当前位置:文档之家› 高一数学不等式期末复习题13姓名 (2)

高一数学不等式期末复习题13姓名 (2)

高一数学不等式期末复习题13姓名 (2)
高一数学不等式期末复习题13姓名 (2)

高一数学不等式期末复习题1 姓名

1.函数 )

3(log 13x y -=

的定义域为 .

2.不等式(x -

0的解集为 . 3.不等式3≤|5-2x |<9的解集是 . 4.不等式12

1

log 2-<-

x 的解是 5.设集合{}21|||2,|1,2x A x x a B x x -??

=-<=

若A ∪B=B ,则实数a 的取值范围 是_________________. 6.若关于x 的不等式

03

42

>+++x x a x 的解是}213{>-<<-x x x 或,则a 的值为 。

7.若不等式064)1(2>+--x x a 的解集是(?3,1),则a 的值为 。

8.一元二次不等式ax 2+bx +c >0的解集为(α, β) (α>0),则不等式cx 2+bx +a >0的解集为 . 9.设关于x 的不等式ax b +>0的解集为(,)1+∞,则关于x 的不等式

ax b

x x +-->256

0的解集为

10.如果04)2()2(2≤--+-x a x a 对任意实数x 总成立,则a 的取值范围是 。

11.设函数3

2,

<2,()log (21)2,x x f x x x ??=?+≥?? 若()2f a >, 则a 的取值范围是 .

12、二次函数)(2R x c bx ax y ∈++=的部分对应值如下表:

则不等式02>++c bx ax 的解集是 。 13、已知集合{}

2

230,A x x

x x R =

--≤∈,{}

22240,,B x x mx m x R m R =-+-≤∈∈.

(Ⅰ)若[]0,3A B = ,求实数m 的值;(Ⅱ)若B C A R ?,求实数m 的取值范围.

14.若关于x 的不等式22440x x m -+-≤在[-1,3]上恒成立,求实数m 的取值范围.

15.解关于x 的不等式01)1(2<++-x a ax .

16.解关于x 的不等式

)0( 12

)

1(>>--a x x a

高一数学不等式期末复习题2 姓名

1.在ABC ?中,若(2,4)A (1,2)B -(1,0)C ,点(,)P x y 在ABC ?的内部及其边界上运动,则z y x =-的取值范围为 .

2.可行域0

50x y x y y -≥??

+≤??≥?

内的所有的点中,横坐标与纵坐标均为整数的整点共有_ ___个.

3.设x 、y 满足条件3

10x y y x y +??-???

≤≤≥,则22

(1)z x y =++的最小值

4.实数x 、y 满足不等式组1

00

x y x y ≥??

≥??-≥?

,则1y x W -=的取值范围是__________

5.已知实数x 、y 满足约束条件10201

x ay x y x --≥??+≥??≤?

()a R ∈,目标函数3z x y =+只有当10x y =??

=?时取得最大值,则a 的取值范围

是_ ___

6.已知y x z k y x x y x z y x 42,03

05,,+=???

??≥++≤≥+-且满足的最小值为-6,则常数k = . 7.已知方程a

b

x x x x b a x a x 则且的两根为2121210,,01)2(<<<=+++++的取值范围 .

8.若A 为不等式组002x y y x ≤??

≥??-≤?

表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的

面积为

9.若不等式组0,22,

0,x y x y y x y a

-??

+????

+?≥≤≥≤ 表示的平面区域是一个三角形及其内部,则a 的取值范围是 .

10、已知钝角三角形ABC 的最大边长是2,其余两边长分别是b a ,,则集合,|),{(a x y x P ==}b y =所表示的平面图形的面积是 ;

11.一农民有基本农田2亩,根据往年经验,若种水稻,则每季每亩产量为400公斤;若种花生,则每季每亩产量为100公斤。但水稻成本较高,每季每亩240元,而花生只需80元,且花生每公斤5元,稻米每公斤卖3元。现该农民手头有400元,两种作物各种多少,才能获得最大收益?

高一数学不等式期末复习题3 姓名

1.若14<<-x ,则2

22

22-+-x x x 的最大值为 。

2.已知x>1,求3x+

1

x 4

-+1的最小值 ; 3.若b

b a a b a )2(4

,022

-+

>>求的最小值 .

4.函数1

1

)(2

2+++=x x x x f 的值域为 . 5.当x >2时,使不等式x+

1

x -2

≥a 恒成立的实数a 的取值范围是 6.已知12=+y x ,则y

x

42+的最小值为 。 7.已知xy y x R y x ,则,且14,=+∈+

的最大值为 8.若正数,a b 满足3ab a b =++,则ab 的取值范围是 9.设y x xy y x R y x +=++∈+求且,2,,的最小值为 . 10.在括号里填上和为1的两个正数,使

)

(9

)(1

+

的值最小,则这两个正数的积等于 ;

11.设x>y>z,n ∈N,且z

x n

z y y x -≥-+-11恒成立,则n 的最大值是 . 12.已知,,x y z R +

∈,230x y z -+=,则2

y xz

的最小值 .

13.设正数x y 、满足220x y +=,则lg lg x y +的最大值为 .

14.汽车在行驶过程中,汽油平均消耗率g(即每小时的汽油耗油量,单位:L/h)与汽车行驶的平均速度v (单位:km/h )之间有如下所示的函数关系:5)50(2500

1

2+-=

v g 12.

)1500(<

15.已知不等式92+t t ≤a ≤22

t

t +在t ∈]2,0(上恒成立,则a 的取值范围是 .

16.已知0,0

x y >>,且21

1x y

+=,若222x y m m +>+恒成立,则实数m 的取值范围是 .

17、设),0(,+∞∈y x ,xy P y x S =+=,,以下四个命题中正确命题的序号是 。(把你认为正确的命题序号都填上)①若P 为定值m ,则S 有最大值m 2;

②若P S =,则P 有最大值4; ③若P S =,则S 有最小值4; ④若kP S ≥2总成立,则k 的取值范围为4≤k 。

18.已知正实数y x ,满足.6=+y x 求(1)22y x +的最小值;(2))2)(1(--y x 的最大值;(3)y

x -+74

的最小值.

19、某工厂建造一个无盖的长方形贮水池,其容积为64003m ,深度为4m ,如果池底每12m 的造价为160元,池壁每12m 的造价为100元,怎样设计水池能使总造价最低?最低总造价为多少元?

20、学校食堂定期向精英米业以每吨1500元的价格购买大米,每次购买大米需支付运输费用100元,已知食堂每天需食用大米1吨,储存大米的费用为每吨每天2元,假设食堂每次均在用完大米的当天购买. (1)问食堂每隔多少天购买一次大米,能使平均每天所支付的费用最少?

(2)若购买量大,精英米业推出价格优惠措施,一次购买量不少于20吨时可享受九五折优惠,问食堂能否接受此优惠措施?请说明理由.

高一数学不等式期末复习题1

1.),(2∞-;

2.{}0),1[?+∞;

3.)7,4[]1,2(?- ;

4.)1,2

1()21

,0(?;5.]1,0[;6.2-;7.3;8.

),(α

β1

1;9.),(),(∞+?-611;

10.]2,2[-;11.),4()2,1(+∞?;

12.、),(),(∞+-∞-32 ; 13(1)、2m =;(2)53m m ><-或

14.解:

22440,[(2)][(2)]0.2(1)022.

[1,3]21,23,

3.

5(2)022.

2123,3.

8(3)0.

x x m x m x m m m x m m m m m m x m m m m m -+-∴---+>-≤≤+-∴--+∴<+-∴+--≥∴-= ≤≤分

当时,不等式解为不等式在上恒成立,

≤且≥≥分当时,不等式解为≤≤≤且≤分

当时,不合题意93 3.

10m m m ∴- 分的取值范围是≥或≤分

15.(1)0a >时,原不等式可化为

(1)(1)0ax x --<

对应方程两根为

1

a

和1, 当01a <<时, 1

1x a

<<,

当 1a =时, x ∈?,

当1a >时,

1

1x a

<<. (2)0a = 时,原不等式可化为10x -+< , 解得 1x > (3) 0a <时

原不等式可化为(1)(1)0ax x --<,对应方程两根为1

a

和1, 所以 1

,1x x a

<

>或 综上所述, 当01a <<时, 1{|1}x x a

<<, 当 1a =时, x ∈?,

当1a >时,1

{|

1}x x a

<<. 当0a = 时, {|1}x x >

当0a <时 1

[|,1}x x x a

<

>或 16. 当01a <<时, 2

{|2}1a x x a -<<-,

当 1a =时, x ∈∞(2,+), 当1a >时,2

(,

)(2,)1

a a --∞?+∞-.

高一数学不等式期末复习题2

1.]3,1[-;

2.12个;

3.4;

4.)1,1[-;

5.),0(+∞;

6.0;

7.)32,2(--;8.

7

4

,9.4(0,1][,)3+∞U 10. π-2 11.解:设该

农民种x 亩水稻,y 亩花生时,能获得利润z 元。则

(3400240)(510080)960420z x y x y =?-+?-=+ …4分

2

2408040000x y x y x y +≤??+≤?

?

≥??≥? ………………8分 即 23500

x y x y x y +≤??+≤??≥??≥?

作出可行域如图所示, ………………11分

故当15x =.

,0.5y =时,max 1650z =元 答:该农民种15.

亩水稻,0.5亩花生时,能获得最大利润,最大利润为1650元。14分 12.(Ⅰ)由题意可知:0a <,且2

1ax bx ++=0的解为-1,2

∴?

??

?

???

0121a a

b a

<=--= 解得:12a =-,1

2b = (6)

(Ⅱ)由题意可得???(1)0(2)0f f ->>,?10

4210a b a b -+>??++>?

, (10)

画出可行域

由104210a b a b -+=??++=?得?????1

212

a b =-=………………………………………

作平行直线系3z a b =-可知3z a b =-的取值范围是(2,)-+∞.

高一数学不等式期末复习题3

1.2

1-

;2.434+;3.4;4.23;5.]4,(-∞;6.22;7.161;8. ),9[+∞;9.232-;10.163

;11.4;12.3;13.

1lg5+ 14.650 15. 16、24<<-m 17、③④;18.(1)由18)2(2)(2)(22222=+-+≥-+=+y x y x xy y x y x 4分

知道2

2y x +的最小值为18

1分 (2)由4

9)25()4)(1()2)(1(2

+

--=--=--x x x y x 4分 知)2)(1(--y x 的最大值为

4

9

1分

(3)由311

4

)1(2114174=-+?+≥-+++=-+

x x x x y x 3分

知y

x -+

74

的最小值为3,此时1=x 19、解:设水池上底面相邻两边的长分别为,x ym ,水池总造价为z 元,则有4xy =6400,即xy =1600.故z =160(xy )+100(88x y +)1601600≥?+

x

1601600160040320000=?+?= 当且仅当40x y ==时,z =320000. 故当40x y ==时,z 取最大值320000元.

答:当水池底面为正方形(其边长为40)时,水池总造价最低,最低总造价为320000元. 20、解:(1)设每隔t 天购进大米一次,因为每天需大米一吨,所以一次购大米t 吨, 那么库存费用为2[t+(t -1)+(t -2)+…+2+1]=t(t+1), 设每天所支出的总费用为y 1,则 .152********

215011001500]100)1([11=+?≥++=+++=t

t t t t t t y 当且仅当t =

t

100

,即t =10时等号成立. 所以每隔10天购买大米一次使平均每天支付的费用最少.

(2)若接受优惠条件,则至少每隔20天购买一次,设每隔n(n ≥20)天购买一次,每天支付费用为y 2,则

y 2=

n

n n n n 10095.01500]100)1([1+=?++++1426 ),20[100

)(),,20[+∞+=+∞∈在而n

n n f n 上为增函数, ∴当n=20时,y 2有最小值:.15211451142620

100

20<=++ 故食堂可接受 (本小题满分15分)

20、某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为1800元,面粉的保管及其它费用为平均每吨每天3元,购面粉每次需支付运费900元.设该厂x (*N x ∈)天 购买一次面粉,平均每天所支付的总费用为y 元。(平均

每天所支付的总费用=天数

所有的总费用

)(1)求函数y 关于x 的表达式;

(2)求函数y 最小值及此时x 的值 20、解:(1)由题意知:

∴购买面粉的费用为6180010800x x ?=元, …………2分 保管等其它费用为3(6126)9(1)x x x ?+++=+ , ……6分

∴ 108009(1)900100

108099()x x x y x x x

+++==++(*N x ∈)……8分

(2)108009(1)900100

108099()x x x y x x x

+++==++

10809910989≥+?=,14分

即当100

x x

=,即10x =时,y 有最小值10989, 15分

答:该厂10天购买一次面粉,才能使平均每天所支付的总费用最少。 16分

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (2)-200708(解析版)

高一数学必修一第二章《一元二次函数、方程和不等式》训练题 (2) 一、选择题(本大题共8小题,共40.0分) 1.使不等式23x?1?2>0成立的x的取值范围是() A. (3 2,+∞) B. (2 3 ,+∞) C. (1 3 ,+∞) D. (?1 3 ,+∞). 2.设集合A={x||3x+1|≤4},B={x|log2x≤3},则A∪B=() A. [0,1] B. (0,1] C. [?5 3,8] D. [?5 3 ,8) 3.若函数f(x)=1 2cos2x+3a(sinx?cosx)+(4a?1)x在[?π 2 ,0]上单调递增,则实数a的取值范 围为 A. [1 7,1] B. [?1,1 7 ] C. (?∞,?1 7 ]∪[1,+∞) D. [1,+∞) 4.已知函数f(x)=1 2 ax2+cosx?1(a∈R),若函数f(x)有唯一零点,则a的取值范围为 A. (?∞,0) B. (?∞,0]∪[1,+∞) C. (?∞,?1]∪[1,+∞) D. (?∞,0)∪[1,+∞) 5.已知函数f(x)={2x+4 x ?5,x>0, ?x2?3x?3,x≤0. 若函数f(x)=?x+m恰有两个不同的零点,则实 数m的取值范围是() A. (0,+∞) B. (?∞,4√3?5) C. (?∞,?2)∪(4√3?5,+∞) D. [?3,?2)∪(4√3?5,+∞) 6.已知集合A={x|x2?x?2>0},B={x|0f(x1)+f(x2)恒成立, 则实数λ的取值范围是( ) A. [?3,+∞) B. (3,+∞) C. [?e,+∞) D. (e,+∞) 二、填空题(本大题共4小题,共20.0分) 9.函数f(x)=x2+2(a?1)x+2在区间(?∞,4]上递减,则a的取值范围是__________ 10.已知a,b,c分别是?ABC三内角A,B,C所对的边,5sin2B?8sinBsinC+5sin2C?5sin2A=0, 且a=√2,则?ABC面积的最大值为________. 11.若直线x a +y b =1(a>0,b>0)过点(1,2),则a+2b的最小值为.. 12.设a+2b=4,b>0,则1 2|a|+|a| b 的最小值为___________. 三、解答题(本大题共7小题,共84.0分)

(完整版)高中数学不等式归纳讲解

第三章不等式 定义:用不等号将两个解析式连结起来所成的式子。 3-1 不等式的最基本性质 ①对称性:如果x>y,那么y<x;如果y<x,那么x>y; ②传递性:如果x>y,y>z;那么x>z; ③加法性质;如果x>y,而z为任意实数,那么x+z>y +z; ④乘法性质:如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(符号法则) 3-2 不等式的同解原理 ①不等式F(x)<G(x)与不等式G(x)>F(x)同解。

②如果不等式F (x ) < G (x )的定义域被解析式H ( x )的定义域所包含,那么不等式 F (x )<G (x )与不等式F (x )+H (x )<G (x )+H (x )同解。 ③如果不等式F (x )<G (x ) 的定义域被解析式H (x )的定义域所包含,并且H (x )>0,那么不等式F(x)<G (x )与不等式H (x )F (x )<H ( x )G (x ) 同解;如果H (x )<0,那么不等式F (x )<G (x )与不等式H (x)F (x )>H (x )G (x )同解。 ④不等式F (x )G (x )>0与不等式 0)x (G 0)x (F >>或0)x (G 0)x (F <<同解 不等式解集表示方式 F(x)>0的解集为x 大于大的或x 小于小的 F(x)<0的解集为x 大于小的或x 小于大的 3-3 重要不等式

3-3-1 均值不等式 1、调和平均数: )a 1...a 1a 1(n H n 21n +++= 2、几何平均数: n 1 n 21n )a ...a a (G = 3、算术平均数: n )a a a (A n 21n +++= 4、平方平均数: n )a ...a a (Q 2n 2221n +++= 这四种平均数满足Hn ≤Gn ≤An ≤Qn a1、a2、… 、an ∈R +,当且仅当a1=a2= … =an 时取“=”号 3-3-1-1均值不等式的变形 (1)对正实数a,b ,有2ab b a 22≥+ (当且仅当a=b 时 取“=”号)

最新高一数学上期末试卷及答案

最新高一数学上期末试卷及答案 一、选择题 1.已知2log e =a ,ln 2b =,1 2 1 log 3 c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >> C .c b a >> D .c a b >> 2.若函数,1()42,1 2x a x f x a x x ?>? =??? -+≤ ??? ??是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞ B .(1,8) C .(4,8) D .[ 4,8) 3.若函数* 12*log (1),()3,x x x N f x x N ?+∈? =????,则((0))f f =( ) A .0 B .-1 C . 1 3 D .1 4.函数()2 sin f x x x =的图象大致为( ) A . B . C . D . 5.已知定义域R 的奇函数()f x 的图像关于直线1x =对称,且当01x ≤≤时, 3()f x x =,则212f ?? = ??? ( ) A .278 - B .18 - C . 18 D . 278 6.用二分法求方程的近似解,求得3 ()29f x x x =+-的部分函数值数据如下表所示: x 1 2 1.5 1.625 1.75 1.875 1.8125 ()f x -6 3 -2.625 -1.459 -0.14 1.3418 0.5793

则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6 B .1.7 C .1.8 D .1.9 7.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数 6()(1)cos 43g x x f x =-+?-有且只有唯一的零点,则(2019)f =( ) A .1 B .-1 C .-3 D .3 8.函数ln x y x = 的图象大致是( ) A . B . C . D . 9.已知全集为R ,函数()()ln 62y x x =--的定义域为集合 {},|44A B x a x a =-≤≤+,且R A B ? ,则a 的取值范围是( ) A .210a -≤≤ B .210a -<< C .2a ≤-或10a ≥ D .2a <-或10a > 10.已知函数()ln f x x =,2 ()3g x x =-+,则()?()f x g x 的图象大致为( ) A . B . C . D . 11.若函数()[)[] 1,1,0{44,0,1x x x f x x ?? ∈- ?=?? ∈,则f (log 43)=( ) A . 13 B . 14 C .3 D .4 12.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2) B .(2,+∞)

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

高一数学期末试卷及答案试卷

2018-2019学年度第一学期第三次质量检测 高一数学试题 试卷总分:150分; 考试时间:120分钟; 注意事项: 1.答题前请在答题卡上填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是符合题目要求的) 1.设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U C A B 为 ( ) A.{3,6} B.{1,3,4,5} C .{2,6} D. {1,2,4,6} 2.函数288y x x =-+在 [0,)a 上为减函数,则a 的取值范围是( ) A. 4a ≤ B. 04a <≤ C. 4a ≤ D. 14a <≤ 3.函数21 log 32 y x =-的定义域为( ) A. (0,)+∞ B. 2[,)3+∞ C. 2(,)3+∞ D. 22 (0,)(,)33+∞ 4.下列运算正确的是(01)a a >≠且( ) A.2m n m n a a a +?= B. log 2log log (2)a a a m n m n ?=+ C.log log log a a a M M N N =- D. 22()n n a a -= 5. 函数1 ()()22 x f x =-的图像不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 6已知函数3()1log ,f x x =+则1 ()3 f 的值为( ) A. 1- B. 13- C.0 D. 1 3 7.函数log (3)1a y x =++的图像过定点 ( ) A. (1,3) B. (3,1) C. (3,1)- D. (2,1)- 8.已知幂函数()y f x =的图像经过点(4,2),则(64)f 的值为( ) A. 8或-8 B.-8 C. 8 D. 2 9.已知2{1,3,},{3,9},A m B =-=若,B A ?则实数m =( ) A. 3± B. 3- C. 3 D. 9 10.已知 1.20.851 2,(),2log 2,2 a b c -===则,,a b c 的大小关系为( ) A. c b a << B. c a b << C. b a c << D .b c a << 11.函数()ln f x x x =+的零点所在的区间为( ) A . (1,0)- B.(0,1) C. (1,2) D. (1,)e 12.已知21 ,22(),224,2x x f x x x x x π?≤-?? =-<?若()4,f a =则实数a = 14.已知集合31 {log ,1},{(),1},3 x A y y x x B y y x ==>==>则A B = 15. 函数22log y x =的递增区间为 16.下列命题正确的是 (填序号) (1)空集是任何集合的子集. (2)函数1 ()f x x x =- 是偶函数.

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (18)-200708(解析版)

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (18) 一、选择题(本大题共9小题,共45.0分) 1. 若a >b ,则下列正确的是( ) A. a 2>b 2 B. ac >bc C. ac 2>bc 2 D. a ?c >b ?c 2. 不等式?2x 2+x +3≤0的解集是( ) A. {x|?1≤x ≤3 2} B. {x|x ≤?1或x ≥3 2} C. {x|x ≤?3 2或x ≥1} D. {x|?3 2≤x ≤1} 3. 下列各函数中,最小值为2的是( ) A. y =x +1 x B. y =sinx +1 sin x ,x ∈(0,π 2) C. y =2√x 2+2 D. y =x ?2√x +3 4. 下列四个结论中正确的个数是( ) (1)对于命题p:?x 0∈R 使得x 02?1≤0,则?p:?x ∈R 都有x 2?1>0; (2)已知X ~N(2,σ2),则P(X >2)=0.5 (3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为y ?=2x ?3; (4)“x ≥1”是“x +1 x ≥2”的充分不必要条件. A. 4 B. 3 C. 2 D. 1 5. 已知集合A ={y |y =1 2},B ={x|x 2<4},则A ∪B = A. (0,2) B. (?2,2) C. (?1,+∞) D. (?2,+∞) 6. 函数f(x)=?x 2+3x ?2a ,g(x)=2x ?x 2,若f(g(x))≥0对x ∈[0,1]恒成立,则实数a 的取 值范围为 A. (?∞,?2] B. (?∞,?1] C. (?∞,0] D. (?∞,1] 7. 已知函数f(x)=xe x +1 2x 2+x +a ,g(x)=xlnx +1,若存在x 1∈[?2,2],对任意x 2∈[1 e 2,e], 都有f (x 1)=g (x 2),则实数a 的取值范围是( ) A. [?3?1 e ?2e 2,e ?3?2e 2] B. (?3?1 e ?2e 2,e ?3?2e 2) C. [e ?3?2e 2,3 2] D. (e ?3?2e 2,3 2) 8. 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若a =4,A =π 3,则该三角形面积的最 大值是( ) A. 2√2 B. 3√3 C. 4√3 D. 4√2

高中数学不等式综合复习

不等式专题 一.不等式的基本性质 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 二.一元二次不等式 1.不等式的解法 (1)整式不等式的解法(根轴法). 步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例① 一元一次不等式ax >b 解的讨论; 一元一次不等式)0(0≠>+a b ax 的解法与解集形式 当0>a 时,a b x - >, 即解集为?????? ->a b x x | 当00(a ≠0)解的讨论.

【必考题】高一数学上期末试卷及答案

【必考题】高一数学上期末试卷及答案 一、选择题 1.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0 D .正负都有可能 2.已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=( ) A .4 B .3 C .2 D .1 3.已知奇函数()y f x =的图像关于点(,0)2π 对称,当[0,)2 x π ∈时,()1cos f x x =-,则当5( ,3]2 x π π∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 4.已知函数1 ()log ()(011 a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A . 12 B C . 2 D .2 5.已知函数()()2,2 11,2 2x a x x f x x ?-≥? =???- 8.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080 .则下列各数中与M N 最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073 D .1093

【必考题】高一数学上期末一模试卷附答案

【必考题】高一数学上期末一模试卷附答案 一、选择题 1.设23a log =,b =2 3c e =,则a b c ,,的大小关系是( ) A .a b c << B .b a c << C .b c a << D . a c b << 2.已知函数ln ()x f x x =,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a << B .b a c << C .a c b << D .c a b << 3.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的 “上界值”,则函数33 ()33 x x f x -=+的“上界值”为( ) A .2 B .-2 C .1 D .-1 4.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1 ()21 f x x =-有2022个不同的实数根i x (1,2,3,2022i =),则1232022x x x x +++ +=( ) A .1010 B .2020 C .1011 D .2022 5.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间 2[,]m n 上的最大值为2,则,m n 的值分别为 A . 12 ,2 B . 2 C . 14 ,2 D . 14 ,4 6.已知函数()2log 14 x f x x ?+=?+? 00x x >≤,则()()3y f f x =-的零点个数为( ) A .3 B .4 C .5 D .6 7.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系为0kt P P e -=?(k 为常数,0P 为原污染物总量).若前4 个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,则正整数n 的最小值为( )(参考数据:取5log 20.43=) A .8 B .9 C .10 D .14 8.已知全集为R ,函数()()ln 62y x x =--的定义域为集合 {},|44A B x a x a =-≤≤+,且R A B ? ,则a 的取值范围是( ) A .210a -≤≤ B .210a -<< C .2a ≤-或10a ≥ D .2a <-或10a >

高中数学必修1 第二章 方程与不等式微专题1

微专题1 基本不等式的应用技巧 在解答基本不等式的问题时,常常会用加项、凑项、常数的代换、代换换元等技巧,而且在通常情况下往往会考查这些知识的嵌套使用. 一、加项变换 例1 已知关于x 的不等式x +1x -a ≥7在x >a 上恒成立,则实数a 的最小值为________. 答案 5 解析 ∵x >a , ∴x -a >0, ∴x +1x -a =(x -a )+1x -a +a ≥2+a , 当且仅当x =a +1时,等号成立, ∴2+a ≥7,即a ≥5. 反思感悟 加上一个数或减去一个数使和(积)为定值,然后利用基本不等式求解. 二、平方后使用基本不等式 例2 若x >0,y >0,且 2x 2+y 23=8,则x 6+2y 2的最大值为________. 答案 92 3 解析 (x 6+2y 2)2=x 2(6+2y 2)=3·2x 2 ????1+y 23 ≤3·? ?? ??2x 2+1+y 2322=3×????922. 当且仅当 2x 2=1+y 23,即x =32,y =422时,等号成立. 故x 6+2y 2的最大值为92 3. 三、展开后求最值 例3 若a ,b 是正数,则????1+b a ? ???1+4a b 的最小值为( ) A .7 B .8 C .9 D .10 答案 C

解析 ∵a ,b 是正数, ∴????1+b a ????1+4a b =1+4a b +b a +4=5+4a b +b a ≥5+24a b ·b a =5+4=9, 当且仅当b =2a 时取“=”. 四、常数代换法求最值 例4 已知x ,y 是正数且x +y =1,则4x +2+1y +1的最小值为( ) A.1315 B.94 C .2 D .3 答案 B 解析 由x +y =1得(x +2)+(y +1)=4, 即14 [(x +2)+(y +1)]=1, ∴4x +2+1y +1=? ????4x +2+1y +1·14 [(x +2)+(y +1)] =14???? ??4+1+4(y +1)x +2+x +2y +1 ≥14(5+4)=94 , 当且仅当x =23,y =13 时“=”成立,故选B. 反思感悟 通过常数“1”的代换,把求解目标化为可以使用基本不等式求最值的式子,达到解题的目的. 五、代换减元求最值 例5 若实数x ,y 满足xy +3x =3????03. 则3x +1y -3=y +3+1y -3=y -3+1y -3+6≥2(y -3)·1y -3 +6=8,当且仅当y =4,x =37时

(完整版)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

最新高中数学必修一期末试卷及答案

高中数学必修一期末试卷 姓名: 班别: 座位号: 注意事项: ⒈本试卷分为选择题、填空题和简答题三部分,共计150分,时间90分钟。 ⒉答题时,请将答案填在答题卡中。 一、选择题:本大题10小题,每小题5分,满分50分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、已知全集I ={0,1,2,3,4},集合{1,2,3}M =,{0,3,4}N =,则() I M N 等于 ( ) A.{0,4} B.{3,4} C.{1,2} D. ? 2、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N 等于 ( ) A.{0} B.{0,5} C.{0,1,5} D.{0,-1,-5} 3、计算:9823log log ?= ( ) A 12 B 10 C 8 D 6 4、函数2(01)x y a a a =+>≠且图象一定过点 ( ) A (0,1) B (0,3) C (1,0) D (3,0) 5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( ) 6、函数12 log y x =的定义域是( )

A {x |x >0} B {x |x ≥1} C {x |x ≤1} D {x |0<x ≤1} 7、把函数x 1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( ) A 1x 3x 2y --= B 1x 1x 2y ---= C 1x 1x 2y ++= D 1 x 3x 2y ++-= 8、设x x e 1e )x (g 1x 1x lg )x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数 C f(x)与g(x)都是偶函数 D f(x)是偶函数,g(x)是奇函数 9、使得函数2x 2 1x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4) 10、若0.52a =,πlog 3b =,2log 0.5c =,则( ) A a b c >> B b a c >> C c a b >> D b c a >> 二、填空题:本大题共4小题,每小题5分,满分20分 11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______ 12、计算:2391- ??? ??+3 2 64=______ 13、函数212 log (45)y x x =--的递减区间为______ 14、函数1 22x )x (f x -+=的定义域是______ 三、解答题 :本大题共5小题,满分80分。解答须写出文字说明、证明过程或演算步骤。 15. (15分) 计算 5log 333 3322log 2log log 859 -+-

高一数学上册期末测试题及答案

高一数学上册期末测试题及答案 考试时间:90分钟 测试题满分:100分 一、选择题:本大题共14小题,每小题4分,共56分.在每小题的4个选项中,只有一项是符合题目要求的. 1.设全集U =R ,A ={x |x >0},B ={x |x >1},则A ∩U B =( ). A .{x |0≤x <1} B .{x |0<x ≤1} C .{x |x <0} D .{x |x >1} 2.下列四个图形中,不是..以x 为自变量的函数的图象是( ). A B C D 3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ). A .a 2+a +2 B .a 2+1 C .a 2+2a +2 D .a 2+2a +1 4.下列等式成立的是( ). A .log 2(8-4)=log 2 8-log 2 4 B .4 log 8log 22=4 8log 2

C .log 2 23=3log 2 2 D .log 2(8+4)=log 2 8+log 2 4 5.下列四组函数中,表示同一函数的是( ). A .f (x )=|x |,g (x )= 2 x B .f (x )=lg x 2,g (x )=2lg x C .f (x )=1 -1-2 x x ,g (x )=x +1 D .f (x )=1+x ·1-x ,g (x )=1-2x 6.幂函数y =x α(α是常数)的图象( ). A .一定经过点(0,0) B .一定经过点(1, 1) C .一定经过点(-1,1) D .一定经过点(1,- 1) 7.国内快递重量在1 000克以内的包裹邮资标准如下表: 如果某人从北京快递900克的包裹到距北京1 300 km 的某地,他应付的邮资是( ). A .5.00元 B .6.00元 C .7.00元 D .8.00元 8.方程2x =2-x 的根所在区间是( ). A .(-1,0) B .(2,3) C .(1,2)

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

高一数学不等式知识点总结

高一数学不等式知识点总结 一、要点精析 1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比 较法(简称为求差法)和商值比较法(简称为求商法)。 (1)差值比较法的理论依据是不等式的基本性质:“a- b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右 两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进 行变形,或变形为一个常数,或变形为若干个因式的积,或变形为 一个或几个平方的和等等,其中变形是求差法的关键,配方和因式 分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。 应用范围:当被证的不等式两端是多项式、分式或对数式时一般使 用差值比较法。 (2)商值比较法的理论依据是:“若a,b∈R+, a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是 判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、 指数式时,一般使用商值比较法。 2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从 “已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1 B2B3…BnB,即从已知A逐步推演不等式成立的必要条件从而得 出结论B。

3.分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。用 分析法证明AB的逻辑关系为:BB1B1B3… BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明 A为真,而已知A为真,故B必为真。这种证题模式告诉我们,分 析法证题是步步寻求上一步成立的充分条件。 4.反证法有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其 它性质,推出矛盾,从而肯定A>B。凡涉及到的证明不等式为否定 命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不 可能”等词语时,可以考虑用反证法。 5.换元法换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化 原有的结构或实现某种转化与变通,给证明带来新的启迪和方法。 主要有两种换元形式。(1)三角代换法:多用于条件不等式的证明, 当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑 三角代换,将两个变量都有同一个参数表示。此法如果运用恰当, 可沟通三角与代数的联系,将复杂的代数问题转化为三角问题根据 具体问题,实施的三角代换方法有:①若x2+y2=1,可设x=cosθ, y=sinθ;②若x2+y2≤1,可设x=rcosθ,y=rsinθ(0≤r≤1);③对 于含有的不等式,由于|x|≤1,可设x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可设x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量换元法:在对称式(任意交换两个字母,代 数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进 行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元。 6.放缩法放缩法是要证明不等式A 二、难点突破

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

相关主题
文本预览
相关文档 最新文档