当前位置:文档之家› 常见电容值

常见电容值

常见电容值
常见电容值

常见电容值

【单位pF】

39 P 43 P 47 P 51 P 56 P 62 P 68 P 75 P 82 P 91 P

100 P 120 P 150 P 180 P 200 P 220 P 240 P 270 P 300 P 330 P

360 P 390 P 470 P 560 P 620 P 680 P 750 P

【单位nF】

1.0 1.2 1.5 1.8

2.2 2.7

3.3 3.9

4.7

5.6 10 15 18 22 27 33 39 56 68 82

【单位uF】

0.1 0.15 0.22 0.33 0.47 1.0 (1.5) 2.2

常用电容技术参数值大全:

1、陶瓷电容器

用高介电常数的电容器陶瓷〈钛酸钡一氧化钛〉挤压成圆管、圆片或圆盘作为介质,并用烧渗法将银镀在陶瓷上作为电极制成。它又分高频瓷介和低频瓷介两种。具有小的正电容温度系数的电容器,用于高稳定振荡回路中,作为回路电容器及垫整电容器。低频瓷介电容器限于在工作频率较低的回路中作旁路或隔直流用,或对稳定性和损耗要求不高的场合〈包括高频在内〉。这种电容器不宜使用在脉冲电路中,因为它们易于被脉冲电压击穿。高频瓷介电容器适用于高频电路。

2、铝电解电容器

用浸有糊状电解质的吸水纸夹在两条铝箔中间卷绕而成,薄的化氧化膜作介质的电容器.因为氧化膜有单向导电性质,所以电解电容器具有极性.容量大,能耐受大的脉动电流,容量误差大,泄漏电流大;普通的不适于在高频和低温下应用,不宜使用在25kHz以上频率低频旁路、信号耦合、电源滤波。

电容量:0.47~10000u

额定电压:6.3~450V

主要特点:体积小,容量大,损耗大,漏电大

应用:电源滤波,低频耦合,去耦,旁路等

3、钽电解电容器(CA)铌电解电容(CN)

用烧结的钽块作正极,电解质使用固体二氧化锰温度特性、频率特性和可靠性均优于普通电解电容器,特别是漏电流极小,贮存性良好,寿命长,容量误差小,而且体积小,单位体积下能得到最大的电容电压乘积对脉动电流的耐受能力差,若损坏易呈短路状态超小型高可靠机件中。

电容量:0.1~1000u

额定电压:6.3~125V

主要特点:损耗、漏电小于铝电解电容

应用:在要求高的电路中代替铝电解电容

4、薄膜电容器

结构与纸质电容器相似,但用聚脂、聚苯乙烯等低损耗塑材作介质频率特性好,介电

损耗小不能做成大的容量,耐热能力差滤波器、积分、振荡、定时电路。

a 聚酯(涤纶)电容(CL)

电容量:40p~4u

额定电压:63~630V

主要特点:小体积,大容量,耐热耐湿,稳定性差

应用:对稳定性和损耗要求不高的低频电路

b 聚苯乙烯电容(CB)

电容量:10p~1u

额定电压:100V~30KV

主要特点:稳定,低损耗,体积较大

应用:对稳定性和损耗要求较高的电路

c 聚丙烯电容(CBB)

电容量:1000p~10u

额定电压:63~2000V

主要特点:性能与聚苯相似但体积小,稳定性略差

应用:代替大部分聚苯或云母电容,用于要求较高的电路

5、瓷介电容器

穿心式或支柱式结构瓷介电容器,它的一个电极就是安装螺丝。引线电感极小,频率特性好,介电损耗小,有温度补偿作用不能做成大的容量,受振动会引起容量变化特别适于高频旁路。

a 高频瓷介电容(CC)

电容量:1~6800p

额定电压:63~500V

主要特点:高频损耗小,稳定性好

应用:高频电路

b 低频瓷介电容(CT)

电容量:10p~4.7u

额定电压:50V~100V

主要特点:体积小,价廉,损耗大,稳定性差

应用:要求不高的低频电路

6、独石电容器

(多层陶瓷电容器)在若干片陶瓷薄膜坯上被覆以电极桨材料,叠合后一次绕结成一块不可分割的整体,外面再用树脂包封而成小体积、大容量、高可靠和耐高温的新型电容器,高介电常数的低频独石电容器也具有稳定的性能,体积极小,Q值高容量误差较大噪声旁路、滤波器、积分、振荡电路。

容量范围:0.5PF~1UF

耐压:二倍额定电压。

电容量大、体积小、可靠性高、电容量稳定,耐高温耐湿性好等。

应用范围:广泛应用于电子精密仪器。各种小型电子设备作谐振、耦合、滤波、旁路。

7、纸质电容器

一般是用两条铝箔作为电极,中间以厚度为0.008~0.012mm的电容器纸隔开重叠卷绕

而成。制造工艺简单,价格便宜,能得到较大的电容量

一般在低频电路内,通常不能在高于3~4MHz的频率上运用。油浸电容器的耐压比普通纸质电容器高,稳定性也好,适用于高压电路。

8、微调电容器

电容量可在某一小范围内调整,并可在调整后固定于某个电容值。瓷介微调电容器的Q值高,体积也小,通常可分为圆管式及圆片式两种。云母和聚苯乙烯介质的通常都采用弹簧式东,结构简单,但稳定性较差。线绕瓷介微调电容器是拆铜丝〈外电极〉来变动电容量的,故容量只能变小,不适合在需反复调试的场合使用。

a 空气介质可变电容器

可变电容量:100~1500p

主要特点:损耗小,效率高;可根据要求制成直线式、直线波长式、直线频率式及对数式等应用:电子仪器,广播电视设备等

b 薄膜介质可变电容器

可变电容量:15~550p

主要特点:体积小,重量轻;损耗比空气介质的大

应用:通讯,广播接收机等

c 薄膜介质微调电容器

可变电容量:1~29p

主要特点:损耗较大,体积小

应用:收录机,电子仪器等电路作电路补偿

d 陶瓷介质微调电容器

可变电容量:0.3~22p

主要特点:损耗较小,体积较小

应用:精密调谐的高频振荡回路

9、玻璃釉电容器(CI)

由一种浓度适于喷涂的特殊混合物喷涂成薄膜而成,介质再以银层电极经烧结而成"独石"结构性能可与云母电容器媲美,能耐受各种气候环境,一般可在200℃或更高温度下工作,额定工作电压可达500V,损耗tgδ0.0005~0.008

电容量:10p~0.1u

额定电压:63~400V

主要特点:稳定性较好,损耗小,耐高温(200度)

应用:脉冲、耦合、旁路等电路

Buck电路电感电容参数选择

(注:以下公式仅针对CCM模式) 1.占空比 (Vi-Vo)*Ton/L=Vo*Toff/L D=Vo/Vi D—占空比 2.电感 dIL= (Vi-Vo)*Ton/L dIL== L=5(Vi-Vo)Vo*T/(Vi*Io) IL_avg = Io IL_peak= IL_rms=ILavg*(1+12) L电感量的选取原则使电感纹波电流为电感电流的20%(可根据应用改变)dIL—电感纹波电流峰峰值 IL_avg—电感电流平均值 IL_peak—电感峰值电流 IL_rms—电感电流有效值 3.xx二极管 Id_peak= Vrd=Vi Id_peak—续流二极管峰值电流

Vrd—续流二级管反向耐压(Ton期间) 4.开关管 Isw_peak= Vsw_peak =Vi Isw_peak—开关管峰值电流 Vsw_peak—开关管耐压(Toff期间) 5.输出电容 Icin_rms = [(Io-Iin)D+Iin(1-D)] Ico_rms=dIL/ 电容选取:耐压、纹波电流、电容量 Icin_rms—输入电容的纹波电流有效值 Ico_rms—是输出电容的纹波电流有效值 技术资料,仅供参考 这里具体采用上海芯龙半导体有限公司降压IC举例说明 电源管理IC降压型电路电感应用XL4003 ①((Vi-Vo)/L)*D=(Vo/L)*(1-D)已知输入电压Vi,输出电压Vo,求出D;22 D=Vo/Vi ②Io 为设定值已知输出电流Io; ③Ton=T*D 求出Ton ④((Vi-Vo)/L)Ton=dI=*Io可求出L. L=((Vi-Vo) *Ton)/*Io)

电容电感的频率特性

电感电容的频率特性 结论 电感:通直流阻交流,通低频阻高频,其感抗XL=wL; 电容:通交流阻直流,通高频阻低频,其容抗Xc=1/wC 。(匹配要点) 电感越大,阻抗越大,交流信号更不易通过;电容越大,阻抗越小,交流信号更易通过。 当工作频率达到电感(电容)的自谐振频率(w=√LC),对电流的阻抗Z最大(最小)。 磁珠 对低频基本没什么衰减(相当于电感),对高频有较强衰减。 解释 1、当交流信号通过线圈时,线圈两端将会产生自感电动势,自感电动势的方向与外加电压的方向相反,阻碍交流的通过,频率越高,自感电动势越大,线圈阻抗越大。 采用容抗公式分析电容,当频率越高,容抗(阻抗)越小,高频更容易通过。 2、电容器有一个充放电的时间问题。当交流电的正半周,给电容器充电的瞬间,电路是有电流流过的,相当于通路,一旦电容器充电完毕,则电路就没有电流流过了,相当于断路。当交流电的负半周到来时,又将产生电流,先抵消掉原来充在电容上的那个相反的电荷,在继续充电至充满。 现在假设电容器需要的充电时间t一定,则 (1)当一个频率较高的交流电正半周结束时,假设电容器容量够大,还未充满电,负半周就到来了,则这电路会一直流着电流,相当于这电容器对这个高频的交流电来说,是通路的。 (2)如果这个交流电的频率较低,正半周将电容器充满电荷以后,负半周仍未到来,则电流会在中途断流,则电容器对于这个低频的交流电来说,就不是完全通路了,只是有一定的阻抗 (3)如果充电的时间相对于那个频率的交流电的半周期来讲,是极短的,那么电容器就可以认为完全断路,没有电流流过。 阻抗概念 1、在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实部为电阻,虚部为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电

开关电源电感的选取

为开关电源选择合适的电感 电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。 杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。 当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点: 1. 当电感L 中有电流I 流过时,电感储存的能量为: E=0.5×L×I2 (1) 2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为: V=(L×di)/dt (2) 由此可看出,纹波电流的大小跟电感值有关。 3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。只要电感电压变化,电流变化率di/dt 也将变化;正向电压使电流线性上升,反向电压使电流线性下降。 计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要 从图1 可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。这个纹波电压应尽可能低,以免影响电源系统的正常操作,一般要求峰峰值为10mV~500mV。 纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最大输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。 降压型开关电源的电感选择 为降压型开关电源选择电感器时,需要确定最大输入电压、输出电压、电源开关频率、最大

电阻,电感,电容的主要参数

电阻,电感,电容的主要参数 电阻主要特性参数 1、标称阻值:电阻器上面所标示的阻值。 2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。 允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级 3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。 线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500 非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、100 4、额定电压:由阻值和额定功率换算出的电压。 5、最高工作电压:允许的最大连续工作电压。在低气压工作时,最高工作电压较低。 6、温度系数:温度每变化1℃所引起的电阻值的相对变化。温度系数越小,电阻的稳定性越好。阻值随温度升高而增大的为正温度系数,反之为负温度系数。 7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。 8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。 9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。 电感器的主要参数 电感器的主要参数有电感量、允许偏差、品质因数、分布电容及额定电流等。

电容电感的种类及应用电子版本

电容电感的种类及应 用

电容电感的种类及应用 学生姓名:杨胜驿 学号:2014112123 专业班级:物理学应用物理

电容种类 1.1聚酯(涤纶)电容(CL) ?电容量:40pF~4μF ?额定电压:63~630V ?主要特点:小体积,大容量,耐热耐湿,稳定性差 ?应用:对稳定性和损耗要求不高的低频电路 1.2聚苯乙烯电容(CB) ?电容量:10pF~4μF ?额定电压:100V~30KV ?主要特点:稳定,低损耗,体积较大 ?应用:对稳定性和损耗要求较高的电路 1.3聚丙烯电容(CBB) ?电容量:1000pF~10μF ?额定电压:63V~2000V ?主要特点:性能与聚苯相似但体积小,稳定性略差 ?应用:代替大部分聚苯或云母电容,用于要求较高的电路1.4云母电容(CY) ?电容量:10pF~0.1μF ?额定电压:100V--7kV ?主要特点:高稳定性,高可靠性,温度系数小 ?应用:高频振荡,脉冲等要求较高的电路 1.5高频瓷介电容(CC) ?电容量:1~6800pF ?额定电压:63V~500V ?主要特点:高频损耗小,稳定性好 ?应用:高频电路 1.6低频瓷介电容(CT) ?电容量:10pF~4.7μF ?额定电压:50V~100V ?主要特点:体积小,价廉,损耗大,稳定性差 ?应用:要求不高的低频电路 1.7玻璃釉电容(CI) ?电容量:10p~0.1μF ?额定电压:63V~400V ?主要特点:稳定性较好,损耗小,耐高温(200度)

?应用:脉冲、耦合、旁路等电路 1.8铝电解电容 ?电容量:0.47μF ~10000μF ?额定电压:6.3V~450V ?主要特点:体积小,容量大,损耗大,漏电大 ?应用:电源滤波,低频耦合,去耦,旁路等 1.9钽电解电容(CA)铌电解电容(CN) ?电容量:0.1μF ~1000μF ?额定电压:6.3V~125V ?主要特点:损耗、漏电小于铝电解电容 ?应用:在要求高的电路中代替铝电解电容 1.10空气介质可变电容器 ?可变电容量:100pF~1500pF ?主要特点:损耗小,效率高;可根据 要求制成直线式、直线波长式、直线 频率式及对数式等 ?应用:电子仪器,广播电视设备等 1.11薄膜介质可变电容器 ?可变电容量:15pF~550pF ?主要特点:体积小,重量轻;损耗比空 气介质的大 ?应用:通讯,广播接收机等 1.12薄膜介质微调电容器 ?可变电容量:1pF~29pF ?主要特点:损耗较大,体积小 ?应用:收录机,电子仪器等电路作电路补偿 1.13陶瓷介质微调电容器 ?可变电容量:0.3pF~22pF ?主要特点:损耗较小,体积较小 ?应用:精密调谐的高频振荡回路 1.14独石电容 ?电容量:0.5pF~1μF ?主要特点:电容量大、体积小、可靠性高、电容量稳定,耐高温耐湿性好等。 ?耐压:二倍额定电压。 ?应用范围:广泛应用于电子精密仪器。各种小型电子设备作谐振、耦合、滤波、旁路。

电容电感的选择及EMI 中的应用

电容电感的选择及EMI中的应用 电容电感的选择及EMI中的应用 云母电容: 用金属箔或者在云母片上喷涂银层做电极板,极板和云母一层一层叠合后,再压铸在胶木粉或封固在环氧树脂中制成。它的特点是介质损耗小,绝缘电阻大、温度系数小,适宜用于高频电路。 陶瓷电容: 用陶瓷做介质,在陶瓷基体两面喷涂银层,然后烧成银质薄膜做极板制成。它的特点是体积小,耐热性好、损耗小、绝缘电阻高,但容量小,适宜用于高频电路。 铁电陶瓷电容容量较大,但是损耗和温度系数较大,适宜用于低频电路。 薄膜电容: 结构和纸介电容相同,介质是涤纶或者聚苯乙烯。涤纶薄膜电容,介电常数较高,体积小,容量大,稳定性较好,适宜做旁路电容。 聚苯乙烯薄膜电容,介质损耗小,绝缘电阻高,但是温度系数大,可用于高频电路。 金属化纸介电容 结构和纸介电容基本相同。它是在电容器纸上覆上一层金属膜来代替金属箔,体积小,容量较大,一般用在低频电路中。 油浸纸介电容: 它是把纸介电容浸在经过特别处理的油里,能增强它的耐压。它的特点是电容量大、耐压高,但是体积较大。 铝电解电容: 它是由铝圆筒做负极,里面装有液体电解质,插入一片弯曲的铝带做正极制成。还需要经过直流电压处理,使正极片上形成一层氧化膜做介质。它的特点是容量大,但是漏电大,稳定性差,有正负极性,适宜用于电源滤波或者低频电路中。使用的时候,正负极不要接反。 钽、铌电解电容: 它用金属钽或者铌做正极,用稀硫酸等配液做负极,用钽或铌表面生成的氧化膜做介质制成。它的特点是体积小、容量大、性能稳定、寿命长、绝缘电阻大、温度特性好。用在要求较高的设备中。 半可变电容: 也叫做微调电容。它是由两片或者两组小型金属弹片,中间夹着介质制成。调节的时候改变两片之间的距离或者面积。它的介质有空气、陶瓷、云母、薄膜等。 可变电容: 它由一组定片和一组动片组成,它的容量随着动片的转动可以连续改变。把两组可变电容装在一起同轴转动,叫做双连。可变电容的介质有空气和聚苯乙烯两种。空气介质可变电容体积大,损耗小,多用在电子管收音机中。聚苯乙烯介质可变电容做成密封式的,体积小,多用在晶体管收音机中。 NPO(COG):电气性能最稳定,基本上不随温度、电压与时间的改变面改变,适用于对稳定性要求高的高频电路;

《电容电感数值识别

字号:大中小 《电容识别》 上图举出了一些例子。其中,电解电容有正负之分,其他都没有。 电容的容量单位为:法(F)、微法(uf),皮法(pf)。一般我们不用法做单位,因为它太大了。各单位之间的换算关系为: 1F=1000000uf 1uf=1000000pf 在使用中,还经常见到单位:nf。1uf=1000nf 1nf=1000pf 电容的容量标识的几种方法: 一、直接标识:如上图的电解电容,容量47uf,电容耐压25v。 二、使用单位nf:如上图的涤纶电容,标称4n7,即4.7nf,转换为pf即为4700pf。还有的例如:10n,即0.01uf;33n,即0.033uf。 后面的63是指电容耐压63v. 三、数学计数法:如上图瓷介电容,标值104,容量就是:10X10000pf=0.1uf.如果标值4 73,即为47X1000pf=0.047uf。(后面的4、3,都表示10的多少次方)。又如:332=33X 100pf=3300pf。 电容的使用,都应该在指定的耐压下工作。现在的好多质量不高的产品,就因为使用了耐压不足的电容而引起故障(常见电容爆裂)。 一、色环电阻识别技术 电阻在电路中用“R”加数字表示,如:R1表示编号为1的电阻。电阻在电路中的主要作用为

分流、限流、分压、偏置等。 1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。换算 方法是:1兆欧=1000千欧=1000000欧 电阻的参数标注方法有3种,即直标法、色标法和数标法。 a、数标法主要用于贴片等小体积的电路,如: 472 表示47×100Ω(即4.7K); 104则表示100K 二、电容识别 1、电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容)。电容是由两片金 属膜紧靠,中间用绝缘材料隔开而组成的元件。电容的特性主要是隔直流通交流。 电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交 流信号的频率和电容量有关。 容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量) 电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容 等。 2、电容识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3 种。电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。 其中:1法拉=10 3毫法=10 6微法=10 9纳法=10 12皮法

电容和电感区别

电容 电容(或电容量, Capacitance)指的是在给定电位差下的电荷储藏量;记为C,国际单位是法拉(F)。一般来说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上;造成电荷的累积储存,最常见的例子就是两片平行金属板。也是电容器的俗称。 电容(或称电容量)是表征电容器容纳电荷本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容器从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的[1]情况下,刨除介质漏电自放电效应/电解电容比较明显,可能电荷会永久存在,这是它的特征),它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、隔直流等电路中。 电容的符号是C。 C=εS/d=εS/4πkd(真空)=Q/U 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等, 换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 电子电路中,只有在电容器充电过程中,才有电流流过,充电过程结束后,电容器是不能通过直流电的,在电路中起着“隔直流”的作用。电路中,电容器常被用作耦合、旁路、滤波等,都是利用它“通交流,隔直流”的特性。那么交流电为什么能够通过电容器呢?我们先来看看交流电的特点。交流电不仅方向往复交变,它的大小也在按规律变化。电容器接在交流电源上,电容器连续地充电、放电,电路中就会流过与交流电变化规律一致(相位不同)的充电电流和放电电流。 电容器的选用涉及到很多问题。首先是耐压的问题。加在一个电容器的两端的电压超过了它的额定电压,电容器就会被击穿损坏。一般电解电容的耐压分档为6.3V,10V,16V,25V,50V等。 电感 电感是指线圈在磁场中活动时,所能感应到的电流的强度,单位是“亨利”(H)。也指利用此性质制成的元件。 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一,相关产品如共模滤波器等。 电感简介 diàn’gǎn [INDUCTOR] ,复数:INDUCTORS 电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一,相关产品如共模滤波器等。 编辑本段自感与互感 自感

为DC-DC选择正确的电感和电容

为DC/DC转换器选择正确的电感器与电容器 随着手机、PDA以及其它便携式电子产品在不断小型化,其复杂性同时也在相应提高,这使设计工程师面临的问题越来越多,如电池使用寿命、占板空间、散热或功耗等。 使用DC/DC转换器主要是为了提高效率。很多设计都要求将电池电压转换成较低的供电电压,尽管采用线性稳压器即可实现这一转换,但它并不能达到基于开关稳压器设计的高效率。本文将介绍设计工程师在权衡解决方案的占用空间、性能以及成本时必须要面对的常见问题。 大信号与小信号响应 开关转换器采用非常复杂的稳压方法保持重/轻负载时的高效率。现在的CPU内核电源要求稳压器提供快速而通畅的大信号响应。例如,当处理器从空闲模式切换至全速工作模式时,内核吸收的电流会从几十微安很快地上升到数百毫安。 随着负载条件变化,环路会迅速响应新的要求,以便将电压控制在稳压限制范围之内。负载变化幅度和速率决定环路响应是大信号响应还是小信号响应。我们可根据稳态工作点定义小信号参数。因此,我们一般将低于稳态工作点10%的变化称为小信号变化。 实际上,误差放大器处于压摆范围(slew limit)内,由于负载瞬态发生速度超过误差放大器的响应速度,放大器并不控制环路,所以,在电感器电流达到要求之前,由输出电容器满足瞬态电流要求。 大信号响应会暂时使环路停止工作。不过,在进入和退出大信号响应之前,环路必须提供良好的响应。环路带宽越高,负载瞬态响应速度就越快。 从小信号角度来看,尽管稳压环路可以提供足够的增益和相位裕度,但是开关转换器在线路或负载瞬态期间仍然可能出现不稳定状态和振铃现象。在选择外部元件时,电源设计工程师应意识到这些局限性,否则其设计就有可能遇到麻烦。 电感器选型 以图1所示的基本降压稳压器为例,说明电感器的选型。 对大多数TPS6220x应用而言,电感器的电感值范围为4.7uH~10uH。电感值的选择取决于期望的纹波电流。一般建议纹波电流应低于平均电感电流的20%。如等式1所示,较高的VIN或VOUT也会增加纹波电流。电感器当然必须能够在不造成磁芯饱和(意味着电感损失)情况下处理峰值开关电流。 以增加输出电压纹波为代价,使用低值电感器便可提高输出电流变化速度,从而改善转换器的负载瞬态响应。高值电感器则可以降低纹波电流和磁芯磁滞损耗。 可将线圈总损耗结合到损耗电阻(Rs)中,该电阻与理想电感(Ls)串联,组成了一个如图1所示的简化等效电路。 尽管Rs损耗与频率有关,但在产品说明书中仍对直流电阻(RDC)进行了定义。该电阻取决于所采用的材料或贴片电感器的构造类型,在室温条件下通过简单的电阻测量即可获得。RDC的大小直接影响线圈的温度上升。因此,应当避免长时间超过电流额定值。

常用电容电感电阻值

常用电容值 6.8uH,10uH,15uH,22uH,27uH,33uH,47uH,68uH,100uH,150uH,220uH,330uH,470uH,680uH,1m H,2mH,3mH 【单位pF】 39 P 43 P 47 P 51 P 56 P 62 P 68 P 75 P 82 P 91 P 100 P 120 P 150 P 180 P 200 P 220 P 240 P 270 P 300 P 330 P 360 P 390 P 470 P 560 P 620 P 680 P 750 P 【单位nF】 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 10 15 18 22 27 33 39 56 68 82 【单位uF】 0.1 0.15 0.22 0.33 0.47 1.0 (1.5) 2.2 常用电阻值 1 10 100 1.0 K 10 K 100 K 1.0 M 1.1 11 110 1.1 K 11 K 110 K 1.1 M 1.2 12 120 1.2 K 12 K 120 K 1.2 M 1.3 13 130 1.3 K 13 K 130 K 1.3 M 1.5 15 150 1.5 K 15 K 150 K 1.5 M 1.6 16 160 1.6 K 16 K 160 K 1.6 M 1.8 18 180 1.8 K 18 K 180 K 1.8 M 2 20 200 2.0 K 20 K 200 K 2.0 M 2.2 22 220 2.2 K 22 K 220 K 2.2 M 2.4 24 240 2.4 K 24 K 240 K 2.4 M 2.7 27 270 2.7 K 27 K 270 K 2.7 M 3 30 300 3.0 K 30 K 300 K 3.0 M 3.3 33 330 3.3 K 33 K 330 K 3.3 M 3.6 36 360 3.6 K 36 K 360 K 3.6 M 3.9 39 390 3.9 K 39 K 390 K 3.9 M 4.3 43 430 4.3 K 43 K 430 K 4.3 M 4.7 47 470 4.7 K 47 K 470 K 4.7 M 5.1 51 510 5.1 K 51 K 510 K 5.1 M 5.6 56 560 5.6 K 56 K 560 K 5.6 M 6.2 62 620 6.2 K 62 K 620 K 6.2 M 6.8 68 680 6.8 K 68 K 680 K 6.8 M

电容和电感要点

电感 电感是闭合回路的一种属性,是一个物理量。当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。这种电流与线圈的相互作用关系称为电的感抗,也就是电感,单位是“亨利(H)”,以美国科学家约瑟夫·亨利命名。它是描述由于线圈电流变化,在本线圈中或在另一线圈中引起感应电动势效应的电路参数。 电感是自感和互感的总称。提供电感的器件称为电感器。[1]中文名 电感 外文名 inductance 实质 闭合回路的一种属性,一种物理量 单位 亨利(H) 目录 1. 1定义 2. ?自感 3. ?互感 1. 2单位及换算 2. 3计算公式

3. ?自感 1. ?互感 2. ?三相制均衡输电线的电感 定义编辑 导体的一种性质,用导体中感生的电动势或电压与产生此电压的电流变化率之比来量度。稳恒电流产生稳定的磁场,不断变化的电流(交流)或涨落的直流产生变化的磁场,变化的磁场反过来使处于此磁场的导体感生电动势。感生电动势的大小与电流的变化率成正比。比例因数称为电感,以符号L表示,单位为亨利(H)。[2] 电感是闭合回路的一种属性,即当通过闭合回路的电流改变时,会出现电动势来抵抗电流的改变。这种电感称为自感(self-inductance),是闭合回路自己本身的属性。假设一个闭合回路的电流改变,由于感应作用而产生电动势于另外一个闭合回路,这种电感称为互感(mutual inductance)。自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。

DCDC转换器如何选择电感与电容

随着手机、PDA以及其它便携式电子产品在不断小型化,其复杂性同时也在相应提高,这使设计工程师面临的问题越来越多,如电池使用寿命、占板空间、散热或功耗等。 使用DC/DC转换器主要是为了提高效率。很多设计都要求将电池电压转换成较低的供电电压,尽管采用线性稳压器即可实现这一转换,但它并不能达到基于开关稳压器设计的高效率。本文将介绍设计工程师在权衡解决方案的占用空间、性能以及成本时必须要面对的常见问题。 大信号与小信号响应 开关转换器采用非常复杂的稳压方法保持重/轻负载时的高效率。现在的CPU内核电源要求稳压器提供快速而通畅的大信号响应。例如,当处理器从空闲模式切换至全速工作模式时,内核吸收的电流会从几十微安很快地上升到数百毫安。 随着负载条件变化,环路会迅速响应新的要求,以便将电压控制在稳压限制范围之内。负载变化幅度和速率决定环路响应是大信号响应还是小信号响应。我们可根据稳态工作点定义小信号参数。因此,我们一般将低于稳态工作点10%的变化称为小信号变化。 实际上,误差放大器处于压摆范围(slew limit)内,由于负载瞬态发生速度超过误差放大器的响应速度,放大器并不控制环路,所以,在电感器电流达到要求之前,由输出电容器满足瞬态电流要求。

大信号响应会暂时使环路停止工作。不过,在进入和退出大信号响应之前,环路必须提供良好的响应。环路带宽越高,负载瞬态响应速度就越快。 从小信号角度来看,尽管稳压环路可以提供足够的增益和相位裕度,但是开关转换器在线路或负载瞬态期间仍然可能出现不稳定状态和 振铃现象。在选择外部元件时,电源设计工程师应意识到这些局限性,否则其设计就有可能遇到麻烦。 电感器选型 以图1所示的基本降压稳压器为例,说明电感器的选型。 对大多数TPS6220x应用而言,电感器的电感值范围为4.7uH~10uH。电感值的选择取决于期望的纹波电流。一般建议纹波电流应低于平均电感电流的20%。如等式1所示,较高的V IN或V OUT也会增加纹波电流。电感器当然必须能够在不造成磁芯饱和(意味着电感损失)情况下处理峰值开关电流。 以增加输出电压纹波为代价,使用低值电感器便可提高输出电流变化速度,从而改善转换器的负载瞬态响应。高值电感器则可以降低纹波电流和磁芯磁滞损耗。

电阻电容电感特性

再谈电阻、电容、三极管等电子元件基础 第一章:基本元件 第一节电阻器 电阻,英文名resistance,通常缩写为R,它是导体的一种基本性质,与导体的尺寸、材料、温度有关。欧姆定律说,I=U/R,那么R=U/I,电阻的基本单位是欧姆,用希腊字母"Ω"表示,有这样的定义:导体上加上一伏特电压时,产生一安培电流所对应的阻值。电阻的主要职能就是阻碍电流流过。事实上,"电阻"说的是一种性质,而通常在电子产品中所指的电阻,是指电阻器这样一种元件。师傅对徒弟说:"找一个100欧的电阻来!",指的就是一个"电阻值"为100欧姆的电阻器,欧姆常简称为欧。表示电阻阻值的常用单位还有千欧(kΩ),兆欧(MΩ)。 一、电阻器的种类 电阻器的种类有很多,通常分为三大类:固定电阻,可变电阻,特种电阻。在电子产品中,以固定电阻应用最多。而固定电阻以其制造材料又可分为好多类,但常用、常见的有RT型碳膜电阻、RJ型金属膜电阻、RX型线绕电阻,还有近年来开始广泛应用的片状电阻。型号命名很有规律,R代表电阻,T-碳膜,J-金属,X-线绕,是拼音的第一个字母。在国产老式的电子产品中,常可以看到外表涂覆绿漆的电阻,那就是RT型的。而红颜色的电阻,是RJ型的。一般老式电子产品中,以绿色的电阻居多。为什么呢?这涉及到产品成本的问题,因为金属膜电阻虽然精度高、温度特性好,但制造成本也高,而碳膜电阻特别价廉,而且能满足民用产品要求。 电阻器当然也有功率之分。常见的是1/8瓦的"色环碳膜电阻",它是电子产品和电子制作中用的最多的。当然在一些微型产品中,会用到1/16瓦的电阻,它的个头小多了。再者就是微型片状电阻,它是贴片元件家族的一员,以前多见于进口微型产品中,现在电子爱好者也可以买到了 二、电阻器的标识 这些直接标注的电阻,在新买来的时候,很容易识别规格。可是在装配电子产品的时候,必须考虑到为以后检修的方便,把标注面朝向易于看到的地方。所以在弯脚的时候,要特别注意。在手工装配时,多这一道工序,不是什么大问题,但是自动生产线上的机器没有那么聪明。而且,电阻器元件越做越小,直接标注的标记难以看清。因此,国际上惯用"色环标注法"。事实上,"色环电阻"占据着电阻器元件的主流地位。"色环电阻"顾名思义,就是在电阻器上用不同颜色的环来表示电阻的规格。有的是用4个色环表示,有的用5个。有区别么?是的。4环电阻,一般是碳膜电阻,用3个色环来表示阻值,用1个色环表示误差。5环电阻一般是金属膜电阻,为更好地表示精度,用4个色环表示阻值,另一个色环也是表示误差。下表是色环电阻的颜色-数码对照表:

电阻,电容,电感之基本参数

电阻 电阻/电阻器的主要参数 在电阻器的使用中,必需正确应用电阻器的参数。电阻器的性能参数包括标称阻值及允许偏差、额定功率、极限工作电压、电阻温度系数、频率特性和噪声电动势等。对于普通电阻器使用中最常用的参数是标称阻值和允许偏差,额定功率。 ⑴标称电阻值和允许偏差 每个电阻器都按系列生产,有一个标称阻值。不同标称系列,电阻器的实际值在该标称系列允许误差范围之内。例如,E24系列中一电阻的标称值是1000欧,E24系列电阻的偏差是5%,这个电阻器的实际值可能在950~1050欧范围之内的某一个值,用仪表测得具体的阻值就是这个电阻的实际值。 表1-4 几种固定电阻器的外形和特点

压。器、仪表等。电路。 在要求电阻偏差小的电路中,可选用E48、E96、E192精密电阻系列,在电阻器的使用中,根据实际需要选用不同精密度的电阻,一般来说误差小的电阻温度系数也小,阻值稳定性高。 电阻的单位是欧姆,用符号Ω表示。还常用千欧(KΩ)、兆欧(MΩ)等单位表示。单位之间的换算关系是:1MΩ=1000KΩ=1000000Ω ⑵电阻器的额定功率 电阻器在电路中实际上是个将电能转换成热能的元件,消耗电能使自身温度升高。电阻器的额定功率是指在规定的大气压和特定的温度环境条件下,长期连续工作所能呈受的最大功率值。电阻器实际消耗的电功率P等于加在电阻器上的电压与

流过电阻器电流的乘积,即P=UI。电阻器的额定功率从0. 05W至500W之间数十种规格。在电阻的使用中,应使电阻的额定功率大于电阻在电路中实际功率值的1.5~2倍以上。 表1-5 电阻器和电位器的命名方法 图1-4 电阻器额定功率的图形符号 在现代电子设备中,还常用到如水泥电阻和无引脚的片状电阻等新型电阻器。水泥电阻体积小,功率较大,在电路中常作降压或分流电阻。 片状电阻有两种类型,厚膜片状电阻和薄膜片状电阻。目前常用的是厚膜电阻,如国产RL11系列片状电阻。片状电阻的特点是体积小,重量轻,高频特性好,无引脚采用贴焊安装。除此之外,还有集成电阻(排阻)。

电感的特性

什么是电感?及电感的特性 电感是开关电源中常用的,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集中”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。 当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点:

1. 当电感L中有电流I流过时,电感储存的能量为: E=0.5×L×I2 (1) 2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为: V=(L×di)/dt (2) 由此可看出,纹波电流的大小跟电感值有关。 3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。只要电感电压变化,电流变化率di/dt也将变化;正向电压使电流线性上升,反向电压使电流线性下降。 计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要。 从图1可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。这个纹波电压应尽

电容、电阻、电感、电解、的认识

第一章:基本元件 第一节电阻器 电阻,英文名resistance,通常缩写为R,它是导体的一种基本性质,与导体的尺寸、材料、温度有关。欧姆定律说,I=U/R,那么R=U/I,电阻的基本单位是欧姆,用希腊字母“Ω”表示,有这样的定义:导体上加上一伏特电压时,产生一安培电流所对应的阻值。电阻的主要职能就是阻碍电流流过。事实上,“电阻”说的是一种性质,而通常在电子产品中所指的电阻,是指电阻器这样一种元件。师傅对徒弟说:“找一个100欧的电阻来!”,指的就是一个“电阻值”为100欧姆的电阻器,欧姆常简称为欧。表示电阻阻值的常用单位还有千欧(kΩ),兆欧(MΩ)。 一、电阻器的种类 电阻器的种类有很多,通常分为三大类:固定电阻,可变电阻,特种电阻。在电子产品中,以固定电阻应用最多。而固定电阻以其制造材料又可分为好多类,但常用、常见的有RT型碳膜电阻、RJ型金属膜电阻、RX型线绕电阻,还有近年来开始广泛应用的片状电阻。型号命名很有规律,R代表电阻,T-碳膜,J-金属,X-线绕,是拼音的第一个字母。在国产老式的电子产品中,常可以看到外表涂覆绿漆的电阻,那就是RT型的。而红颜色的电阻,是RJ型的。一般老式电子产品中,以绿色的电阻居多。为什么呢?这涉及到产品成本的问题,因为金属膜电阻虽然精度高、温度特性好,但制造成本也高,而碳膜电阻特别价廉,而且能满足民用产品要求。 电阻器当然也有功率之分。常见的是1/8瓦的“色环碳膜电阻”,它是电子产品和电子制作中用的最多的。当然在一些微型产品中,会用到1/16瓦的电阻,它的个头小多了。再者就是微型片状电阻,它是贴片元件家族的一员,以前多见于进口微型产品中,现在电子爱好者也可以买到了(做无线窃听器?) 二、电阻器的标识 这些直接标注的电阻,在新买来的时候,很容易识别规格。可是在装配电子产品的时候,必须考虑到为以后检修的方便,把标注面朝向易于看到的地方。所以在弯脚的时候,要特别注意。在手工装配时,多这一道工序,不是什么大问题,但是自动生产线上的机器没有那么聪明。而且,电阻器元件越做越小,直接标注的标记难以看清。因此,国际上惯用“色环标注法”。事实上,“色环电阻”占据着电阻器元件的主流地位。“色环电阻”顾名思义,就是在电阻器上用不同颜色的环来表示电阻的规格。有的是用4个色环表示,有的用5个。有区别么?是的。4环电阻,一般是碳膜电阻,用3个色环来表示阻值,用1个色环表示误差。5环电阻一般是金属膜电阻,为更好地表示精度,用4个色环表示阻值,另一个色环也是表示误差. 色环电阻的规则是最后一圈代表误差,对于四环电阻,前二环代表有效值,第三环代表乘上的次方数。不要怕,记住颜色和数码就行啦,其他的不用记。有一个秘诀:面对一个色环电阻,找出金色或银色的一端,并将它朝下,从头开始读色环。例如第一环是棕色的,第二环是黑色的,第三环是红色的,第四环是金色的,那么它的电阻值是1、0,第三环是添零的个数,这个电阻添2个零,所以它的实际阻值是1000Ω,即1kΩ。

Buck电路电感电容参数选择

(注:以下公式仅针对CCM模式) 1.占空比(Vi-Vo)*Ton/L=Vo*Toff/L D=Vo/Vi D—占空比 2.电感 dIL= (Vi-Vo)*Ton/L dIL== L=5(Vi-Vo)Vo*T/(Vi*Io) IL_avg = Io IL_peak= IL_rms=ILavg*(1+12) L 电感量的选取原则使电感纹波电流为电感电流的 20%(可根据应用改变) dlL—电感纹波电流峰峰值 IL_avg-电感电流平均值 IL_peak—电感峰值电流 IL_rms—电感电流有效值 3.xx 二极管 Id_peak= Vrd=Vi ld_peak—续流二极管峰值电流 Vrd —续流二级管反向耐压(Ton期间)

4.开关管 Isw_peak= Vsw_peak =Vi lsw_peak—开关管峰值电流 Vsw_peak—开关管耐压(Toff期间) 5.输出电容 lcin_rms = [(lo-lin)D+lin(1-D)] lco_rms=dlL/ 电容选取:耐压、纹波电流、电容量 Icin」ms—输入电容的纹波电流有效值 lco_rms—是输出电容的纹波电流有效值 技术资料,仅供参考 这里具体采用上海芯龙半导体有限公司降压IC举例说明 电源管理IC降压型电路电感应用XL4003 ?( (Vi-Vo)/L)*D二(Vo/L) *(1-D)已知输入电压Vi,输出电压Vo,求出D;22 D=Vo/Vi ②Io 为设定值已知输出电流Io; ③Ton=T*D 求出Ton ④((Vi-Vo)/L)Ton二dl=*lo 可求出L. L=((Vi-Vo) *Ton)/*Io) 举例说明输入电压12V,输出电压5V,输出电流3A, F=300KHz计算电感;

常见电阻、电容、电感的标称值

常用电阻电容标称值 精度为5%的碳膜电阻,以欧姆为单位的标称值: 1.0 5.6 33 160 820 3.9K 20K 100K 510K 2.7M 1.1 6.2 36 180 910 4.3K 22K 110K 560K 3M 1.2 6.8 39 200 1K 4.7K 24K 120K 620K 3.3M 1.3 7.5 43 220 1.1K 5.1K 27K 130K 680K 3.6M 1.5 8.2 47 240 1.2K 5.6K 30K 150K 750K 3.9M 1.6 9.1 51 270 1.3K 6.2K 33K 160K 820K 4.3M 1.8 10 56 300 1.5K 6.6K 36K 180K 910K 4.7M 2.0 11 62 330 1.6K 7.5K 39K 200K 1M 5.1M 2.2 12 68 360 1.8K 8.2K 43K 220K 1.1M 5.6M 2.4 13 75 390 2K 9.1K 47K 240K 1.2M 6.2M 2.7 15 82 430 2.2K 10K 51K 270K 1.3M 6.8M 3.0 16 91 470 2.4K 11K 56K 300K 1.5M 7.5M 3.3 18 100 510 2.7K 12K 62K 330K 1.6M 8.2M 3.6 20 110 560 3K 13K 68K 360K 1.8M 9.1M 3.9 22 120 620 3.2K 15K 75K 390K 2M 10M 4.3 24 130 680 3.3K 16K 82K 430K 2.2M 15M 4.7 27 150 750 3.6K 18K 91K 470K 2.4M 22M 5.1 30 精度为1%的金属膜电阻,以欧姆为单位的标称值: 10 33 100 332 1K 3.32K 10.5K 34K 107K 357K 10.2 33.2 102 340 1.02K 3.4K 10.7K 34.8K 110K 360K 10.5 34 105 348 1.05K 3.48K 11K 35.7K 113K 365K 10.7 34.8 107 350 1.07K 3.57K 11.3K 36K 115K 374K 11 35.7 110 357 1.1K 3.6K 11.5K 36.5K 118K 383K 11.3 36 113 360 1.13K 3.65K 11.8K 37.4K 120K 390K 11.5 36.5 115 365 1.15K 3.74K 12K 38.3K 121K 392K 11.8 37.4 118 374 1.18K 3.83K 12.1K 39K 124K 402K 12 38.3 120 383 1.2K 3.9K 12.4K 39.2K 127K 412K 12.1 39 121 390 1.21K 3.92K 12.7K 40.2K 130K 422K 12.4 39.2 124 392 1.24K 4.02K 13K 41.2K 133K 430K 12.7 40.2 127 402 1.27K 4.12K 13.3K 42.2K 137K 432K 13 41.2 130 412 1.3K 4.22K 13.7K 43K 140K 442K 13.3 42.2 133 422 1.33K 4.32K 14K 43.2K 143K 453K 13.7 43 137 430 1.37K 4.42K 14.3K 44.2K 147K 464K 14 43.2 140 432 1.4K 4.53K 14.7K 45.3K 150K 470K 14.3 44.2 143 442 1.43K 4.64K 15K 46.4K 154K 475K 14.7 45.3 147 453 1.47K 4.7K 15.4K 47K 158K 487K 15 46.4 150 464 1.5K 4.75K 15.8K 47.5K 160K 499K 15.4 47 154 470 1.54K 4.87K 16K 48.7K 162K 511K 15.8 47.5 158 475 1.58K 4.99K 16.2K 49.9K 165K 523K

相关主题
文本预览
相关文档 最新文档