当前位置:文档之家› 变压器谐波模型的研究与评价_方少麟

变压器谐波模型的研究与评价_方少麟

变压器谐波模型的研究与评价_方少麟
变压器谐波模型的研究与评价_方少麟

谐波干扰问题分析与谐波治理方法建议

谐波干扰问题分析与谐波治理方法建议 一、存在的谐波干扰问题介绍 某科技发展有限公司主要从事先进陶瓷材料相关技术、产品和系统的研发,涉及生物医学材料、新能源材料、电子信息材料、化工陶瓷材料、以及多功能结构陶瓷材料等领域。 该公司目前新安装的300KW中频烧结炉,可控硅控制功率加热,出现功率因数低0.3-0.5,谐波大,造成共用的容量1250Kvar供电变压器配置的容量为600Kvar无功补偿电容装置产生过热保护无法正常投切运行等问题。 二、谐波干扰状况分析 随着我国制造业的蓬勃发展和人民生活水平的不断提高,电力电子技术在电网设备中得到广泛应用,大量的非线性负荷广泛应用在工业、商业和民用电网中,给电网造成的污染问题越来越得到重视。如在一般工业领域使用的中频炉、变频器、软启动器、电弧炉、轧机、电解槽、电镀槽等负荷,商业和民用领域如节能灯、气体灯具、变频空调、电脑、冰箱等,都产生大量的谐波,尤其是近几年在我国节能技术产业的发展过程中出现了各种类型的专用节电装置,这些节电装置采用的均是电力电子控制技术如变频控制和可控硅调压原理,属典型的谐波源,大量使用导致谐波的产生,轻者影响供电质量使制造工艺较为精细的产品质量受到影响,或者由于在节电过程中使用的节电器具产生的谐波导致谐振,而使无功得不到满意补偿甚至不补偿影响节电效果,重者导致电气设备长期发热,降低使用寿命甚至损坏、火灾,危害电网安全。 为了便于对北京某科技发展有限公司新安装使用的中频烧结炉产生谐波危害进行分析,特地借鉴下列两组关联数据

用以推断可能产生谐波的含量。 借鉴测试数据一:2014年5月9日浙江某公司新安装使用的中频烧结炉的现场测试数据显示,该中频烧结炉运行时电源进线上基波电流在17-391A有功功率在7.8-118.5KW,谐波电压总畸变率5.7-6.3%,谐波电流总畸变率42-72.9%,功率因数在0.33-0.64范围内波动。 借鉴测试数据二:2014年6月22日领步公司应邀对某新型材料(江苏)有限公司生产线300KW中频烧结炉的谐波测试数据如下:运行电流在250A时谐波参数,谐波电压总畸变率4.4%,谐波电流总畸变率29.9%;运行电流在365A时谐波参数,谐波电压总畸变率6.7%,谐波电流总畸变率30.1% 运行电流 在250A时 谐波参数

解析变压器谐波损耗与影响因素

解析变压器谐波损耗与影响因素 发表时间:2016-04-19T14:11:56.110Z 来源:《电力设备》2015年第9期供稿作者:梁正波[导读] 贵州电网有限责任公司毕节供电局551700 变压器的正常运行对于电力系统的稳定有着重要的作用,降低变压器的谐波损耗对于电网的良好发展有着极大的意义。(贵州电网有限责任公司毕节供电局551700) 摘要:技术人员通过变压器谐波损耗模型,对变压器谐波损耗的影响因素进行分析,凭借电路理论的相关知识,从而计算出变压器谐波损 耗的各项参数。技术人员通过变压器谐波损耗在线监测方法,结合实验操作,对变压器谐波损耗受谐波次数和变压器负载的影响情况进行了分析,由于变压器一次侧谐波电流不会对变压器谐波损耗造成影响,所以基于变压器谐波损耗模型,技术人员不需要对其进行检测;通过对谐波次数所造成的变压器损耗进行分析,变压器谐波损耗的所有参数中,配电网3次与5次谐波所造成的谐波损耗比重最大,所以为了确保变压器的正常运行,技术人员可对3次和5次谐波采取有效的降耗措施。关键词:变压器;谐波损耗;影响 变压器的正常运行对于电力系统的稳定有着重要的作用,降低变压器的谐波损耗对于电网的良好发展有着极大的意义,也是保障正常供电的有效途径,这样才能更好为社会和人们服务。随着电网的不断发展,其结构也更为复杂,变压器谐波损耗受谐波次数和变压器负载的影响也更大,对变压器的正常运行造成了严重的影响,从而造成电网在供电过程中出现很大的问题,也危害到电网自身的安全。本文基于变压器谐波损耗模型对变压器谐波损耗的具体情况与影响因素进行了合理分析,提出了一些有效的建议。 变压器谐波损耗模型 图1(变压器T型等效电路)如图1,显示的是变压器T型等效电路图。图中的Rm指的是激磁电阻,Xm指的是激磁电抗,R1和R2分别为原端电阻和副端电阻,X1和X2指的是原端电抗和副端电抗。技术人员对变压器等效电路参数进行了合理计算,通过变压器短路试验和开路试验的方法,结合叠加原理和集肤效应,建立出变压器谐波等效模型。技术人员通过变压器开路试验,计算出了激磁电阻和激磁电抗的参数,通过短路试验计算出了原端电抗和副端电抗的参数。 图2(变压器开路试验) 如图2,显示的是变压器开路试验的原理图。当技术人员进行变压器开路试验时,需在低压侧加压、高压侧开路,确保变压器开路试验的安全性。技术人员将二次侧开路后,试验的结果是二次侧的值,必须将其值归算到高压侧,归算公式如下: 图3(变压器短路试验) 如图3,显示的是变压器短路试验的原理图。当技术人员进行变压器短路试验时,需将二次侧绕组进行短路处理,在一次侧加电压,之后将功率和电流导入。在变压器短路试验中,技术人员可以不对激磁电流和铁耗进行考虑,因为正常试验时,电压较小,所以导致磁通较小。技术人员可以通过专门的公式计算出变压器的短路阻抗,从而得出一次电阻和二次电阻消耗的短路输入功率最高。在实际工作中,为了将一次侧电阻和二次侧电阻良好分离,通常采用两者相等的计算方法进行计算。受集肤效应的作用,当变压器中的谐波对其造成影响时,会导致其各项参数发生改变。技术人员可以将各次谐波分量看作很多个独立电流源,通过叠加原理将其在变压器上进行叠加,从而建立变压器的谐波等效模型。

变压器等值电路总结

变压器总结 首先看变压器的序电抗及等值电路 1:变压器负序电抗及等值电路与正序相同 2:零序电抗及等值电路与变压器的结构以及接线方式,需要按每一种结构,每一种接线仔细分析后确定,要特别注意零序等值电路的画法 3:画变压器零序等值电路时将变压器正序等值电路中的激磁电抗Xm以零序激磁电抗Xmo代替 4:在分析经电抗接地情况时,注意接地电抗中流过的是三倍零序电流,故在等值电路中接地电抗值应以三倍表示,电阻也是三倍 电力系统各序网络的制定 对应对称分量法分析计算不对称故障时,首先必须做出电力系统的各序网络。为此,应根据电力系统的接线图,中性点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该网络中,并用相应的序参数和等值电路表示。 例如

在这里要看懂这个复合序网图,首先分解两卷变和三卷变的各序等值电路 1:两卷 (母线端) Jx1 jx2 正序 负序 零序有四种接线方式 一:三角形连接 (母线端) Jx0 (1) f V (1)f I 1E LD

母线端 二:星行连接jx0 三:星行接地连接 Jx0 四:星形带阻抗接地 J3Xg jx0 上面的四种零序接线图简化后,就很容易整理出两两接线图 表2.1 双绕组变压器零序等值电路

同理:)三绕组变压器 jx1 jx2 三jx3绕组正(负)序等值电路 零序与二卷变一样,所以组合方式如下图 表2.2 三绕组变压器零序等值电路 等值电路图均同左图, 但Z III 应改为Z III //Z Ⅱ V :1k 图2.13 三绕组变压器正负序等值电路 3 13 3I II I I I

[整理]PSCAD中的变压器模型.

1.Introduction to Transformers(引言) EMTDC中使用变压器有两种方法:经典方法和统一的磁等效电路(unified magnetic equivalent circuit (UMEC))方法。 经典方法用来模拟同一变压器铁芯上的绕组。也就是说,每一相都是独立的,各单相变压器之间没有相互作用。而UMEC方法计及了相间的相互作用:由此,可以对3相3臂或3相5臂式变压器构造进行精确的模拟。 每一模型中,铁芯的非线性特征是最基本的不同。经典模型中的铁芯饱和是通过对选定绕组使用补偿注入电流实现的。UMEC方法采用完全插值,采用分断线性化的?-I曲线来表征饱和特性。 2.Transformer Models Overview(变压器模型概述) 对电力系统进行电磁暂态分析过程中必然会出现变压器。PSCAD中有两种方法对变压器进行模拟:经典方法和UMEC方法。 经典方法仅限于单相设备,其中不同的绕组处于同一铁芯腿上。而UMEC方法,考虑到来铁芯的几何外形和相间的相互耦合因素。 除了以上的显著区别外,两种变压器模型之间最基本的区别是对铁芯非线性特性的描述。在经典模型中,非线性特性采用近似地基于“拐点”、“空心电抗”和额定电压的磁化电流曲线进行模拟。而UMEC模型则直接采用V-I曲线进行模拟。 与经典模型不同,UMEC模型没有配置在线分接头调整功能。但是,可以在指定绕组上设置分接头,不过分接头在仿真过程中不能动态调整。 3.1-Phase Auto Transformer(单相自耦变压器) 此组件基于经典方法模拟了单相自耦变压器。用户可以选择采用磁化支路(线性铁芯)或注入电流模拟磁化特性。理想情况下,可以忽略磁化支路,变压器即为理想模式,仅保留串联的漏抗。

HVDC谐波分析

基于新型换流变压器HVDC谐波分析与仿真计算 李季,罗隆福,许加柱,李勇,刘福生 (湖南大学电气与信息工程学院,湖南长沙410082) 摘要:在构成高压直流输电系统一系列关键技术中,滤波装置占据十分重要的地位。本文提出了一种具有内部三角形绕组新颖的自耦补偿与谐波屏蔽换流变压器,将传统交流滤波装置移至绕组内部即在换流变压器副方公共绕组串接5、7、11、13次滤波支路的接线方案,让谐波源无法流窜到高压网络中,有效的抑制了直流输电系统中的谐波成分。最后以新型换流变压器及相关的直流系统技术参数为依据,结合滤波装置为新型换流变压器的自补滤波提供谐波通道及满足换流器无功需求的特点,对基于新型换流变压器的直流输电系统中绕组及滤波支路谐波电流进行了详细的分析和仿真计算,仿真结果表明,本文提出的新兴换流变压器原理正确,参数选择合理,滤波效果好,总谐波含量低,具有良好的应用前景。 关键词:高压直流输电;换流变压器;滤波装置;谐波屏蔽;自耦补偿 1引言 在高压直流输电系统(HVDC)中,由于换流器的非线性特征,在交流系统和直流系统中不可避免的产生大量的谐波电压和谐波电流,对系统本身和用户都会造成影响和危害。对于交流系统的滤波来说,传统的滤波方式一般是在换流变压器网侧的母线上并联滤波器装置,兼作无功补偿设备。该种方式虽能较好的解决交流系统的谐波抑制和无功补偿问题,但并未克服通过换流变压器的无功和谐波对变压器本身所带来的影响;并且在现有的直流输电工程运行中仍然大量出现交直流侧谐波超标的现象,因此有必要采取更加有效的滤波设计[1-2]。 自耦补偿与谐波屏蔽换流变压器通过特有的绕组连接方式,辅之以必要的滤波装置,不仅能满足交流系统的滤波及无功需求,而且能解决上述传统换流变压器以及直流输电系统中存在的问题,较之传统换流变压器及无源滤波装置有诸多优点。本文以新型换流变压器原理机及相关换流直流系统的技术参数为依据,对基新型换流变压器的HVDC 交流侧的滤波装置进行分析设计,各次谐波泄露量均能达到谐波国家标准,从而达到理想的综合补偿效果。2新型换流变压器工作机理 2.1接线方案 与传统换流变压器相比,新型换流变压器副边绕组有抽头引出接辅助滤波装置,这势必改变绕组间的电磁关系。图1所示为用于12脉动HVDC的新型换流变压器绕组接线与辅助滤波兼无功补偿设备布置图。由图可知,新型换流变压器副方采用延边三角形连接,中间引出抽头接辅助滤波装置,这在接线方式上相当于将传统变压器原方网侧的无源滤波装置移到副方绕组的中部,以利发挥自补滤波的作用,改善与消除传统滤波与无功补偿的不足]3[。 新型换流变压器要满足12脉波换相要求时,I 桥和II桥相电压分别左移15 ,右移15 。设变压器网侧,阀侧线电压比为1。原边匝数为1p.u;参考电压相量图2所示,根据正弦定理,可计算求得 8966 .0 1 2= = W W k c (1) 5176 .0 1 3= = W W k e (2) 其中, 1 W、 2 W和 3 W分别为变压器网侧绕组,延 边绕组和公共绕组的匝数; c k和 e k分别为延边绕组与网侧绕组、公共绕组与网侧绕组之间的匝比。 f f 图1新型换流变压器接线方案

谐波治理各方案比较分析

谐波治理各方案比较分析 谐波治理的目的包括: 1. 满足电力公司对谐波电流发射的限制要求 2. 释放变压器的有效容量,提高变压器的效率 3. 提高配电系统(包括无功补偿装置、继电保护器、电缆等)的可靠性 4. 为企业内的各类设备提供质量优良的电能,保证制造系统的稳定运行 人们对谐波的危害已经十分熟悉,很多企业也开始重视谐波的治理。谐波治理的目的不同,所采取的方案也是不同的。因此,在确定谐波治理的方案之前,要明确谐波治理的目的。 企业在谐波治理方面投资,要达到的目的如图所示。 满足电力公司的要求是企业进行谐波治理的首要动机。为电力用户提供合格的电能,是电力公司的责任。因此,电力公司要对那些可能污染电网的用户的提出谐波治理的要求。随着越来越多的企业对电能质量的要求提高,电力公司将对电力用户进行更严格的要求。 在目前阶段,出于后面几个目的而进行谐波治理的企业较少。企业仅在出现了故障现象后,才开始考虑谐波治理的问题。其中,谐波导致无功补偿装置烧毁的情况最为常见。 无论谐波治理的最终目的是什么,其本质就是减小负载(可能是一组负载)向电网注入的谐波电流,因为谐波电流是谐波问题的根源。只不过,针对不同的目的,控制谐波电流的位置不同,也就是采用的谐波治理方案不同。 谐波治理的策略 按照谐波治理的位置,可以有三个策略。

第一:在高压母线上治理,采用的设备是SVC、SVG等。 第二:在变压器的下端,低压母线上治理谐波。采用无援滤波器、有源滤波器等。无源滤波器往往会发出额外的容性无功,这在有些场合是不允许的。 第三:在设备的电源入口处治理谐波。这称为就地治理。就地治理是最理想的谐波治理策略。因为,这样相当于将非线性负载转变成了线性负载,谐波导致的一切问题都迎刃而解。 大部分发达国家按照这个策略开展谐波治理。达到这个目的的管理措施就是,要求电气电子设备满足相应的电磁兼容标准(例如,GB17625)要求,电磁兼容标准对谐波电流发射进行了明确的规定。 传统的谐波治理策略 传统的谐波治理项目大多采用策略1和策略2。 这是因为,企业进行谐波治理的初衷仅是满足电力公司的要求,因此,在用策略1和策略2已经足够了。随着企业内部的自动控制设备增加,对电能质量的要求提高,仅采用策略1和策略2就不能满足要求了。 企业要理解谐波治理的深层意义。如果理解了谐波治理是为了获得良好的电能质量,而良好的电能质量正是企业所需要的,就会改变传统的做法。 治理谐波最理想的位置是在谐波源处。也就是将谐波电流封杀在起源处,根本不允许流入电网。这相当于将非线性负载变成了线性负载。设想,如果电网上的负荷全部是线性负荷,那里还有谐波问题。保持内部电网质量的最有效方法就是在谐波源负载的电源入线处安装谐波滤波器。 在谐波源处进行谐波治理,就能够消除谐波带来的各种隐患。因此,在进行系统设计时,要尽量考虑就地谐波治理的方法。

YD变压器电流谐波分析

Y/Δ接线变压器一次电流波形分析 Y/Δ接线的变压器有Y/Δ1和Y/Δ11两种接法,接线图如图6-2所示。工程应用中一般采用Y/Δ11接法。 (a )Y/Δ1接线 (b )Y/Δ11接线 图6-2 Y/Δ1和Y/Δ11的换流变压器接线图(描图注意:图中的空心小圆点不画出来) Y/Δ变压器的接线特点: Y/Δ1:a 尾接b 头(绕组a 的尾与绕组b 的头相接), b 尾接c 头,c 尾接a 头; Y/Δ11:a 尾接c 头, c 尾接b 头,b 尾接a 头; 由图6-2可以写出Y/Δ1接线和Y/Δ11接线变压器二次侧线电流与三角形绕组电流之间的关系式。 设绕组电流为:a b c i i i ???,,,参考方向流向同名端;变压器引出端的线电流为 a b c i i i ,,,参考方向为流出,Y/Δ1接线变压器的电流关系如图6-3所示。 图6-3 Y/Δ1接线变压器的电流关系(描图注意:图中的空心小圆点不画出来) 由图6-3可见,Y/Δ1接线变压器的电流有如下关系: Y/Δ1: a a c b b a c c b a a a i =i -i a i =i -i b i =i -i c i i i =0 d ?????????++ () () ()() (6-12)

(a )-(b ):a b a c b a a a a i-i=i -i -i i i -i =3i ?? ????? ++ (b )-(c ):b c b a c b b b b i-i=i -i -i i i -i =3i ????? ?? ++ (c )-(a ):c a c b a c c c c i-i=i -i -i i i -i =3i ??????? ++ 因此得:a a b b b c c c a 1 i =i -i e 31 i =i -i f 31 i =i -i g 3 ???() () () ()() () (6-13) Y/Δ11接线变压器的二次电流关系如图6-4所示。 图6-4 Y/Δ11接线变压器的二次电流关系(描图注意:图中的空心小圆点不画出来) 由图6-4可见,Y/Δ11接线变压器的二次电流有如下关系: Y/Δ11: a a b b b c c c a a a a i =i -i a i =i -i b i =i -i c i i i =0 d ?????????++ () () () () (6-14) (a )-(c ):a c a b c a a a a i-i=i -i -i i i -i =3i ??????? ++ (b )-(a ):b a b c a b b b b i-i=i -i -i i i -i =3i ??????? ++ (c )-(b ):c b c a b c c c c i-i=i -i -i i i -i =3i ?? ????? ++

隔离变压器谐波耐受能力和滤波效果分析

隔离变压器滤波能力和谐波耐受力的分析 1、隔离变压器分类 1.1、按输入输出接线方式分类: 通常隔离变压器根据输出输入接线方式不同可以分类为:Dyn,Dd,Ynyn,YNd,Dzn,ZNd,Ynzn,Znyn八大类,D或d表示三角接线,Y或y代表星形接线,Z或z代表曲折接线(英文表示:Zig/Zag 联接),大写表示输入,小写表示输出,N或n表示中性点,通常隔离变压器,尤其是UPS系统和数据机房变压器接线方式主要是:Dyn11,Dzn0两种。 1.2、按输出数量分类:单输出,双输出,多输出等等,通常隔离变压器,尤其是UPS系统和数据机房变压器是单输出变压器,对于十二脉整流变压器或滤波变压器是双输出变压器,其接线方式是Dyn11d0,也就是说,输出有独立隔离的两组输出,一组接线方式是Dyn11,另一组是Dd0,两组输出相位差为30度,对于双输出或多输出变压器,实际应用中必须尽可能保证各组负载尽量相等,否则其滤波效用大大降低,但实际运行中要保证各组输出负载相等又很困难,基于这个原因,多组输出隔离变压器很少在实际中应用。 2、K系数的涵义: 2.1、K系数是谐波热损耗的一个折算系数,通常从1到50,常选用:1、4、7、9、11、13、20、30,最经常选用的是:1、4、13、20。 2.2、对于供电和用电网络的涵义: K系数代表供电和用电网络中谐波的恶劣程度,K系数越高,代表供电和用电网络中谐波越恶劣,K=1代表供电和用电网络中不含有任何谐波,全部为基波分量,UPS系统和数据机房的供电和用电网络为:13和20,K系数不随负载率变化而变化,只和网络谐波频谱有关。 2.3、对于用电、供电和送电设备的涵义:K系数代表设备耐受谐波的能力,K系数越高,设备耐受谐波能力越强,K=1代表设备没有设计耐受任何谐波的附加热损耗的能力,只能在基波工况中才能安全运行,设备耐受谐波的能力随负载率提高而降低,因此,在供电网络容量不受限制时,可以选用较大容量的设备,通过降低负载率有限度地提高K系数耐受谐波能力,但这只是一方面,许多生产厂家和用户误以为只要增大容量就可以,这是一种对K系数耐受谐波能力的片面理解。 3、K系数引用到变压器中的目的: 通常对K系数在任何供电、用电、送电网络和设备均可加于引用,因而对于各不同类型变压器,各不同温度等级变压器,各不同绝缘等级变压器中均可以加于引用,目的是为了提高变压器的可靠性,当然,各不同类型变压器,各不同温度等级变压器,各不同绝缘等级变压器在同样谐波工况中的耐受谐波能力是不同的,最终确定该变压器是否具有合适的抗谐波能力取决于该变压器在设计谐波工况下运行的平均温升和变压器内部最高温度点,如果要在同样的谐波工况下达到同样的耐受谐波能力,设计和制造成本差别也是非常大,对于干式变压器,有些温度、绝缘等级(如130度等级以下和B级绝缘等级以下)的变压器和有些材料(低密度绝缘丝包线)制造的变压器是K系数耐受能力无法达到7以上,因而,UPS系统和数据机房变压器是不能选择以上的变压器。 4、提高变压器K系数耐受能力的主要办法: 4.1、变压器特殊设计,降低或消除变压器自身对谐波敏感的因数; 4.2、选择高温等级的高密度绝缘漆包铜线(H级180度以上); 4.3、降低变压器自身损耗,提高变压器效率; 4.4、选择具有滤波能力的变压器,如Dzn0变压器,和双输出变压器Dyn11d0;

泵房谐波分析治理

一、前言 在实习过程中,发现转水泵房有严重的谐波污染,因其有变频器、开关电路、电动机等非线性设备,其产生的高低次谐波,对电网产生严重污染,使电器设备容易损坏、设备使用寿命降低、控制系统产生误动作,并且谐波会使相关导线的阻抗和温度上升,使电能损耗增加,企业的生产效率和经济效益受到很大影响。 测试结果显示:泵房供电系统高次谐波含量高达60.7%,下级电网谐波污染严重,功率因数降低,并对上级电网中部分电气设备和仪器造成损坏。消除泵房谐波对电网的影响,减少电网损耗,提高供电质量,已是迫在眉睫的问题。 二、谐波产生的原因 1、是发电源质量不高产生谐波:发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。 2、是输配电系统产生谐波:系统电网中大量变压器的励磁电流含有奇次谐波成分,当变压器空载或者过励磁时更为严重,并由此够成了主要的稳定性谐波源;当电网中投切空载变压器或者电容器时,其合闸涌流注入电网也形成突发性的谐波源。电力系统作用在同一线路中的数个不通频率正弦电势,使得电路中的电流成为各个不同频率电流分量的叠加值,从而形成谐波电流。 3、是用电设备产生的谐波:非线性用电设备是产生谐波的主要原因,由于非线性设备产生谐波电流通过系统网络注入到系统电源中,畸变电流流经系统阻抗使母线电压发生畸变,使电能质量受到污染。我处电网系统中产生谐波的主要设备是硅整流设备、UPS和供水系统中变频启动柜等设备。它们在电网中

取用基波电流的同时,产生出高次谐波电流注入系统。 三、对电器设备的危害 1、谐波对通信系统的影响 电力线路上流过的5、7、11等幅值较大的奇次低频谐波电流通过磁场耦合,在邻近电力线的通信线路中产生干扰电压,干扰通信系统的工作,影响通信线路通话的清晰度,而且在谐波和基波的共同作用下,触发电话铃响,甚至在极端情况下,还会威胁通信设备和人员的安全。 2、谐波对用电设备的危害 主要是因为谐波对电网的大量注入引起的电压失真度。电压失真度上升,意味着电源已经不再是纯净的正弦波,因此凡用电设备不论自身是线性负载还是非线性负载都会受到电压失真度的影响。例如:谐波会使电视机、计算机的图形畸变,画面亮度发生波动变化,并使机内的元件出现过热,使计算机及数据处理系统出现错误;保护装置异常动作, 开关误跳闸等;伺服电机产生脉动,异步交流电机产生振动,噪音增大等;负载电路中产生传导干扰,数据传送故障、通讯、广播间断并伴有工频交流噪声等;含有电感、电容器件的电路温度升高,损耗增大,提前老化,使用寿命明显缩短等。 3、谐波对供电设备的危害 供电设备主要指电力变压器、电缆、发电机、电力电容等。由于谐波在这些设备上产生明显的集肤效应使得:电力变压器、发电机等铁磁设备损耗明显增大,产生过热,绝缘提前老化;电缆产生过热,绝缘提前老化;电力电容器介质损耗增大、过热、甚至爆炸;中线电流明显增大。谐波对电网负担的加重由于非线性负载通常功率因数较低,造成:无功功率极度增大;电流有效值增大;电网的可用容量下降;电网的品质变坏,波形失真,频率改变等;利用发

电力变压器的参数与数学模型

.-电力变压器的参数与数学模型

————————————————————————————————作者:————————————————————————————————日期:

电力变压器的参数与数学模型 2.3.1理想变压器 对于理想变压器,假定: 绕组电阻为零;因此绕组损耗I2R为零。铁心磁导率是无穷大,所以铁心磁阻为零。不计漏磁通;即整个磁通为铁心和一次侧绕组、二次侧绕组相交链的磁通。不计铁心损耗。 图2-20双绕组变压器内部结构图2-21 双绕组变压器示意图从安培和法拉第定律知: (2-46) 磁场强度矢量Hc 为 (2-47) 其中,磁场强度、磁感应强度和磁通量的关系为 由于理想变压器铁心磁导率为无限大,则磁阻R c近似为零。 (2-48) 上式可写为: 图2-21为双绕组变压器的示意图。 (2-49) 或者 图2-21中的标记点表示电压E1和E2,在标记点侧是+极,为同相。如果图2-21中的其中一个电压极性反向,那么E1与E2相位相差180o。 匝数比k定义如下:

理想单相双绕组变压器的基本关系为 (2-50) (2-51) 由推导可得两个关于复功率和阻抗的关系如下。图2-21中流进一次侧绕组的复功率为 (2-52) 代入(2-50)和(2-51) (2-53) 可见,流进一次侧绕组的复功率S1与流出二次侧绕组的复功率S2相等。即理想变压器没有有功和无功损耗。 如果阻抗Z2与图2-21中理想变压器的二次侧绕组相连,那么 (2-54) 这个阻抗,当折算到一次侧时,为 (2-55) 因此,与二次侧绕组相连的阻抗Z2折算到一次侧,需将Z2乘以匝数比的平方k2。 2.3.2实际双绕组变压器 1.简化条件 实际单相双绕组变压器,与理想变压器的区别如下: 计及绕组电阻;铁心磁导率为有限值;磁通不完全由铁心构成;计及铁心有功和无功损耗。 图2-22实际单相双绕组变压器的等效电路图 电阻串联于图中一次侧绕组,用于计及该绕组损耗I2R。电抗为一次绕组的漏电抗,串联于一次绕组用于计及一次绕组的漏磁通。这个漏磁通是仅与一次绕组交链的磁通的组成部分,它引起电压降落,对应且超前。漏电抗引起无功损耗。类似的,二次绕组中串联了电阻和电抗。 由于变压器铁心磁导率为有限值,式(2-48)中磁阻为非零。除以,化简后得到,

浅谈谐波的含义及为什么必须治理

浅谈谐波的含义及为什么必须治理 安科瑞王长幸 江苏安科瑞电器制造有限公司江苏江阴214405 1引言 随着科技发展,电子产品大量应用,电网中谐波大量产生,作为设计人员需要了解谐波的成因及危害,以便更好地防御及治理,提高电能质量。 近年来,电气产品行业出于节能和生产的需要,积极运用新技术,大量地运用了可控变流装置、变频调速装置等非线性负荷设备。其所产生的谐波问题直接影响到了公用电网的电能质量,已引起人们的广泛重视。 2谐波产生的原因及影响 2.1谐波的成因 电网中的谐波主要指频率为工频(基波频率)整数倍成分的谐波及工频非整数成分的间谐波,它们都是造成电网电能质量污染的重要原因。根据大量现场测试的分析结果证实,电力变压器也是电力系统中谐波的一个重要谐波源。电力变压器的激磁电流、铁心饱和及三相电路和磁路的不对称,致使在变压器三角绕组的线电压和线电流中也仍然存在三次谐波分量,尤其在负荷低谷时,随着电网电压的升高,变压器铁心饱和程度加剧,产生的谐波含量也随之增大。随着电网大量电容装置的投运,通过对现场谐波实测发现,谐波并不是只有零序分量可被变压器三角绕组所环路,而是波及全网,并给电容装置及电网的正常运行带来影响和威胁。 在民用建筑中,UPS电源、电子调速装备、节能型灯具及家用电器中的计算机、微波炉等电力电子设备和电器设备应用的大量增加,以及医院等特殊场合的放射X光机、CT机等大型医疗设备等,使各类非线性负荷注入电网的谐波日益增多,造成电网电能质量的污染的影响也越来越大。在这些设备集中使用的地区,如医院、大型商场、居民小区、写字楼、酒店公寓等,谐波污染已相当严重。谐波污染的影响使电能质量明显下降,因此,对电能质量谐波污染的抑制和治理已刻不容缓。 2.2谐波源的分析 2.2.1电力电子设备 电力电子设备主要包括整流器、变频器、开关电源、静态换流器、晶闸管系统及其它SCR控制系统等。由于工业与民用电力设备常用到这类电力电子设备和电路,如整流和变频电路,其负载性质一般分为感性和容性两种,感性负载的单相整流电路为含奇次谐波的电流型谐波源。而容性负载的单相整流电路,由于电容电压会通过整流管向电源反馈,属于电压型谐波源,其谐波含量与电容值的大小有关,电容值越大,谐波含量越大。变频电路谐波源由于采用的是相位控制,其谐波成分不仅含有整数倍数的谐波,还含有非整数倍数的间谐波。 2.2.2可饱和设备 可饱和设备主要包括变压器、电动机、发电机等。可饱和设备是非线性设备,与电力电子设备和电弧设备相比,可饱和设备上的谐波在未饱和的情况下,其谐波的幅值往往可以忽略。 2.2.3电弧炉设备及气体电光源设备 ①电弧炉在熔炼金属过程中的非线性影响将产生大量的谐波 ②气体电光源包括荧光灯、霓虹灯、卤化灯。根据这类气体放电光源的伏安特性。其非线

谐波对电力变压器会造成哪些影响精编版

谐波对电力变压器的哪些影响? 1、谐波电流使变压器的铜耗增加,引起局部过热、振动、噪声增大、绕组附加发热等。 2、谐波电压引起的附加损耗使变压器的磁滞及涡流损耗增加,当系统运行电压偏高或三相不对称时,励磁电流中的谐波分量增加,绝缘材料承受的电气应力增大,影响绝缘的局部放电的介质增大。对三角形连接的绕组,零序性谐波在绕组内形成环流,使绕组温度升高。 3、变压器励磁电流中含谐波电流,引起合闸涌流中谐波电流过大,这种谐波电流在发生谐振时的条件下对变压器的安全运行将造成威胁。 谐波对电力避雷器有哪些影响? 变电站大容量,高电压的变压器由于合闸涌流的过程时间比较长,能够延续数秒或更长的时间,有时还会引起谐振过电压,并使相关避雷器的放电时间过长而受到损坏。这一问题对选择保护高压滤波器中电感或电容用的避雷器参数带来较大的困难。 谐波对输电线路有哪些影响? 1、谐波污染增加了输电线路的损耗。输电线路中的谐波电流加上集肤效应的影响将产生附加损耗,使得输电线路损耗增加。特别是在电力系统三相不对称运行时,对中性点直接接地的供电系统线损的增加尤为显著。 2、谐波污染增大了中性线电流,引起中性点漂移。在低压配电网络中,零序电流的零序的谐波电流(3次、6次、9次……)不仅会引起中性线电流大大增加,造成过负荷发热,使损耗增加,而且产生压降,引起零电位漂移降低了供电的电能质量。 谐波对电力电容器有哪些影响? 当配电系统非线性用电负荷比重较大,并联电容器组投入时,一方面由于电容器组的谐波阻抗小,注入电容器组的谐波电流大,使电容器负荷而严重影响其使用寿命,另一方面当电容器组的谐波容抗与系统等效谐波感抗相等而发生谐振时,引起电容器谐波电流严重放大使电容器过热而损坏。因此,电压谐波和电流谐波超标都会使电容器的工作电流增大日出现异常,例如:对于常用自愈试并联电容器,其允许过电流倍数是1.3倍频定电流,当电容器的电流超过这一限值时,将会造成损坏事故。同时,谐波使工频正弦波形发生畸变,产生锯齿状尖顶波,易在绝缘介质中引发局部放电,长时间的局部放电也会加速绝缘介质的老化,自愈性能下降,而容易导致电容器损坏。 谐波对电力电缆有哪些影响? 谐波污染将会使电缆的介质损耗,输电损耗增大,泄漏电流上升,温升增大及干式电缆的局部放电增加,引起单相接地故障的可能性增加。 由于电力电缆的分布电容对谐波电流有放大作用,在系统负荷低谷时,系统电压上升,谐波电压也相应升高。电缆的额定电压等级越高,谐波引起电缆介质不稳定的危险性越大,更容易发生故障。 谐波对电力系统其他运行设备有哪些影响? 1、对同步发电机的影响:用户的负序电流和谐波电流注入系统内的同步发动机,

电力系统谐波影响及消除

电力系统谐波影响及消除(网络摘录)2011.12.20 返回日志列表 从补偿电容无法投入,谈谐波危害,分析谐波来源,提出治理谐波的初步建议随着个私经济特别是特钢和化学工业在我市的发展,我公司的供电量也不断的增长,为了使功率因素达到标准,必须投入补偿电容,但是这几个乡镇的变电所的补偿电容器却无法投上,强行投入后,电容器熔丝也会很快熔断。但根据其他变电所运行经验,在此功率因数下,无功电流不应大于熔丝熔断电流。这是为什么呢? 经过对该地区的供电现状分析,这是由于谐波引起的。所谓谐波,即理想的电力系统向用户提供的应该是一个恒定工频的正弦波形电压,但是由于各种原因,使这种理想状态在实际中无法存在。因此通过对周期性电压或电流的傅立叶分解,所得到的频率为基波整数倍分量的含有量,称为谐波。 谐波对于电网的危害非常大,主要表现在以下方面: 1.由于电网主要是按基波设计的。由于LC元件的存在,虽然在基波时不会发生谐振,但在某个特定谐波时却可能引起谐振,可能将谐波电流放大几倍甚至数十倍,电网谐振引起设备过电压,产生谐波过流,对设备造成危害。特别是对电容器和与之串联的电抗器。其中,特别要注意的是,由于电容器是容性负载,能与电网上感性设备(其它设备主要是感性设备)配合,构成共振条件,又由于其大小与谐波频率成反比,因此,电容更容易吸收谐波共振电流,引起电容过载,造成电容损坏,或者熔丝熔断。 2.使电网中的电气设备产生额外的损耗(谐波功率),降低了设备的效率,同时谐波会影响设备的正常工作,例如变压器局部严重过热,电容器、电缆等设备过热,电机产生机械振动等故障,绝缘部分老化、变质,严重时候甚至设备损坏。 3.导致继电保护和自动装置误动或拒动,造成不必要的损失,谐波会使电气测量仪表测量不准确,造成计量误差。 另外,谐波还会产生对设备附近的通信系统产生干扰等其他危害。 既然谐波危害如此之大,那么谐波是如何产生的?又如何能减小它的影响和危害呢? 谐波来源 1、中频炉、电弧炉等设备是该地区谐波的主要来源 对该地区负荷进行分析,发现主要的原因是该地区特钢工业发达,中频炉、电弧炉等作为一类高效的加热源已经非常普及。电弧炉是利用电极物料间产生的电弧熔炼金属,因此,它的电流波形很不规则,含有多种谐波(2次到7次)以及间谐波,这是谐波的一个重要来源。而中频炉是工频电流整流后再变为中频,再利用电磁感应来熔炼金属,因此产生大量的高次谐波,其中以5次、7次、11次等奇次谐波为主。这正是该地区谐波的主要来源。 2、用户变压器群是该地区谐波的重要来源 一般情况下,三相变压器由于铁芯为“日”形状,中相比边相要短一半,因此,三个磁路的不对称引起变压器励磁电流中含有谐波分量。所以当对空载三相变压器加电压激励时,即使受电侧没有零序电流通路(中性点不接地或三角形接线),励磁电流中也会有谐波分量。虽然在实际运行时,这个谐波分量很小,但由于变压器绕组接法以及各绕组和电网各相的连接统一规定时,则各台变压器励磁电流里的同次谐波彼此叠加,形成了电网中谐波的又一重要来源。例如,在绝大多数配变中,都是Y,yn接线,变压器的中间的铁柱对应的线圈即中相接的都是B相,这样的统一接法,就为3、5、7等次谐波提供了一个分别互相叠加的条件。在该地区,现有35kV用户变压器5台,总容量400kVA,10kV用户变压器约800台,总容量330kVA.如此庞大的用户变群又成为了谐波的又一个重要来源。

电力变压器中的谐波抑制

电力变压器中的谐波抑制 对电力变压器进行理论分析时, 常常把变压器的电压、电流、磁通、感应电势假定为正弦波来进行分析。可是二变压器在实阮运行时, ,由于铁芯的励磁电流与主磁通非线性的影响, 使得励磁电流、磁通及感应电势可能出现高次谐波及三次谐波, 给变压器造成很大的危害。所以有必要对变压器的高次谐波及三次谐波进行理论分析,并掌握其防治方法, 使变压器能够高效可靠地运行。 (1)电力电压器中谐波的产生 变压器运行过程中, 电流、电势及磁通均是非完全的正弦量。例如, 对变压器的铁心线圈来说, 当铁心中的磁通密度较低, 在800Gs以下时, 磁路是不饱合的, 这时的磁化曲线可用直线来表示, 激磁电流便和磁通成正比。假如磁通波有正弦波形, 则激磁电流波也有正弦波形。根据磁通波和磁化曲线, 可以求出激磁电流波, 如图1(a)(b)所示。由图可见,i(t)和(t)同相, 且二者均为正弦波形。但当磁通密度为800~1300Gs时, 磁化曲线转入弯曲部分;而当磁通密度超过电流便不再和磁通成线性关系。如磁通波依然保持着正弦波形, 则激磁电流波将出现畸变。如图2(a)(b)所示。如对激磁电流波进行谐波分析, 则可发现该波除基波以外还包含有显著钓三次谐波以及其它各奇次谐波, 而以三次谐波为最大。当最高磁通密度为1400Gs时, 三次谐波的幅值即已超过基波幅值的50%。由图2(b)可见激电流波i(t)的波形虽受到畸变, 但仍和磁通波(t)中的基波同相。 (a)磁化曲线(b)磁通波和激磁电流波 图1当磁路不饱合时的激磁电流波

(a)磁化曲线(b)磁通波和激磁电流波由此可见, 为要保持磁通波有正弦波形, 激磁电流中的谐波分量尤其是三次谐波分量是十分必要的, 如果激磁电流中的三次谐波分量不能流通, 则从激磁电流波及磁化曲线可以反过来求得磁通波为一平顶波。这时磁通波中便将有谐波存在, 从而使绕组中的感应电势也含有谐波分量。也就是说, 为了保证变压器主磁通及感应电势为正弦波, 抑制其中三次谐波, 就必须创造条件使激磁电流中含谁水量有三次谐波。 (2) 谐波对电力变压器的危害 对变压器来说, 若原绕组有谐波电流, 则谐波电流仅对原绕组造成影响, 造成绕组过热。若原绕组激磁电流为正弦波, 则主磁通为平顶波, 含水量有三次谐波存在, 因此使感应电势也产生三次谐波, 则造成变压器副绕组供配电电压含有三次谐波影响所供负荷供电质量同时造成变压器铁芯过热, 降低变压器效率, 缩短使用寿命。由此可见, 二种谐波形式即激磁电流谐波和主磁通谐波中, 主磁通谐波对变压器影响最大。因此, 在实际应用中, 我们采取措施, 使原绕组中产生三次谐波电流, 从而使主磁通波为正弦波, 消除主磁通三次谐波对变压器造成的危害。 (3)抑制变压器主磁通三次谐波的措施 由以上分析可知, 变压器的谐波源主要为三次谐波电流和三次谐波磁通。三次谐波电流的流通情形和绕组联接组的组别有关, 而三次谐波磁通的流通情形和铁芯磁路的结构形式有关。因此, 抑制变压器主磁通的三次谐波主要从选择绕组联接组以利于三次谐波电流流通, 确定铁芯的结构型式, 抑制主磁通三次谐波这二方面入手。 1.正确选择变压器的联接组别 我国常用的标准变压器绕组的接线组别为Y,yn0 Y,d11 D,y11 YN,d11 YN,y0 Y,y0几种型式 1 Y,yn0接线不能应用于三相变压器组 三相变压器组即在三相线路上应用三台单相变压器。此各联接组由于原、副绕组均接成星瑚且没有中线联接, 三次谐波激磁电流不能流通,所以, 主磁通中将产生三次谐波分量, 且由于三个单相铁芯各自构成独立的磁通回路,三次谐波磁通能够顺利地流通, 从而存在三次谐波主磁通,则产生的感应电势中的也将含有三次谐波。实际应用中, 三次谐波电势的振幅可达基波电势振幅的50%~60%。这将在绕组上引起危险的过电压。因此,Y,y0接线不能

变压器等效模型

1. 理想变压器 理想变压器(ideal transformer)也是一种耦合元件,它是从实际变压器中抽象出来的理想化模型。理想变压器要同时满足如下三个理想化条件: (1)变压器本身无损耗;这意味着绕制线圈的金属导线无电阻,或者说,绕制线圈的金属导线的导电率为无穷大,其铁芯的导磁率为无穷大。 (2)耦合系数1=k ,12 1== L L M k 即全耦合; (3)21L L 、和M 均为无限大,但保持n L L =2 1 不变,n 为匝数比。 理想变压器的电路符号如图1所示, 图1 理想变压器 2. 全耦合变压器 全耦合变压器如图2所示,其耦合系数1=k ,但21L L 和是有限值。由于其耦合系数1=k ,所以全耦合变压器的电压关系与理想变压器的电压关系完全相同。即 2 121N N u u = 图2 全耦合变压器 全耦合变压器初级电流()t i 1由两部分组成,()()()t i t i t i ' +=Φ11,一部分()t i Φ称

为励磁电流,它是次极开路时电感1L 上的电流,()()ξξΦd u L t i t ?= 1 1 1;另一部分 ()t i ' 1,()()t i N N t i 21 21-=',它与次极电流()t i 2满足理想变压器的电流关系。根 据上述分析可得到图3所示全耦合变压器的模型,图中虚线框部分为理想变压器模型。 图3 全耦合变压器模型 3. 实际变压器 实际变压器的电感即不能为无限大,耦合系数也往往小于1。这就是说,它们的磁通除了互磁通外,还有漏磁通,漏磁通所对应的电感称为漏感。如果从两个线圈的电感中减去各自所具有的漏感,考虑变压器绕组的损耗,我们就可以得到一个利用全耦合变压器表示的变压器的模型,如图4 所示,其中11S M L L L -=称为励磁(或磁化)电感。 图4 实际变压器模型 若L M 足够大,则该模型可以等效为图5。 u 1-+ u 2 N 1 N 2

分析谐波治理的优点及经济效益说明

分析谐波治理的优点及经济效益说明 波治理带来的好处: 1、安装谐波治理装置后,有效的降低了谐波电流,增加了变压器的有效容量,可增加相应的带载能力,减少扩容所需的投资。 2、安装谐波治理装置后,可有效的降低变压器的损耗,提高变压器的安全运行系数,起到节能降耗的目的。 3、安装谐波治理装置后,可有效的降低拉出的单晶的质量,提高单晶的无位错率。谐波治理的方法目前常用的谐波治理的方法无外乎有二种,无源滤波和有源滤波。 下面就谈谈这二种方法的优缺点以及市场前景及其经济效益的分析。 1、无源谐波滤除装置国内低压侧高水平的谐波滤除装置是采用光纤触发系统,大幅度降低因谐波干扰致使电缆触发所产生的误动。无源滤波的主要结构是用电抗器与电容器串联起来,组成LC 串联回路,并联于系统中,LC回路的谐振频率设定在需要滤除的谐波频率上,例如5次、7次、11次谐振点上,达到滤除这3次谐波的目的。其成本低,但滤波效果不太好,如果谐振频率设定得不好,会与系统产生谐振。现在,市场上流通较多的采取的滤波方法就是这一种,主要是因为低成本,用户容易接受。虽滤波的效果较差,只要满足国家对谐波的限制标准和电力部门对无功的要求就行了。 由于其低成本,市场的需求也就大,一般而言,低压0.4KV系统大多数采用无源滤波方式,高压10KV几乎都是采用这种方式对谐波进行治理。由于我国的中小企业大多数是私有的,业主对谐波的危害 认识不足,一般不愿意拿出大量的经费来治理谐波,而有的企业由于谐波的含量太大,常规的无功补偿不能凑效,供电部门对无功的要求又是十分严格的,达不到就要罚款。因此,业主不得不要求滤波。因而,其市场的前景可观,经济效益也就可观了。 2、有源谐波滤除装置有源谐波滤除装置是在无源滤波的基础上发展起来的,它的滤波效果好,在其额定的无功功率范围内,滤波效果是百分之百的。其主要的应用范围是计算机控制系统的供电系统,尤其是写字楼的供电系统,工厂的计算机控制供电系统。对单台的装置而言,其利润是可观的,但用户一般不愿意用有源滤波,对于谐波的含量,不必滤得太干净,只要不危害其他用电器也就可以了。它主要是由电力电子元件组成电路,使之产生一个和系统的谐波同频率、同幅度,但相位相反的谐波电流与系统中的谐波电流抵消。但由于受到电力电子元件耐压,额定电流的发展限制,成本极高,其制作也较之无源滤波装置复杂得多,成本也就高得多了。 谐波治理的措施主要有三种: 一是受端治理,即从受到谐波影响的设备或系统出发,提高它们抗谐波干扰能力; 二是主动治理,即从谐波源本身出发,通过改进用电设备,使其不产生或少产生谐波; 三是被动治理,即通过安装电力滤波器,阻止谐波源产生的谐波注入电网,或者阻止电力系统的谐波流人负载端。

相关主题
文本预览
相关文档 最新文档