a=△v/△t得出△v= a△t这在“力、电、磁”综合题的“微元法”有着广泛的应用(近几年连续考到)。

第四、验证牛顿第二定律实验,是一个必须掌握的重点实验,特别要注意:

(1)注意实验方法用的是控制变量法;

(2)注意实验装置和改进后的装置(光电门),平衡摩擦力,沙桶或小盘与小车质量的关系等;

(4)注意数据处理时,对纸带匀加速运动的判断,利用“逐差法”求加速度。(用“平均速度法”求速度)

(5)会从“a-F”“a-1/m”图像中出现的误差进行正确的误差原因分析。

8.对“机车启动的两种情形”要有一个清醒的认识机车以恒定功率启动与恒定牵引力启动,是动力学中的一个典型问题。这里要注意两点:

(1)以恒定功率启动,机车总是做的变加速运动(加速度越来越小,速度越来越大);以恒定牵引力启动,机车先做的匀加速运动,当达到额定功率时,再做变加速运动。最终最大速度即“收尾速度”就是vm=P额/f。

(2)要认清这两种情况下的速度-时间图像。曲线的“渐近线”对应的最大速度

还要说明的,当物体变力作用下做变加运动时,有一个重要情形就是:当物体所受的合外力平衡时,速度有一个最值。即有一个“收尾速度”,这在电学中经常出现,如:“串”在绝缘杆子上的带电小球在电场和磁场的共同作用下作变加速运动,就会出现这一情形,在电磁感应中,这一现象就更为典型了,即导体棒在重力与随速度变化的安培力的作用下,会有一个平衡时刻,这一时刻就是加速度为零速度达到极值的时刻。凡有“力、电、磁”综合题目都会有这样的情形。

9.对物理的“变化量”、“增量”、“改变量”和“减少量”、“损失量”等要有一个清醒的认识

研究物理问题时,经常遇到一个物理量随时间的变化,最典型的是动能定理的表达(所有外力做的功总等于物体动能的增量)。这时就会出现两个物理量前后时刻相减问题,同学们往往会随意性地将数值大的减去数值小的,而出现严重错误。其实物理学规定,任何一个物理量(无论是标量还是矢量)的变化量、增量还是改变量都是将后来的减去前面的。(矢量满足矢量三角形法则,标量可以直接用数值相减)结果正的就是正的,负的就是负的。而不是错误地将“增量”理解增加的量。显然,减少量与损失量(如能量)就是后来的减去前面的值。

10.两物体运动过程中的“追遇”问题两物体运动过程中出现的追击类问题,在高考中很常见,但考生在这类问题则经常失分。常见的“追遇类”无非分为这样的九种组合:一个做匀速、匀加速或匀减速运动的物体去追击另一个可能也做匀速、匀加速或匀减速运动的物体。显然,两个变速运动特别是其中一个做减速运动的情形比较复杂。虽然,“追遇”存在临界条件即距离等值的或速度等值关系,但一定要考虑到做减速运动的物体在“追遇”前停止的情形。另外解决这类问题的方法除利用数学方法外,往往通过相对运动(即以一个物体作参照物)和作“V-t”图能就得到快捷、明了地解决,从而既赢得考试时间也拓展了思维。

值得说明的是,最难的传送带问题也可列为“追遇类”。还有在处理物体在做圆周运动追击问题时,用相对运动方法最好。如,两处于不同轨道上的人造卫星,某一时刻相距最近,当问到何时它们第一次相距最远时,最好的方法就将一个高轨道的卫星认为静止,则低轨道卫星就以它们两角速度之差的那个角速度运动。第一次相距最远时间就等于低轨道卫星以两角速度之差的那个角速度做半个周运动的时间。

11.万有引力中公式的使用最会出现张冠李戴的错误

万有引力部分是高考必考内容,这部分内容的特点是公式繁杂,主要以比例的形式出现。其实,只要掌握其中的规律与特点,就会迎刃而解的。最主要的是在解决问题时公式的选择。最好的方法是,首先将相关公式一一列来,即:

mg=GMm/R2=mv2/R=mω2R=m4π2/T2,再由此对照题目的要求正确的选择公式。其中要注意的是:

(1)地球上的物体所受的万有引力就认为是其重力(不考虑地球自转)。

(2)卫星的轨道高度要考虑到地球的半径。

(3)地球的同步卫星一定有固定轨道平面(与赤道共面且距离地面高度为

3.6×107m)、固定周期(24小时)。

(4)要注意卫星变轨问题。要知道,所有绕地球运行的卫星,随着轨道高度的增加,只有其运行的周期随之增加,其它的如速度、向心加速度、角速度等都减小。

12.有关“小船过河”的两种情形“小船过河”类问题是一个典型的运动学问题,一般过河有两种情形:即最短时间(船头对准对岸行驶)与最短位移问题(船头斜向上游,合速度与岸边垂直)。这里特别的是,过河位移最短情形中有一种船速小于水速情况,这时船头航向不可能与岸边垂直,须要利用速度矢量三角形进行讨论。

另外,还有在岸边以恒定速度拉小船情形,要注意速度的正确分解。

3.有关“功与功率”的易错点功与功率,贯穿着力学、电磁学始终。特别是变力做功,慎用力的平均值处理,往往利用动能定理。某一个力做功的功率,要正确认清P=F?v 的含意,这个公式可能是即时功率也可能是平均功率,这完全取决于速度。但不管

怎样,公式只是适用力的方向与速度一致情形。如果力与速度垂直则该力做功的功率一定为零(如单摆在最低点小球重力的功率,物体沿斜面下滑时斜面支持力的功率都等于零),如果力与速度成一角度,那么就要进一步进行修正。

在计算电路中功率问题时,要注意电路中的总功率、输出功率与电源内阻上的发热功率之间的关系。特别是电源的最大输出功率的情形(即外电路的电阻小于等效内阻情形)。还有必要掌握会利用图像来描述各功率变化规律。

14.有关“机械能守恒定律运用”的注意点机械能守恒定律成立的条件是只有重力或

弹簧的弹力做功。题目中能否用机械能守恒定律最显著的标志是“光滑”二字。

机械能守恒定律的表达式有多种,要认真区别开来。如果用E表示总的机械能,用EK表示动能,EP表示势能,在字母前面加上“△”表示各种能量的增量,则机械能守恒定律的数学表达式除一般表达式外,还有如下几种:E1=E2;EP1+EK1=EP2+EK2;△E=0;△E1+△E2=0;△EP=

-△EK;△EP+△EK=0等。需要注意的,凡能利用机械能守恒解决的问题,动能定理一定也能解决,而且动能定理不需要设定零势能,更表现其简明、快捷的优越性。

15.关于各种“转弯”情形在实际生活中,人沿圆形跑道转弯、骑自行车转弯、汽车转弯、火车转弯还有飞机转弯等等各种“转弯”情形都不尽相同。唯一共同的地方就是必须有力提供它们“转弯”时做圆周运动的向心力。显然,不同“转弯”情形所提供向心力的不一定是相同的:

(1)人沿圆形轨道转弯所需的向心力由人的身体倾斜使自身重力产生分力以及地面对脚的静摩擦力提供;

(2)人骑自行车转弯情形与人转弯情形相似;

(3)汽车转弯情形靠的是地面对轮胎提供的静摩擦力得以实现的;

(4)火车转弯则主要靠的是内、外轨道的高度差产生的合力(火车自身重力与轨道支持力,注意不是火车重力的分力)来实施转弯的;

(5)飞机在空中转弯,则完全靠改变机翼方向,在飞机上下表面产生压力差来提供向心力而实施转弯的。

16.要认清和掌握电场、电势(电势差)、电势能等基本概念首先可以将“电场”与“重力场”相类比(还可以将磁场一同来类比,更容易区别与掌握),电场力做功与重力做功相似,都与路径无关,重力做正功重力势能一定减少,同样电场力做正功那么电势能一定减少,反之亦然。由此便可以容易认清引入电势的概念。电势具有相对意义,理论上可以任意选取零势能点,因此电势与场强是没有直接关系的;电场强度是矢量,空间同时有几个点电荷,则某点的场强由这几个点电荷单独在该点产生的场强矢量叠加;电荷在电场中某点具有的电势能,由该点的电势与电荷的电荷量(包括电性)的乘积决定,负电荷在电势越高的点具有的电势能反而越小;带电粒子在电场中的运动有多种运动形式,若粒子做匀速圆周运动,则电势能不变.(另外,还要注意库仑扭秤与万有定律中卡文迪许扭秤装置进行比较。)

17.要熟悉电场线和等势面与电场特性的关系在熟悉静电场线和等势面的分布特征与电场特性的关系,特别注意下面几点:⑴电场线总是垂直于等势面;⑵电场线总是由电势高的等势面指向电势低的等势面.同时,一定要清楚在匀强电场(非匀强电场公式不成立)中,可以用U=Ed公式来进行定量计算,其中d是沿场强方向两点间距离。另外还要的是,两个等量异种电荷的中垂线与两个同种电荷的中垂线的

电场分布及电势分布的特点。

18.要认清匀强电场与电势差的关系、电场力做功与电势能变化的关系在由电荷电势能变化和电场力做功判断电场中电势、电势差和场强方向的问题中,先由电势能的变化和电场力做功判断电荷移动的各点间的电势差,再由电势差的比较判断各点电势高低,从而确定一个等势面,最后由电场线总是垂直于等势面确定电场线的方向.由此可见,电场力做功与电荷电势能的变化关系具有非常重要的意义。注意在计算时,要注意物理量的正负号。

19.要认清带电粒子经加速电场加速后进入偏转电场的运动情形带电粒子在极板间的偏转可分解为匀速直线运动和匀加速直线运动,我们处理此类问题时要注意平行板间距离的变化时,若电压不变,则极板间场强发生变化,加速度发生变化,这时不能盲目地套用公式,而应具体问题具体分析。但可以凭着悟性与感觉:当加速电场的电压增大,加速出来的粒子速度就会增大,当进入偏转电场后,就很快“飞”出电场而来不及偏转,加上如果偏转电场强越小,即进入偏转电场后的侧移显然就越小,反之则变大。

20.要对平行板电容器的电容、电压、电量、场强、电势等物理量进行准确的动态分析这里特别提出两种典型情况:

一是电容器一直与电源保持连接着,则说明改变两极板之间的距离,电容器上的电压始终不变,抓住这一特点,那么一切便迎刃而解了;

二是电容器充电后与电源断开,则说明电容器的电量始终不变,那么改变极板间的距离,首先不变的场强,(这可以用公式来推导,E=U/d=Q/Cd,又C=εs/4πkd,代

入,即得出E与极板间的距离无关,还可以从电量不变角度来快速判断,因为极板上的电荷量不变则说明电荷的疏密程度不变即电场强度显然也不变。)

21.要对闭合电路中的电流强度、电压、电功率等物理随着某一电阻变化进行准确的动态分析闭合电路中的电流强度、电压、电功率等物理量随着某一电阻变化进行准确的动态分析(有的题目还会介入变压器、电感、电容、二极管甚至逻辑电路等装置或元件)是高考必考的问题,必须引起足够重视进行必要的训练。

闭合电路的动态分析方法一定要严格按“局部→整体→局部”的程序进行。对局部,要判断电阻如何变化,从而判断总电阻如何变化.对整体,首先判断干路电流回路随总电阻增大而减小,然后由闭合电路欧姆定律得路端电压随总电阻增大而增大.第二个局部是重点,也是难点.需要根据串、并联电路的特点和规律及欧姆定律交替判断.另外,还可用“极限思维方式”来分析。如某一电阻增大或减小,我们完全可以认为它增大到无穷大造成电路断路或减小为零造成短路,这样分析简洁、快速,但要在其它物理随这变化的电阻作单调性变化才行。

22.要正确理解伏安特性曲线电压随电流变化的U-I图线与“伏安特性”曲线I-U图线,历来一直高考重点要考的内容(其中电学实验测电源的电动势、内阻,测小灯泡的功率,测金属丝的电阻率等等都是必考内容)。这里特别的是有两点:

(1)首先要认识图线的两个坐标轴所表示的意义、图线的斜率所表示的意义等,特别注意的是纵坐标的起始点有可能不是从零开始的。

(2)线路产的连接无非为四种:电流表内接分压、电流表外接分压、电流表内接限流、电流表外接限流。一般来说,采用分压接法用的比较多。至于电流表内外接法则取决于与之相连的电阻,显然电阻越大,内接误差越小,反之亦然。

(3)另外,对仪表的选择首先要注意量程,再考虑读数的精确。

23.要准确把握“游标卡尺与螺旋测微器”读数规律电学实验中关于相关的游标卡尺与螺旋测微器计数问题,这是高考经常随着实验考查的。但同学们总是读错,主要原因是没有掌握读数的最基本要领。只要记住,中学要求,只有螺旋测微器需要估读,游标卡尺不需要估读。所以应有下列规律:在用螺旋测微器计数时,只要以毫米(mm)为单位的,小数点后面一定是三小数,遇到整数就加零。在用游标卡尺计数时,有十分度、二十分度和五十分度三种,只要以毫米(mm)为单位的,那么十分度的尺,小数点后面一定得保留一位数,如果是二十分度和五十分度的,则以毫米为单位的,小数点后面一定保留二位数。记住这样的规律,那么读起数来,就不会容易出错。

这里还有必要提示一下,关于伏特表、安培表、欧姆表等各种仪表的读数要留心一下。

24.在电磁场中所涉及到的带电粒子何时考虑重力何时不考虑重力一般情况下:微观粒子如,电子(β粒子)、质子、α粒子及各种离子都不考虑自身的重力;如果题目中告知是带电小球、尘埃、油滴或液滴等带电颗粒都应考虑重力。如无特殊说明,题目中附有具体相关数据,可通过比较来确定是否考虑重力。

25.要特别注意题目中的临界状态的关键词无论在力学还是在电学中,物理问题总会涉及到一些特殊状态,其中临界状态就是常见的特殊状态。对于比较难的题目,这种状态往往就隐含的各种条件里面,需要认真审题挖掘,建议特别注意下列关键词语:“恰好“、”刚好”、“至少”等。找到了这临界状态的关键词也就找到了解题的“突破

口”了。

26.电磁感应中的安培定则、左手定则、右手定则以及楞次定律、电磁感应定律一定牢固掌握熟练运用安培定则——判别运动电荷或电流产生的磁场方向(因电而生磁);左手定则——判别磁场对运动电荷或电流的作用力方向(因电而生动);

右手定则——判别切割磁力线感应电流的方向(因动而生电);

楞次定律——是解决闭合电路的磁通量变化产生感应电流方向判别的主要依据。要真正准确、熟练地运用“楞次定律”一定要明白:“谁”阻碍“谁”;“阻碍”的是什么;如何“阻碍”;“阻碍”后结果如何。(注意:“阻碍”与“阻止”有本质的区别)

电磁感应定律——就是法拉弟解决“切割磁力线的导体或闭合回路产生感应电动势” 定量方法。其表达式多种多样:

对于闭合线圈:E=n△Φ/△t=nS△B/△t=nB△S/△t;(注意:求某一段时间内通过某一电阻上的电量,往往利用此公式求解)

对于导体棒:E=BLv,E=BL2ω/2,

交流电:E=nBSωsinωt

27.解“力、电、磁”综合题最重要的两步骤和最主要的得分点电磁感应与力电知识综合运用,应该是高考重点考又是考生得分最低的问题之一。失分主要原因就是审题不清、对象不明、思路混乱。

其实,解决这类问题有一个“万变不离其宗”的方法步骤:

第一步:就是首先必须从读题审题目中找出两个研究对象,一是电学对象。即电源(电磁感应产生的电动势)及其回路(包括各电阻的串、并联方式);二是力学对象:这个对象不是导体就是线圈,其运动状态一般是做有一定变化规律变速运动;

第二步:选择好研究对象后,一定要按下列程序进行分析:画导体受力(千万不能漏力)——→运动变化分析——→感应电动势变化——→感应电流变化——→合外力变化——→加速度变化——→速度变化——→感应电动势变化,这种变化总是相互联系相互影响的。其中有一重要临界状态就是加速度a=0时,速度一定达到某个极值。采分点:这类题目必定会用到:牛顿第二定律、法拉弟电磁感应定律、闭合电路欧姆定律、动能定理、能量转化与守恒定律(功能原理),摩擦力做功就是使机械能转化为热能,电流做功就是使机械能转化为电能(电阻上的热能)。

28.交变电流中的线圈所处的两个位置的几个特殊的最值要记牢闭合线圈在磁场中

转动就会产生按正弦或余弦规律变化的交流电。在这一过程中,当线圈转动到两个特殊位置时,其相应的电流、电动势、磁通量大小、磁通量的变化率、电流方向都会有所不同:

第一特殊位置:线圈平面与磁场方向垂直的位置即中性面,则一定有如下情况,磁通量最大——→磁通量的变化率最小(0)——→感应电动势最小(为0)——→感应电流最小(为0)——→此位置电流方向将发生改变(线圈转动一周,两次经过中性面,电流方向改变两次)。

第二个特殊位置:线圈平面与磁场方向平行的位置,所得的结果与上述相反。

有一个规律显然看出来:磁通量的变化率、感应电动势与感应电流变化总是一致的。

29.要正确区别交变电流中的几个特殊的最值在正、余弦交变电流中电流、电压(电动势)、功率经常涉及的几个值:瞬时值、最大值(峰值)、有效值、平均值:

瞬时值:就是交流电某一时刻的值,即i=Imsinωt;e=Emsinωt;

峰值(最值):Em=nBSω(注意电容器的击穿电压);Im= Em/(R+r);

有效值:特别注意有效值的定义,只能对于正弦或余弦交流而言,各物理量才有的关系。如果其它类型的交流电唯一方法就利用电流的热效应在相同时间内所对直流电发热相等来计算得出。

平均值:就是交变电流图像中的图线与时间所围成的面积与所对应的时间比值。特别用在计算通过电路中某一电阻的电量:q= △Φ/R。

30.要正确理解变压器工作原理,会推导变压器的电流、电压比,会画出电能输送的原理图变压器改变电压原理就是利用电磁感应定律设计的。通过该定律可以直接得到理想变压器的原、副线圈上的电压比U1/U2=n1/n2;利用输出功率等于输入功率的关系也很快得出原、副线圈上的电流比:I1/I2=n1/n2。这里只指只有一个副线圈情形,如果有两个以上的副线圈,那么必须还是按照电磁感应定律去推导。

这里特别说明的要注意“电压互感器”与“电流互感器”的原理与接法。

31.要正确理解振动图像与波形图像(横波)

应该从研究对象进行比较(一个质点与无数个质点);

应该从图像的意义进行比较(一个质点的某时刻的位置与无数质点在某一时刻位置);

应该从图像的特点进行比较(虽然都是正弦曲线,但坐标轴不同);

应该从图像提供的信息进行比较(相似的是质点的振幅,回复力,但不同的是周期、质点运动方向、波长等);

应试从图像随时间变化进行比较(一个是随时间推移图像延续而形状不变,一个是随时间推移,图像沿传播方向平移);

[注]:一个完整的曲线对于振动图来说是一个周期,而对于波形图来说却是一个波长。

判断波形图像中质点在某一时刻的振动方向,可以用“平移法”、“太阳照射法”、“上下坡法”、“三角形法”等。

32.要认清“机械波与电磁波(包括光波)”、“泊松亮斑”与“牛顿环”的区别机械波与电磁波(包括光波),虽然都是波,都是能量传播的一种形式,都具有干涉、衍射(横波还有偏振)特性,但它们也还有本质上的区别,如:

(1)机械波由做机械振动的质点相互联系引起的,所以它传播必须依赖介质,而电磁波(包括光波)是由振荡的电场与振荡的磁场(注意,是非均匀变化的)引起的,所以它的传播不需要依靠质点,可以在真空中传播;

(2)机械波从空气进入水等其它介质时,速度将增大,而电磁波(包括光波)刚好相反,它在真空中传播速度最大,机械波不能在真空中传播;

(3)机械波有纵波与横纵,而电磁波就是横波,具有偏振性;

[注]:两列波发生干涉时,必要有一点条件(即频率相同),产生干涉后,振动加强的点永远加强,反之振动减弱的点永远减弱。

“泊松亮斑”与“牛顿环”的区别这两个重要光学现象,非常相似,都是圆开图像,但本质有区别。

泊松亮斑:当光照到不透光的小圆板上时,在圆板的阴影中心出现的亮斑(在阴影外还有不等间距的明暗相间的圆环)。这是光的衍射现象;

牛顿环:是用一个曲率半径很大的凸透镜的凸面和一平面玻璃接触,在日光下或用白光照射时,可以看到接触点为一暗点,其周围为一些明暗相间的彩色圆环;而用单色光照射时,则表现为一些明暗相间的单色圆圈。这些圆圈的距离不等,随离中心点的距离的增加而逐渐变窄。这是光的干涉现象。

33.关于“多普勒效应”、“电流的磁效应”、“霍尔效应”、“光电效应”、“康普顿效应”的比较这几种重要物理效应,分散在课本中,我们可以集结到一起进行综合比较:多普勒效应:这是声学中的一种现象,即声源向观察靠近时,观察者将听到声源发出的频率变高,反之背离观察者频率将变低。

电流的磁效应:就是通电导线或导电螺旋管周围产生磁场的现象。

霍尔效应:就是将载流导体放在一匀强磁场中,当磁场方向与电流方向垂直时,导体将在与磁场、电流的垂直方向上形成电势差(也叫霍尔电压),这个现象就称之为霍尔效应。

光电效应:就是将一束光(由一定频率的光子组成的)照射到某金属板上,金属板表面立即会有电子逸出的现象(这种电子称之为光电子)。这一效应不仅说明光具有粒子性还说明光子具有能量。

康普顿效应:就是当光在介质中与物质微粒相互作用而向不同方向传播,这种散射现象中,人们发现光的波长发生了变化。这一现象叫康普顿效应,它不仅说明光具有粒子性有能量外还说明光具有动量。

34.掌握人类对“原子、原子核”认识的发展史

谈到原子与原子核首先要记住两个重要人物:一个因为阴极射线而发现电子说明原子内有复杂结构的英国物理学家汤姆孙;一个是因为发现天然放射现象而说明原子核内有复杂结构的法国科学家贝克勒尔。

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

高考物理难重点力学部分最易错易混的十大知识点全解析

高考物理难重点力学部分最易错易混的十大知识点全解析 可在对比三组概念中掌握: ①位移和路程:位移是由始位置指向末位置的有向线段,是矢量;路程是物体运动轨迹的实际长度,是标量,一般来说位移的大小不等于路程; ②平均速度和瞬时速度,前者对应一段时间,后者对应某一时刻,这里特别注意公式只适用于匀变速直线运动; ③平均速度和平均速率:平均速度=位移/时间,平均速率=路程/时间。 易错点2:不能把图像的物理意义与实际情况对应 易错分析: 理解运动图像首先要认清v-t和x-t图像的意义,其次要重点理解图像的几个关键点: ①坐标轴代表的物理量,如有必要首先要写出两轴物理量关系的表达式;②斜率的意义;③截距的意义;④“面积”的意义,注意有些面积有意义,如v-t图像的“面积”表示位移,有些没有意义,如x-t图像的面积无意义。 易错点3:分不清追及问题的临界条件而出现错误 易错分析: 分析追及问题的方法技巧:①要抓住一个条件,两个关系.一个条件:即两者速度相等,它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点;两个关系:即时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口. ②若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动. ③应用图像v-t分析往往直观明了。 易错点4:对摩擦力的认识不够深刻导致错误 易错分析:

摩擦力是被动力,它以其他力的存在为前提,并与物体间相对运动情况有关.它会随其他外力或者运动状态的变化而变化,所以分析时,要谨防摩擦力随着外力或者物体运动状态的变化而发生突变.要分清是静摩擦力还是滑动摩擦力,只有滑动摩擦力才可以根据来计算Fμ=μFN,而FN并不总等于物体的重力。 易错点5:对杆的弹力方向认识错误 易错分析: 要搞清楚杆的弹力和绳的弹力方向特点不同,绳的拉力一定沿绳,杆的弹力方向不一定沿杆.分析杆对物体的弹力方向一般要结合物体的运动状态分析。 易错点6:不善于利用矢量三角形分析问题 易错分析: 平行四边形(三角形)定则是力的运算的常用工具,所以无论是分析受力情况、力的可能方向、力的最小值等,都可以通过画受力分析图或者力的矢量三角形.许多看似复杂的问题可以通过图示找到突破口,变得简明直观。 易错点7:对力和运动的关系认识错误 易错分析: 根据牛顿第二定律F=ma,合外力决定加速度而不是速度,力和速度没有必然的联系.加速度与合外力存在瞬时对应关系:加速度的方向始终和合外力的方向相同,加速度的大小随合外力的增大(减小)而增大(减小);加速度和速度同向时物体做加速运动,反向时做减速运动.力和速度只有通过加速度这个桥梁才能实现“对话”,如果让力和速度直接对话,就是死抱亚里干多德的观点永不悔改的“顽固派”。 易错点8:不会处理瞬时问题 易错分析: 根据牛顿第二定律知,加速度与合外力的瞬时对应关系.所谓瞬时对应关系是指物体受到外力作用后立即产生加速度,外力恒定,加速度也恒定,外力变化,加速度立即发生变化,外力消失,加速度立即消失,在分析瞬时对应关系时应注意两个基本模型特点的区别: (1)轻绳模型:①轻绳不能伸长,②轻绳的拉力可突变;

2020高考物理知识点汇总

2020高考物理知识点汇总 在高考物理复习中掌握重点知识点是物理学习方法中最有效的一种。掌握一些重要的 知识点学习起来就不会那么吃力,那么,下面由小编为整理有关2020高考物理知识 点总结的资料,供参考! 2020高考物理知识点总结:热力学 (一)改变物体内能的两种方式:做功和热传递 1.做功:其他形式的能与内能之间相互转化的过程,内能改变了多少用做功的数值来 量度,外力对物体做功,内能增加,物体克服外力做功,内能减少。 2.热传递:它是物体间内能转移的过程,内能改变了多少用传递的热量的数值来量度,物体吸收热量,物体的内能增加,放出热量,物体的内能减少,热传递的方式有:传导、对流、辐射,热传递的条件是物体间有温度差。 (二)热力学第一定律 1.内容:物体内能的增量等于外界对物体做的功W和物体吸收的热量Q的总和。 2.符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值,吸收热 (三)能的转化和守恒定律 能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式或从一 个物体转移到另一个物体。在转化和转移的过程中,能的总量不变,这就是能量守恒 定律。 (四)热力学第二定律 两种表述:(1)不可能使热量由低温物体传递到高温物体,而不引起其他变化。 (2)不可能从单一热源吸收热量,并把它全部用来做功,而不引起其他变化。 热力学第二定律揭示了涉及热现象的宏观过程都有方向性。 (3)热力学第二定律的微观实质是:与热现象有关的自发的宏观过程,总是朝着分子热 运动状态无序性增加的方向进行的。 (4)熵是用来描述物体的无序程度的物理量。物体内部分子热运动无序程度越高,物体 的熵就越大。 注:1.第一类永动机是永远无法实现的,它违背了能的转化和守恒定律。 2.第二类永动机也是无法实现的,它虽然不违背能的转化和守恒定律,但却违背了热 力学第二定律。

高考物理知识点大全(坤哥物理)

最新高考物理知识点大全(坤哥物理) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一单元直线运动 (1) 第二单元相互作用 (4) 第三单元牛顿运动定律 (7) 第四单元曲线运动 (9) 第五单元万有引力 (12) 第六单元机械能 (14) 第七单元动量 (18) 第八单元力学实验 (24) 第九单元静电场 (30) 第十单元恒定电流 (34) 第十一单元电学实验 (36) 第十二单元磁场 (46) 第十三单元电磁感应 (49) 第十四单元交变电流 (51) 第十五单元近代物理 (53) 第十六单元选修3-3 (63) 第十七单元选修3-4 (73) 第十八单元常用的物理方法 (85) 第十九单元常用的数学方法 (92)

第一单元直线运动 1.匀变速直线运动: (1)平均速度(定义式)v=s s (2)有用推论s s 2-s 2=2as (3)中间时刻速度s s 2=(s s+s0) 2 (4)末速度v t=v0+at (5)中间位置速度s s 2=√s02+s s2 2 (6)位移s=v0t+1 2 at2 (7)加速度a=s s-s0 s (以v0为正方向,a与v0同向(加速)则a>0;反向则a<0) (8)实验用推论Δs=aT2(Δs为连续相邻相等时间T内位移之差) 易错提醒: (1)平均速度是矢量 (2)物体速度大,加速度不一定大 (3)a=s s-s0 s 只是量度式,不是决定式 2.自由落体运动 (1)初速度v0=0 (2)末速度v t=gt (3)下落高度h=1 2gt2(从v 位置向下计算) (4)推论s s 2=2gh 易错提醒: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律。 (2)a=g=9.8 m/s2≈10 m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 3.竖直上抛运动 (1)位移s=v0t-1 2 gt2 (2)末速度v t=v0-gt (3)有用推论s s 2-s 2=-2gs (4)上升最大高度H m=s02 2s (从抛出点算起)。 (5)往返时间t=2s0 s (从抛出落回原位置的时间)。

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高中物理34个易错知识点解析

高中物理34个易错知识点解析 1.受力分析,往往漏“力”百出对物体受力分析,是物理学中最重要、最基本的知识,分析方法有“整体法”与“隔离法”两种。对物体的受力分析可以说贯穿着整个高中物理始终。 如力学中的重力、弹力(推、拉、提、压)与摩擦力(静摩擦力与滑动摩擦力),电场中的电场力(库仑力)、磁场中的洛伦兹力(安培力)等。在受力分析中,最难的是受力方向的判别,最容易错的是受力分析往往漏掉某一个力。 特别是在“力、电、磁”综合问题中,第一步就是受力分析,虽然解题思路正确,但考生往往就是因为分析漏掉一个力(甚至重力),就少了一个力做功,从而得出的答案与正确结果大相径庭,痛失整题分数。 在分析某个力发生变化时,运用的方法是数学计算法、动态矢量三角形法(注意只有满足一个力大小方向都不变、第二个力的大小可变而方向不变、第三个力大小方向都改变的情形)和极限法(注意要满足力的单调变化情形)。 2.对摩擦力认识模糊摩擦力包括静摩擦力,因为它具有“隐敝性”、“不定性”特点和“相对运动或相对趋势”知识的介入而成为所有力中最难认识、最难把握的一个力,任何一个题目一旦有了摩擦力,其难度与复杂程度将会随之加大。最典型的就是“传送带问题”,这问题可以将摩擦力各种可能情况全部包括进去。 建议同学们从下面四个方面好好认识摩擦力:(1)物体所受的滑动摩擦力永远与其相对运动方向相反。这里难就难在相对运动的认识;说明一下,滑动摩擦力的大小略小于最大静摩擦力,但往往在计算时又等于最大静摩擦

力。还有,计算滑动摩擦力时,那个正压力不一定等于重力。(2)物体所受的静摩擦力永远与物体的相对运动趋势相反。显然,最难认识的就是“相对运动趋势方”的判断。可以利用假设法判断:即:假如没有摩擦,那么物体将向哪运动,这个假设下的运动方向就是相对运动趋势方向;还得说明一下,静摩擦力大小是可变的,可以通过物体平衡条件来求解。 (3)摩擦力总是成对出现的。但它们做功却不一定成对出现。其中一个最大的误区是,摩擦力就是阻力,摩擦力做功总是负的。无论是静摩擦力还是滑动摩擦力,都可能是动力。 (4)关于一对同时出现的摩擦力在做功问题上要特别注意以下情况:可能两个都不做功。(静摩擦力情形)可能两个都做负功。(如子弹打击迎面过来的木块)可能一个做正功一个做负功但其做功的数值不一定相等,两功之和可能等于零(静摩擦可不做功)、可能小于零(滑动摩擦)也可能大于零(静摩擦成为动力)。可能一个做负功一个不做功。(如,子弹打固定的木块)可能一个做正功一个不做功。(如传送带带动物体情形) 3.对弹簧中的弹力要有一个清醒的认识弹簧或弹性绳,由于会发生形变,就会出现其弹力随之发生有规律的变化,但要注意的是,这种形变不能发生突变(细绳或支持面的作用力可以突变)。在利用牛顿定律求解物体瞬间加速度时要特别注意。还有,在弹性势能与其他机械能转化时严格遵守能量守恒定律以及物体落到竖直的弹簧上时,其动态过程的分析,即有最大速度的情形。 4.对“细绳、轻杆” 要有一个清醒的认识在受力分析时,细绳与轻杆是两个重要物理模型,要注意的是,细绳受力永远是沿着绳子指向它的收缩方向,而轻杆出现的情况很复杂,可以沿杆方向“拉”、“支”也可不沿杆方向,要根据具体情况具体分析。 5.关于小球“系”在细绳、轻杆上做圆周运动与在圆环内、圆管内做圆周运动的情形比较对物体受力分析,是物理学中最重要、最基本的知识,分析

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

高考物理基础知识点.doc

高考物理基础知识点 高考物理基础知识点:气体的性质 1.气体的状态参量: 温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志 热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)} 体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL 压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压。 1atm=1.013 105Pa=76cmHg(1Pa=1N/m2) 2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大 3.理想气体的状态方程:p1V1/T1=p2V2/T2{PV/T=恒量,T 为热力学温度(K)} 注: (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关; (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。 高考物理基础知识点:功和能 1.功:W=Fscos (定义式){W:功(J),F:恒力(N),s:位移(m),:F、s间的夹角}

2.重力做功:Wab=mghab{m:物体的质量,g=9.8m/s2 10m/s2,hab:a与b高度差(hab=ha-hb)} 3.电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab= a- b} 4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)} 5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)} 6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率} 7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f) 8.电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)} 9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值( ),t:通电时间(s)} 10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt 11.动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)} 12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)} 13.电势能:EA=q A{EA:带电体在A点的电势能(J),q:电量(C),A:A点的电势(V)(从零势能面起)} 14.动能定理(对物体做正功,物体的动能增加):W合=mvt2/2-mvo2/2或W合= EK {W合:外力对物体做的总功,EK:动能变化

高考物理最新物理方法知识点易错题汇编及解析

高考物理最新物理方法知识点易错题汇编及解析 一、选择题 1.如图所示,两质量相等的物体A、B叠放在水平面上静止不动,A与B间及B与地面间的动摩擦因数相同.现用水平恒力F拉物体A,A与B恰好不发生相对滑动;若改用另一水平恒力拉物体B,要使A与B能发生相对滑动,设最大静摩擦力等于滑动摩擦力,则拉物体B的水平恒力至少应大于 A.F B.2F C.3F D.4F 2.如图所示,bc为固定在小车上的水平横杆,物块M穿在杆上,靠摩擦力与杆保持相对静止,M又通过轻细线悬吊着一个小铁球m,此时小车以大小为a的加速度向右做匀加速运动,而M、m均相对小车静止,细线与竖直方向的夹角为小车的加速度逐渐增大,M 始终和小车保持相对静止,当加速度增加到2a时 A.细线与竖直方向的夹角增加到原来的2倍 B.细线的拉力增加到原来的2倍 C.横杆对M弹力增大 D.横杆对M的摩擦力增加到原来的2倍 3.如图所示,三个重均为100N的物块,叠放在水平桌面上,各接触面水平,水平拉力F=20N作用在物块2上,三条轻质绳结于O点,水平绳与物块3连接,竖直绳悬挂重物B,倾斜绳通过定滑轮与物体A连接,已知倾斜绳与水平绳间的夹角为120o,A物体重 40N,不计滑轮质量及摩擦,整个装置处于静止状态。则物块3受力个数为() A.3个 B.4个 C.5个 D.6个 4.如图所示,物体A和B叠放并静止在固定粗糙斜面C上,A、B的接触面与斜面平行。以下说法正确的是()

A.A物体受到四个力的作用 B.B物体受到A的作用力的合力方向竖直向上 C.A物体受到B的摩擦力沿斜面向上 D.斜面受到B的压力作用,方向垂直于斜面向下 5.如图所示,粗糙程度均匀的绝缘空心斜面ABC放置在水平面上,∠CAB=30°,斜面内部O点(与斜面无任何连接)固定有一正点电荷,一带负电的小物体(可视为质点)可以分别静止在M、N、MN的中点P上,OM=ON,OM∥AB,则下列判断正确的是() A.小物体分别在三处静止时所受力的个数一定都是4个 B.小物体静止在P点时受到的支持力最大,静止在M、N点时受到的支持力相等 C.小物体静止在P点时受到的摩擦力最大 D.当小物体静止在N点时,地面给斜面的摩擦力为零 6.两个质量均为m的A、B小球用轻杆连接,A球与固定在斜面上的光滑竖直挡板接触,B球放在倾角为θ的斜面上,A、B均处于静止,B球没有滑动趋势,则A球对挡板的压力大小为 A.mg tanθB.2 tan mg θ C. tan mg θ D.2mg tan θ 7.如图所示,相互垂直的固定绝缘光滑挡板PO、QO竖直放置在重力场中,a、b为两个带有同种电荷的小球(可以近似看成点电荷),当用水平向左的作用力F作用于b时,a、b 紧靠挡板处于静止状态.现若稍改变F的大小,使b稍向左移动一段小距离,则当a、b重新处于静止状态后 ()

高中物理知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。 (3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。

高三物理高考精选知识点梳理

高三物理高考精选知识点梳理 学习高中物理知识点的时候需要讲究方法和技巧,更要学会对高中物理知识点进行归纳整理。下面就是我给大家带来的高三物理高考知识点,希望能帮助到大家! 高三物理高考知识点1 (1)极性分子之间 极性分子的正负电荷的重心不重合,分子的一端带正电荷,另一端带负电荷。当极性分子相互接近时,由于同极相斥,异极相吸,使分子在空间定向排列,相互吸引而更加接近,当接近到一定程度时,排斥力同吸引力达到相对平衡。极性分子之间按异极相邻的状态取向。 (2)极性分子与非极性分子之间 非极性分子的正负电荷重心是重合的,当非极性分子与极性分子相互接近时,由于极性分子电场的影响,使非极性分子的电子云发生“变形”,从而使原来的非极性分子产生极性。这样,非极性分子与极性分子之间也就产生了相互作用力。极性分子对非极性分子有诱导作用。 (3)非极性分子之间 非极性分子间不可能产生上述两种作用力,那又是怎样产生作用力的呢? 我们说非极性分子的正负电荷重心重合是从整体上讲的。但由于核外电子是绕核高速运动的,原子核也在不断振动之中,原子核外的电子对原子核的相对位置会经常出现瞬间的不对称,正负电荷重心经常出现瞬间的不重合,也就是说非极性分子经常产生瞬时极性,从而使非极性分子间也产生了相互吸引力。

从上述的分析可以看出,无论什么分子之间都存在着相互吸引力,即范德华力。范德华力从本质上看,是一种电性吸引力。 高三物理高考知识点2 1.电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf) 2.电动势峰值Em=nBSω=2BLv电流峰值(纯电阻电路中)Im=Em/R总 3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2 4.理想变压器原副线圈中的电压与电流及功率关系 U1/U2=n1/n2;I1/I2=n2/n2;P入=P出 5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:P 损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕; 6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T); S:线圈的面积(m2);U:(输出)电压(V);I:电流强度(A);P:功率(W)。 注: (1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线; (2)发电机中,线圈在中性面位置磁通量,感应电动势为零,过中性面电流方向就改变; (3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值; (4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,

2020高考物理知识点总结.docx

2020 高考物理知识点总结 1.简谐振动 F=-kx{F: 回复力, k: 比例系数, x: 位移,负号表示 F 的方向与 x 始终反向 } 2.单摆周期 T=2π(l/g)1/2{l: 摆长 (m),g: 当地重力加速度值,成 立条件 : 摆角θ<100;l>>r } 3.受迫振动频率特点: f=f 驱动力 4.发生共振条件 :f 驱动力 =f 固, A=max,共振的防止和应用〔见第一册 P175〕 5.机械波、横波、纵波〔见第二册 P2〕 7.声波的波速 ( 在空气中 )0 ℃: 332m/s;20 ℃:344m/s;30 ℃:349m/s;( 声波是纵波 ) 8.波发生明显衍射 ( 波绕过障碍物或孔继续传播 ) 条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同 ( 相差恒定、振幅相近、振动 方向相同 ) 10.多普勒效应 : 由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{ 相互接近,接收频率增大,反之,减小〔见第二册 P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统 本身 ; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰 与波谷相遇处 ; (3)波只是传播了振动,介质本身不随波发生迁移 , 是传递能量的一种方式 ;

(4)干涉与衍射是波特有的 ; (5)振动图象与波动图象 ; 1) 常见的力 1.重力 G=mg(方向竖直向下, g=9.8m/s2 ≈10m/s2,作用点在 重心,适用于地球表面附近 ) 2.胡克定律 F=kx{ 方向沿恢复形变方向, k:劲度系数 (N/m) , x:形变量 (m)} 3.滑动摩擦力 F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力 (N) } 4.静摩擦力 0≤f静≤ fm( 与物体相对运动趋势方向相反, fm 为 最大静摩擦力 ) 5.万有引力 F=Gm1m2/r2(G= 6.67×10-11N?m2/kg2, 方向在它们 的连线上 ) 6.静电力 F=kQ1Q2/r2(k=9.0 ×109N?m2/C2,方向在它们的连线上 ) 7.电场力 F=Eq(E:场强 N/C,q:电量 C,正电荷受的电场力与 场强方向相同 ) 8.安培力 F=BILsin θ( θ为 B 与 L 的夹角,当 L⊥B时:F=BIL , B//L 时:F=0) 9.洛仑兹力 f=qVBsin θ( θ为 B 与 V 的夹角,当 V⊥B时: f=qVB,V//B 时:f=0) 注: (1)劲度系数 k 由弹簧自身决定 ; (2)摩擦因数μ 与压力大小及接触面积大小无关,由接触面材 料特性与表面状况等决定 ; (3)fm 略大于μFN,一般视为 fm≈μ FN;

高考物理最新物理学史知识点易错题汇编附答案

高考物理最新物理学史知识点易错题汇编附答案 一、选择题 1.今年是爱因斯坦发表广义相对论100 周年。引力波是爱因斯坦在广义相对论中预言的,即任何物体加速运动时给宇宙时空带来的扰动,可以把它想象成水面上物体运动时产生的水波。引力波在空间传播的方式与电磁波类似,以光速传播,携带有一定能量,并有两个独立的偏振态。 引力波探测是难度最大的尖端技术之一,因为只有质量非常大的天体加速运动时才会产生较容易探测的引力波。2016 年2 月11 日,美国激光干涉引力波天文台宣布探测到了引力波,该引力波是由距离地球13 亿光年之外的两个黑洞合并时产生的。探测装置受引力波影响,激光干涉条纹发生相应的变化,从而间接探测到引力波。下列说法正确的是 A.引力波是横波 B.引力波是电磁波 C.只有质量非常大的天体加速运动时才能产生引力波 D.爱因斯坦由于预言了引力波的存在而获得诺贝尔物理学奖 2.在物理学的发展过程中,许多物理学家都做出了重要的贡献,他们也创造出了许多物理学研究方法。下列关于物理学史与物理学研究方法的叙述中正确的是() A.物理学中所有物理量都是采用比值法定义的 B.元电荷、点电荷都是理想化模型 C.奥斯特首先发现了电磁感应现象 D.法拉第最早提出了“电场”的概念 3.在电磁学发展过程中,许多科学家做出了贡献,下列说法中符合物理学发展史的是A.奥斯特发现了点电荷的相互作用规律 B.库仑发现了电流的磁效应 C.安培发现了磁场对运动电荷的作用规律 D.法拉第最早引入电场的概念,并发现了磁场产生电流的条件和规律 4.了解物理规律的发现过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要。以下符合史实的是( ) A.焦耳发现了电流的磁效应 B.法拉第发现了电磁感应现象,并总结出了电磁感应定律 C.惠更斯总结出了折射定律 D.英国物理学家托马斯杨利用双缝干涉实验首先发现了光的干涉现象 5.在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步,关于科学家和他们的贡献,下列说法正确的是() A.古希腊学者亚里士多德认为物体下落的快慢由它们的重量决定,伽利略在他的《两种新科学的对话》中利用逻辑推断,使亚里士多德的理论陷入了困境 B.德国天文学家开普勒对他导师第谷观测的行星数据进行了多年研究,得出了万有引力定律 C.英国物理学家卡文迪许利用“卡文迪许扭秤”首先较准确的测定了静电力常量 D.牛顿首次提出“提出假说,数学推理实验验证,合理外推”的科学推理方法

人教版高中物理必修一知识点大全

人教版高中物理必修一 知识点大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理学习材料 (灿若寒星**整理制作) 必修一知识点大全 1.参考系 ⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。 ⑵对同一运动,取不同的参考系,观察的结果可能不同。 ⑶运动学中的同一公式中涉及的各物理量应以同一参考系为标准,如果没有特别指明,都是取地面为参考系。 2.质点 ⑴定义:质点是指有质量而不考虑大小和形状的物体。 ⑵质点是物理学中一个理想化模型,能否将物体看作质点,取决于所研究的具体问题,而不是取决于这一物体的大小、形状及质量,只有当所研究物体的大小和形状对所研究的问题没有影响或影响很小,可以将其形状和大小忽略时,才能将物体看作质点。 ⑴物体可视为质点的主要三种情形: ①物体只作平动时; ②物体的位移远远大于物体本身的尺度时; ③只研究物体的平动,而不考虑其转动效果时。 3.时间与时刻 ⑴时刻:指某一瞬时,在时间轴上表示为某一点。

⑵时间:指两个时刻之间的间隔,在时间轴上表示为两点间线段的长度。 ⑶时刻与物体运动过程中的某一位置相对应,时间与物体运动过程中的位移(或路程)相对应。 4.位移和路程 ⑴位移:表示物体位置的变化,是一个矢量,物体的位移是指从初位置到末位置的有向线段,其大小就是此线段的长度,方向从初位置指向末位置。 ⑵路程:路程等于运动轨迹的长度,是一个标量。 当物体做单向直线运动时,位移的大小等于路程。 5.速度、平均速度、瞬时速度 ⑴速度:是表示质点运动快慢的物理量,在匀速直线运动中它等于位移与发生这段位移所用时间的比值,速度是矢量,它的方向就是物体运动的方向。 ⑵平均速度:物体所发生的位移跟发生这一位移所用时间的比值叫这段时间内的平均速度,即t v x =,平均速度是矢量,其方向就是相应位移的方向。 ⑶瞬时速度:运动物体经过某一时刻(或某一位置)的速度,其方向就是物体经过某有一位置时的运动方向。 6.加速度 ⑴加速度是描述物体速度变化快慢的的物理量,是一个矢量,方向与速度变化的方向相同。 ⑵做匀速直线运动的物体,速度的变化量与发生这一变化所需时间的比值叫加速度,即t v v t v a 0-=??= ⑶对加速度的理解要点:

最新高考物理知识点大全

第一单元直线运动 (1) 第二单元相互作用 (4) 第三单元牛顿运动定律 (7) 第四单元曲线运动 (9) 第五单元万有引力 (12) 第六单元机械能 (14) 第七单元动量 (18) 第八单元力学实验 (24) 第九单元静电场 (30) 第十单元恒定电流 (34) 第十一单元电学实验 (36) 第十二单元磁场 (46) 第十三单元电磁感应 (49) 第十四单元交变电流 (51) 第十五单元近代物理 (53) 第十六单元选修3-3 (63) 第十七单元选修3-4 (73) 第十八单元常用的物理方法 (85) 第十九单元常用的数学方法 (92)

第一单元直线运动 1.匀变速直线运动: (1)平均速度(定义式)v=s t (2)有用推论v t 2-v02=2as (3)中间时刻速度v t 2=(v t+v0) 2 (4)末速度v t=v0+at (5)中间位置速度v s 2=√v02+v t2 2 (6)位移s=v0t+1 2 at2 (7)加速度a=v t-v0 t (以v0为正方向,a与v0同向(加速)则a>0;反向则a<0) (8)实验用推论Δs=aT2(Δs为连续相邻相等时间T内位移之差) 易错提醒: (1)平均速度是矢量 (2)物体速度大,加速度不一定大 (3)a=v t-v0 t 只是量度式,不是决定式 2.自由落体运动 (1)初速度v0=0 (2)末速度v t=gt (3)下落高度h=1 2 gt2(从v0位置向下计算) (4)推论v t 2=2gh 易错提醒: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律。

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 3.竖直上抛运动 gt2 (1)位移s=v0t-1 2 (2)末速度v t=v0-gt (3)有用推论v 2-v02=-2gs t (4)上升最大高度H m=v02 (从抛出点算起)。 2g (从抛出落回原位置的时间)。 (5)往返时间t=2v0 g 易错提醒: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 (3)上升与下落过程具有对称性,如在同一点速度等值反向等。 1.误认为a与Δv成正比,与时间t成反比 (1)表达式a=Δv 是加速度的定义式,而不是加速度的决定式。 t 是不变的。 (2)物体的加速度a由F和m决定,对于同一个匀加速运动,Δv越大则时间t越长,而Δv t 2.将加速度的正负错误地理解为物体做加速直线运动还是做减速直线运动的判断依据 (1)加速度的正负与正方向的规定有关。 (2)物体做加速直线运动还是做减速直线运动,判断的依据是加速度的方向和速度方向是相同还是相反。 (3)当加速度与速度同方向,如v0>0,a>0时,物体做加速运动;当加速度与速度反方向,如v0>0,a<0时,物体做减速运动。 3.刹车类问题中,对运动过程不清,盲目套用公式 (1)对刹车的过程要清楚。当速度减为零后,汽车会静止不动,不会反向加速,要结合现实生活中的刹车过程分析。

最新最全高中物理所有知识点总结(精华)

高考物理基本知识点总结 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 = 相同,,轮上边缘各点v 相同,v A =v B 3. 传动装置中,特点是:同轴上各点C A 4. 同步地球卫星特点是:①,② ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度 3.1km/s。 m1m2 2 r F=G ,卡文迪许扭秤实验。 5. 万有引力定律:万有引力常量首先由什么实验测出: g' =GM/r 2 6. 重力加速度随高度变化关系: GM 说明:r为某位置到星体中心的距离。某星体表面的重力加速 度。 g 02 R

2 g' g R R ——某星体半径 h 为某位置到星体表面的距离 2 (R h) 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 2 2 GM r GM GMm mv r GMm mv r 2 2 2 g' = r r r 、v = 、 、 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度 = m ω 2R =m ( 2π /T ) 2 R GM r gR gR 2 = GM r =R ,为第一宇宙速度 v 1= = 当 r 增大, v 变小;当 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向 ②竖直方向 ③合运动 ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 S ,求 v T gT 2 相位 v y 0 t x v 0 t v x v 0 1 2 2 y gt v y gt 1 4 2 2 2 2 4 2 2 S v 0 t g t v t v g t gt 2v 0 1 2 gt v 0 tg tg tg tg ⑥在任何两个时刻的速度变化量为△ v =g △ t ,△ p = mgt x 2 处,在电场中也有应用 ⑦v 的反向延长线交于 x 轴上的 10. 从倾角为 α的斜面 上 A 点以速度 v 0 平抛的小球,落到了斜面上的 B 点,求: S AB

相关主题
文本预览
相关文档 最新文档