当前位置:文档之家› 风力发电机组内部防雷要点

风力发电机组内部防雷要点

风力发电机组内部防雷要点
风力发电机组内部防雷要点

风力发电机组内部防雷要点

摘要:随着风电机组单机容量和风电场规模的增大,风电场的安全运行问题日益受到重视。在影响风电场安全运行的诸多因素中,遭受雷击是一个重要方面。本文结合风电机组防雷的研究成果,对风电机组的雷击过程、雷击损坏机理以及防雷措施进行了其内部防雷设计的要点阐述。

关键词:风电机组雷击屏蔽电涌保护

0、引言

由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,风机的高度和安装位置决定了它是雷击的首选通道,而且风机内部集中了大量敏感的电气、电子设备,一次雷击带来的损坏将是非常大的。因此,必须为风机内的电气、电子设备安装完整的防雷保护系统。

1、雷电对风电机组的危害

雷电对风电机组的危害风力发电机通常位于开阔的区域,而且很高,所以整个风机是暴露在直接雷击的威胁之下,被雷电直接击中的概率是与该物体的高度的平方值成正比。兆瓦级风力发电机的叶片高度达到150m以上,因此风机的叶片部分特别容易被雷电击中。风机内部集成了大量的电气、电子设备,可以说,我们平常用到的几乎每一种电子元件和电气设备,都可以在一台风电机组中找到其应用,例如开关柜、马达、驱动装置、变频器、传感器、执行机构,以及相应的总线系统等。这些设备都集中在一个很小的区域内。毫无疑问,电涌可以给风电机组带来相当严重的损坏。

以下的风力发电机数据由欧洲几个国家提供,其中包含了超过4000台风力发电机的数据。表1是德国、丹麦和瑞典三国这些事故的汇总表。由雷击导致的风力发电机损坏数量,每100台平均每年3.9次到8次。从统计数据上显示,在北欧的风力发电机组中,每100台每年有4-8台遭受雷击而损坏。值得注意的是:虽然损害部件是不相同的, 但是控制系统部件雷击损坏占40-50%。

2、雷电的破坏形式

设备遭雷击受损通常有4种情况,一是,设备直接遭受雷击而损坏;二是,雷电脉冲沿着与设备相连的信号线、电源线或其他金属管线侵入设备使其受损;三是,设备接地体在雷击时产生瞬间高电位形成地电位“反击”而损坏;四是,设备因安装的方法或安装位置不当,受雷电在空间分布的电场、磁场影响而损坏。

3、内部防雷保护措施

防雷保护区概念是规划风力发电机综合防雷保护的基础。它是一种对结构空间的设计方法,以便在构筑物内创建一个稳定的电磁兼容性环境(图1)。构筑物内不同电气设备的抗电磁干扰能力的大小决定了对这一空间电磁环境的要求。

作为一种保护措施,防雷保护区概念当然就包括了应在防雷保护区的边界处,将电磁干扰(传导性干扰和辐射性干扰)降低到可接受的范围内,因此,被保护的构筑物的不同部分被细分为不同的防雷保护区。防雷保护区的具体划分结果与风电机组的结构有关,并且也要考虑这一结构建筑形式和材料。通过设置屏蔽装置和安装电涌保护器,雷电在防雷保护区0A区的影响在进入1区时被大大缩减,风电机组内的电气和电子设备就可以正常工作,不受干扰。

内部防雷保护系统是由所有的在该区域内缩减雷电电磁效应的设施组成。主

风力发电机组防雷设计方案

风力发电机组防雷设计方案 深圳天顺科技有限公司曾中海 一:概述 风能是当前技术最成熟、最具备规模开发条件的可再生洁净能源。风能发电为人与自然和谐发展提供了基础。由于风力发电机组是在自然环境下工作,不可避免的会受到自然灾害的影响。 由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,相对的也增加了被雷击的风险,雷击成了自然界中对风力发电机组安全运行危害最大的一种灾害。雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。我国沿海地区地形复杂,雷暴日较多,应充分重视雷击给风力风电机组和运行人员带来的巨大威胁。例如,红海湾风电场建成投产至今发生了多次雷击事件,据统计,叶片被击中率达4%,其他通讯电器元件被击中率更高达20% 。 为了降低自然灾害带来的损失,必须充分了解它,并做出有针对性的防范措施。 二:风机对比介绍 风电变速恒频风力发电系统,主要分为双馈式和直驱式。双馈式风力发电系统由于其变流器容量(滑差功率)只占系统额定功率的30%左右,能较多地降低系统成本,因此双馈式系统受到了广泛的关注。与双馈式相比,直驱式采用低速永磁同步发电机结构,无需齿轮箱,机械损耗小,运行效率高,维护成本低,但是,由于系统功率是全功率传输,系统中变流器造价昂贵,控制复杂(本文重点介绍直驱式风电系统雷电防护)。 直驱风力发电系统风轮与永磁同步发电机直接连接,无需升速齿轮箱。首先将风能转化为频率和幅值变化的交流电,经过整流之后变为直流,然后经过三相逆变器变换为三相频率恒定的交流电连接到电网。通过中间电力电子变化环节,对系统有功功率和无功功率进行控制,实现最大功率跟踪,最大效率利用风能。 直驱式风力发电系统中的电力电子变换电路(整流器和逆变器)可以有不同的拓扑结构(常见2种见图1、2)。 图1 图2 三:设计依据标准

《风力发电场安全、检修、运行规程》题库资料

《风力发电场安全规程》、《风力发电场检修规程》、《风力发电场运行规程》考试题库(796/797/666-2012) 《风力发电场安全规程》 一、填空题 1、风电场安全工作必须坚持“(安全第一)、(预防为主)、(综合治理)”的方针,加强人员(安全培训),完善(安全生产条件),严格执行(安全技术)要求,确保(人身),和(设备)安全。 2、风电场输变电设备是指风电场升压站(电气设备)、(集电线路)、(风力发电机组升压变)等。 3、飞车是指风力发电机组(制动系统)失效,风能转速超过(允许或额定)转速,且机组处于(失控)状态。 4、安全链是由风力发电机组(重要保护元件)串联形成,并独立于机组(逻辑控制)的硬件保护回路。 5、风电场工作人员应具备必要的机械、电气、安装知识,熟悉风电场输变电设备、风力发电机组的(工作原理)和(基本结构),掌握判断一般故障的(产生原因)及(处理方法),掌握(监控系统)的使用方法。 6、风电场工作人员应掌握(安全带)、(防坠器)、(安全帽)、(防护服)和(工作鞋)等个人防护设备的正确使用方法,具备(高处作业)、(高空逃生)及(高空救援)相关知识和技能,特殊作业应取得(特殊作业操作证)。 7、风电场人员应熟练掌握(触电)、(窒息急救法),熟悉有关(烧

伤)、(烫伤)、(外伤)、(气体中毒)等急救常识,学会使用(消防器材)、(安全工器具)和(检修工器具)。 8、外单位工作人员应持有相关的(职业资格证书),了解和掌握工作范围内的(危险因素)和(防范措施),并经过(考试合格)方可开展工作。 9、临时用工人员应进行现场(安全教育和培训),应被告知其作业现场和工作岗位存有的(危险因素)、(防范措施)及事故(紧急处理措施)后,方可参加(指定)的工作。 10、进入工作现场必须(戴安全帽),登塔作业必须(系安全带)、(穿防护鞋)、(戴防滑手套)、使用(防坠落保护)装置,登塔人员体重及负重之和不宜超过(100),身体不适、情绪不稳定,不应(登塔作业)。 11、禁止使用(破损)及(未经检验合格)的安全工器具和个人防护用品。 12、风力发电机组底部应设置“(未经允许,禁止入内)”标志牌:基础附近应增设“(请勿靠近,当心落物)”、“(雷雨天气,禁止靠近)”警示牌:塔筒爬梯旁应设置“(必须系安全带)”、“(必须戴安全帽)”、“(必须穿防护鞋)”指令标识:36V及以上带电设备应在醒目位置设置“(当心触电)”标识。 13、风力发电机组内无防护罩的旋转部件应粘贴“(禁止踩踏)”标识;机组内易发生机械卷入、轧压、碾压、剪切等机械伤害的作业地点应设置“(当心机械伤人)”标识;机组内安全绳固

风力发电机常见故障及其分析概要

茂名职业技术学院 毕业设计 题目:风力发电组轴承的常见失效形式及故障分析系别:机电信息系专业:机械制造与自动化班别:13机械一班姓名:何进生指导老师:张浩川日期:2015年7月1日至2016年5月1日

内容摘要 随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。风力发电己成为世界各国更加重视和重点开发的能源之一。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。 本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。 关键词 风力发电机;故障模式;齿轮箱;故障诊断

Common Faults And Their Analysis Of The Wind Turbine Abstract With the global economic development and population growth, humanity is facing with the pressure from two sides of the energy use and environmental protection, the energy problem and environmental pollution has become an increasingly prominent issue. Wind power as a abundant reserves of natural resources, because of its convenient use, renewable, low cost, no pollution, has been more widely used and rapid development in the world. Wind power has been taken as one of the priority development energy sources in the world.The increase of wind power capacity and complicated system structure will not only cause power outage,but also raise serious accidents when the set is at fault. In the beginning, the dissertation introduces the practical significance of project and the common failure mode of wind turbines, then researches and describes the failure of gearbox in detail, including the cause of failure, how to identify and how to improve the design. Based on the analysis of common failures, not only provide assistance for fault diagnosis to the technical

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

风力发电机组防雷保护系统解析

风力发电机组防雷保护系统解析 随着能源消费方式的变革,风能产业发展日趋迅速,风电机组的防雷成为风电产业发展的重中之重,本文简单介绍了雷电的形成及危害、风电机组防雷的必要性及主要措施。 标签:风电机组;防雷保护;导雷通道 1 雷电的形成及危害 1.1 雷电的形成 雷电的形成过程简单来说,雷云中带有大量的电荷,在静电感应的作用下,雷云的另一侧和雷云下方的地面上(或雷云下方的建筑物等)将带有大量的极性相反的电荷。据统计,80%-90%的雷云将带有大量的负电荷,当电荷积累到一定程度,即产生强电場,由于叶片等导体尖端的电荷特别密集,尖端附近的电场更是特别强,空气在强电场的作用下发生电离,空气成为导电通道。 1.2 雷电的危害 由于风电机叶片形状多有尖锐部分,尖端电荷特别密集,往往会发生尖端发电。同时,在强电场作用下,叶片表面曲率大的地方,等电位面密,电场强度剧增,致使它附近的空气被电离而产生气体放电,即电晕放电。这两种现象发生的同时常常伴随着巨大的能量的变化,叶片温度急剧升高,高温分解叶片周围气体,使其急剧膨胀产生气体爆裂现象,对叶片表面造成损害。 2 防雷的必要性 相对于普通建筑物,风电机具有高空尖的特征。高:风电机组常常为某个地区的高大建筑物,是一个地区的制高点。空:风电机组的选址常常在沿海一带或者比较空旷的风力资源优越的地带,这样就决定了风电机组周围环境必定是人烟稀少,建筑物稀稀落落的情况。尖:风电机组的叶片形状等风电机的主要构件常常有尖锐突起部分,这就为尖端放电的形成提供了良好的条件。高空尖的特征决定了风电机组遭受雷击的概率极大,造成不可估量的损失, 3 主要防雷措施 3.1 叶片的防雷 ①无叶尖阻尼器结构的叶片防护方式由于没有叶尖阻尼器,防雷措施实施起来相对较容易,如下图1所示,叶尖部分的上部铺设有铜丝网,作为接闪器。叶尖的主体部分内部设有铜导体,铜导体末端与金属法兰相连。当叶片遭受直击雷时,产生的强大电流便在铜丝网中汇聚于铜导体中,短时迅速的将电流输送至金

风力发电机组安全操作知识

风力发电安全操作知识培训教材 1 总则 为贯彻“电业生产,安全第一”的方针,保障电力系统的正常生产和检修、维护工作人员的安全,在风力发电机组的检修和维护前要认真学习风力发电机组安全操作知识。 2.1 个人防护 进入风机作业现场,必须使用个人防护设备,包括: 1)全护体安全带、安全帽、安全靴、手套,必要时还需要保暖衣。 2)个人防护设备必须是得到批准的型号,其上标有产品合格标志,表明适合于使用者准备从事的相关工作和保护,适合于工作地区的气候条件。 3)如果有多人同时攀登风力发电机塔筒,每人都必须配备个人所需的防护设备。 4)个人防护设备必须送请有资质的单位检查和检验,每年至少一次。 5)维护部员工必须正确妥善保存全护体安全带,并且必须随时检查。 2.2 安全带的穿戴 安全带的配戴程序如下: 1、通过扣眼(1)扣紧安全带,使大腿圈(2)下垂 2、将肩带(3)以背旅行包的方式放在肩上,使锁 扣(1)的塑料带靠在后背上。 3、把松开的大腿圈(2)从里到外套在大腿上。 4、大腿圈(2)的皮带穿入搭扣(4)内,并拉紧。 5、将大腿圈皮带的末端穿进皮带的带袢(5)内。 图4 – 1 6、拉紧胸部的窄皮带(6) 7、以中部的皮带调整器(7)调整皮带的正确位置。 2.3 安全防护设备的日常保养 1)绝对不能与酸类或与腐蚀性化学药品接触。 2)不得接触尖锐边缘以及带尖锐边缘的物体。

4)必须存放在通风良好的地方,并避免太阳直接照射。 5)每次在使用安全带避免了事故之后,应由专业人员对安全带加以检查。一年必须至少检修一次。任何有瑕疵设备都必须立刻停止使用。 3 风力发电机组现场安装安全规程 风力发电机组的塔筒、机舱和风轮的安装工作必须严格按照吊装说明或安装指导进行。 3.1 现场安全防护一般规定 3.1.1 进入施工现场的所有人员必须穿戴好安全帽、穿安全鞋和合适的工作服。 3.1.2 凡从事两米以上的高空作业人员必须系好安全带。 3.1.3 正确使用安全用具,未经安全培训人员和未携带安全用具人员禁止进入现场工作。 3.1.4 高空作业人员严禁带病作业,禁止酒后作业。 3.1.5 定期对安全用具进行检验,检验合格后方可继续使用。安全用具如有破损时,必须随时更换。 3.1.6 高空作业时严禁临空投掷物料。 3.1.7 施工现场禁止流动吸烟,吸烟人员必须在指定的吸烟点吸烟,施工人员禁止作业时吸烟。3.1.8施工人员必须牢记“三不伤害”原则:不伤害自己,不伤害他人,不被他人伤害。 3.1.9 现场应配备足够的干粉灭火器材,消防器材应保证灵敏有效,干粉灭火器必须按规定时间更换干粉。 3.1.10 夜间施工必须有足够照明,危险作业面周围应红灯示警。 3.1.11 重要操作或检修时工作负责人必须要到现场检查安全措施是否到位。 3.1.12 雷雨天气禁止近距离巡视风机。 3.2 设备安装安全防护 3.2.1 使用液压设备时,操作人员必须戴护目镜。 3.2.2 手持电动工具的使用应符合国家标准的有关规定。工具的电源线、插头和插座应完好,电源线不得任意接长和调换,工具的外绝缘应完好无损,维修和保管应由专人负责。 3.2.3 噪音为90分贝或超过90分贝时,操作人员必须戴耳套。

风力发电机组防雷接地施工专项方案

风力发电机组防雷接地施工专项方案

目录 1.编制目的 (2) 2.风电厂地貌及接地电阻要求 (2) 3.编制依据 (3) 4.防雷接地系统 (3) 4.1总接地网 (3) 4.2风力发电机组接地布置 (3) 4.3集电线路铁塔接地型式 (4) 5.接地材料 (6) 5.1材料选择 (6) 5.2材质要求 (6) 6.质量保证措施 (6) 7.安全保证措施 (6)

防雷接地施工专项方案 1.编制目的 目前,风力发电被称为明日世界的能源。由于它属于可再生能源,为人与自然和谐发展提供了基础,而且不像火电、核电、水电会造成环境问题,所以符合社会可持续发展对能源的要求。所以,风力发电已在我国达到了举足轻重的地位。 然而,风力发电机组是在空旷、自然、外露的环境下工作,不可避免的会遭受到直接雷击。由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大。主体高度约80米、叶片长度约45米、即最高点高度约为120米的风机,在雷雨天气时极易遭受直接雷击。雷击是自然界中对风力发电机组安全运行危害最大的一种灾害,雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。 风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害。为保证风力发电机组的正常、安全使用,特编制此方案。 2.风电厂地貌及接地电阻要求 甄家湾风电场位于河北张家口蔚县地区,风力发电机组功率2000KW。此地,土壤电阻率比较高,超过450Ω.m,加之有岩石的存在,造成不同深度的土壤电阻率分布不均匀。 风机基础占地面积为9.8*9.8π,距其17.5m处有一台箱式变压器,

风力发电机组常见故障及诊断方法 卢志海

风力发电机组常见故障及诊断方法卢志海 摘要:近几年来,能源需求不断增加,不可再生能源逐渐减少,无污染、可再 生能源受到各个国家的高度重视。风力发电机组的开发与应用,能够提供清洁能源,减少能源应用给环境造成的破坏。然而,因风力发电机组配套设施的缺乏、 运行管理措施不完善等问题,增加了安全隐患的存在。现就风力发电机组运行安 全进行分析,提出了一种新型风力联合发电系统及安全运行控制有效措施。 关键词:风力发电;机组;控制措施;运行安全 引言 随着环境污染问题的日益突出,同时为了克服能源危机,风能作为一种绿色 可再生能源越来越受到世界各国的重视,风力发电机组(简称风电机组)作为将风 能转化为电能的关键装备得到了迅猛的发展。风电机组通常坐落于偏僻的、交通 不便的、环境恶劣的远郊地区以及沿海或近海区域,且机舱一般安装在离地面几 十米甚至上百米的高空,因此风电机组日常运行状态检测困难,维护成本昂贵。 风电机组在工作过程中,转子叶片的转速随风速的变化而变化,当阵风来袭或风 作用在不同叶片上的力不平衡时,叶片会受到复杂交变的冲击载荷,这些载荷通 过主轴传递到风电机组的其他关键零部件,如轴承、齿轮箱、发电机等,会对风 电机组的运行可靠性造成极大的影响。 一、风力发电机组的运行安全分析 风机借助主动对风方式,保证叶轮长期处于迎风状态,将风能转化成机械能,由驱动发电机转化机械能为电能,最终实现电网电能输送,这是风力发电机组工 作的主要原理。风力发电机组需要在野外长期运行,工作条件极其恶劣,人为无 法控制自然界风能,导致风力发电机组承受不同类型复杂载荷,一旦外界条件发 生变化,给风力发电机组运行安全造成严重威胁。 风力发电机组作为一个全天性自动运行设备,在运行期间能够实现自我控制,且与状态检测、自动运行及无人值守需求相符。从现阶段风力发电机组控制系统 来看,其核心是可编程控制器,控制器、传感器、PLC及其他执行机构共同构成 了控制系统。传感信号充分反映风力发电机组运行状态,一旦某项指标出现变化,在PLC的处理下,控制器将发出指令以对各项进行控制。由此可见,风力发电机 组控制系统与运行安全有着密切联系。实现风力发电机组运行安全的方式,不仅 可以借助风力发电机组控制系统,还可以在常规运行系统中设置安全链保护系统,这种系统主要运用单回路结构。机组出现过速、电网异常、极限风速、变桨超限 等故障时,回路能够自动断开,这样能够确保风力发电机组运行安全。 二、风电机组的故障特点 当风力发电机组发生故障时,风电机组的参数较正常状态运行时发生一定的 变化,这些参数的变化也是机组发生故障的体现,即风电机组的故障表征。从目 前研究结果来看,在故障条件下,对不同控制策略下风力发电机组故障表征对比 尚处于空白,具体分析如下: (1)定子铁芯故障 定子铁芯故障有定子铁芯松动和短路两种情况,松动是由于定子铁巧安装过 程中压装不紧或其紧固件松脱发生,短路是在非正确装配、轴承磨损或转轴弯曲 或非平衡磁拉力的作用下,定转子摩擦使得铁芯齿顶部分地方绝缘磨掉而导致片 间相连形成短路。铁芯松动的信号特征是电磁振动和噪声増大量非常多,频谱图 中会出现基本频率。

风力发电机组偏航系统详细介绍

风力发电机组偏航系统详细介绍2012-12-15 资讯频道 偏航系统的主要作用有两偏航系统是水平轴式风力发电机组必不可少的组成系统之一。 使风力发电机组的风轮始终处于迎风状态,其一是与风力发电机组的控制系统相互配合,个。以保障风力发其二是提供必要的锁紧力矩,充分利用风能,提高风力发电机组的发电效率;被动风力发电机组的偏航系统一般分为主动偏航系统和被动偏航系统。电机组的安全运行。舵轮常见的有尾舵、偏航指的是依靠风力通过相关机构完成机组风轮对风动作的偏航方式,常见的有主动偏航指的是采用电力或液压拖动来完成对风动作的偏航方式,和下风向三种;通常都采用主动偏航的齿轮驱动对于并网型风力发电机组来说,齿轮驱动和滑动两种形式。形式。 1.偏航系统的技术要求 1.1. 环境条件 在进行偏航系统的设计时,必须考虑的环境条件如下: 1). 温度; 2). 湿度; 3). 阳光辐射; 雨、冰雹、雪和冰;4). 5). 化学活性物质; 机械活动微粒;6). 盐雾。风电材料设备7). 近海环境需要考虑附加特殊条件。8). 应根据典型值或可变条件的限制,确定设计用的气候条件。选择设计值时,应考虑几 气候条件的变化应在与年轮周期相对应的正常限制范围内,种气候条件同时出现的可能性。不影响所设计的风力发电机组偏航系统的正常运行。 1.2. 电缆 必须使电缆有足够为保证机组悬垂部分电缆不至于产生过度的纽绞而使电缆断裂失效, 电缆悬垂量的多少是根据电缆所允许的扭转角度确定的悬垂量,在设计上要采用冗余设计。的。阻尼1.3. 偏航系统在机组为避免风力发电机组在偏航过程中产生过大的振动而造成整机的共振, 阻尼力矩的大小要根据机舱和风轮质量总和的惯性力矩来偏航时必须具有合适的阻尼力矩。只有在其基本的确定原则为确保风力发电机组在偏航时应动作平稳顺畅不产生振动。确定。阻尼力矩的作用下,机组的风轮才能够定位准确,充分利用风能进行发电。 1.4. 解缆和纽缆保护 偏航系统的偏航动解缆和纽缆保护是风力发电机组的偏航系统所必须具有的主要功能。 所以在偏航系统中应设置与方向有关的计数作会导致机舱和塔架之间的连接电缆发生纽绞,检测装置或类一般对于主动偏航系统来说,装置或类似的程序对电缆的纽绞程度进行检测。对于被动偏航系统检测装置或类似似的程序应在电缆达到规定的纽绞角度之前发解缆信号;偏航系并进行人工解缆。的程序应在电缆达到危险的纽绞角度之前禁止机舱继续同向旋转,一般与偏航圈统的解缆一般分为初级解缆和终极解缆。初级解缆是在一定的条件下进行的,这个装置的控制逻纽缆保护装置是风力发电机组偏航系统必须具有的装置,数和风速相关。辑应具有最高级别的权限,一旦这个装置被触发,则风力发电机组必须进行紧急停机。偏航转速 1.5. 1 对于并网型风力发电机组的运行状态来说,风轮轴和叶片轴在机组的正常运行时不可避免的产生陀螺力矩,这个力矩过大将对风力发电机组的寿命和安全造成影响。为减少这个力矩对风力发

风力发电机防雷系统

新疆大学电气工程学院课程作业 题目: 风力发电机防雷系统讲课老师: 王海云 学生姓名: 学号: 所属院系:电气工程学院 专业:电气工程及其自动化班级:电气09-4班 日期: 2013年5月

风力发电机防雷系统 0、引言 风能是当前技术较好的、最具备规模开发条件的可再生洁净能源。风能发电为人与自然和谐发展提供了基础。由于风力发电机组是在自然环境下工作,不可避免的会受到自然灾害的影响。由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大,为了吸收更多能量,轮毂高度和叶轮直径随着增高,相对的也增加了被雷击的风险,雷击成了自然界中对风力发电机组安全运行危害最大的一种灾害,并且雷击对风电机组造成的危害主要有直击雷、感应雷、雷电波侵入、地电位反击等形式。雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。 1、雷电的产生 雷电是伴有闪电和雷鸣的一种雄伟壮观而又有点令人生畏的放电现象。雷电一般产生于对流发展旺盛的积雨云中,因此常伴有强烈的阵风和暴雨,有时还伴有冰雹和龙卷风。积雨云顶部一般较高,可达20公里,云的上部常有冰晶。冰晶的凇附,水滴的破碎以及空气对流等过程,使云中产生电荷。云中电荷的分布较复杂,但总体而言,云的上部以正电荷为主,下部以负电荷为主。因此,云的上、下部之间形成一个电位差。当电位差达到一定程度后,就会产生放电,这就是我们常见的闪电现象。闪电的平均电流是3万安培,最大电流可达30万安培。闪电的电压很高,约为1亿至10亿伏特。一个中等强度雷暴的功率可达一千万瓦,相当于一座小型核电站的输出功率。放电过程中,由于闪电通道中温度骤增,使空气体积急剧膨胀,从而产生冲击波,导致强烈的雷鸣。带有电荷的雷云与地面的突起物接近时,它们之间就发生激烈的放电。在雷电放电地点会出现强烈的闪光和爆炸的轰鸣声。这就是人们见到和听到的闪电雷鸣。

大型风力发电机组故障诊断综述

大型风力发电机组故障诊断综述 发表时间:2018-05-22T10:02:18.487Z 来源:《基层建设》2018年第5期作者:李育波[导读] 摘要:近年来随着经济的不断发展,大型风力发电机组故障诊断的要求越来越高。国投白银风电有限公司甘肃兰州 730070 摘要:近年来随着经济的不断发展,大型风力发电机组故障诊断的要求越来越高。本文通过分析大型风力发电机组故障诊断方法,探讨及分析了风电机组故障诊断未来的发展方向。关键词:大型风力发电机组故障诊断引言:近年来,作为绿色、可再生能源的风能已成为解决能源污染问题必不可少的重要力量,截至2015年底,全球风电总装机容量已达427.4GW,其中陆上风电装机市场,中国仍居榜首。风力发电迅速发展带来巨大市场机遇的同时,也带来了巨大挑战。一方面,风电机组的工作条件十分恶劣,长期暴露在风速突变、沙尘、降雨、积雪等环境下,造成了风电机组故障频发。 1风电机组定性故障诊断方法和内容基于定性经验的风电机组故障诊断是一种利用不完备先验知识描述系统功能结构,并建立定性模型实现故障诊断过程的方法。大型风力发电机组故障诊断主要包括了2个方面,一个是风电机组定性故障诊断方法,另一种是风电机组定量诊断方法,这两种方法相辅相成。基于定性经验的风电机组故障诊断是一种利用不完备先验知识描述系统功能结构,并建立定性模型实现故障诊断过程的方法。基于ES风电机组故障诊断方法的基本思想是:运用专家在风力发电领域内积累的有效经验和专门知识建立知识库,并通过计算机模拟专家思维过程,对信息知识进行推理和决策以得到诊断结果。 1.1故障树分析法 FTA 是以故障树逻辑图为基础的一种演绎分析方法,20世纪60年代由美国贝尔实验室提出,既可以用作定性分析又可以用于定量分析。该方法以图形化为表达方式,从故障状态出发,逐级对故障模式和故障部件进行分析推理以确定故障原因和故障发生概率。其中,风电机组故障诊断大多是将其作为定性诊断方法进行分析。为获得清晰、形象地故障原因和宝贵的专家经验,并提供专家级的解决方案,文献结合FTA技术与专家系统应用于风电机组齿轮箱故障诊断中,结果表明该方法对专家库的依赖程度过大。提出了基于FTA的风电机组传动链故障诊断方法,采用框架结构的混合知识表达方式,建立了基于故障树的智能诊断系统。 1.2符号有向图(SDG)方法符号有向图SDG是基于定性经验或基本定律的一种故障诊断技术。可实现正、反向推理,在缺乏知识的详细过程背景下,能够捕捉有效信息并结合相关搜寻策略准确、快速地检测和定位故障。风电机组故障部件的检修顺序对降低风场运营成本起着举足轻重的作用,根据风电机组各部件的相互作用机理,建立了SDG故障诊断模型,并采用关联算法安排检修顺序,但文中仅仅针对控制回路较少的情况展开研究。结合SDG和模糊逻辑方法应用于风电机组故障诊断中,并采用了层次分析法设计故障诊断系统,有效地抑制了分辨率低等问题。基于SDG的风电机组故障诊断不要求完备的定量描述,能充分利用系统结构和正常运行条件下的不完全信息,但系统复杂程度的增加将导致SDG支路数和节点数之间复杂关系的增加,造成故障诊断的实时性和精准度较差。因此,该方法较少应用在风电机组故障诊断中。 2风电机组定量故障诊断方法 2.1基于解析模型的方法基于解析模型的故障诊断适用于观测对象传感器数量充足且具备精确数学模型的系统,通过与已知模型进行分析对比从而达到故障识别的目的,主要包括参数估计法、状态估计法等。文献建立了三叶片水平轴风电机组基准模型,采用 5种不同的故障监测与隔离方案评估了7种不同的测试系列,取得了较为满意的结果,但是基准模型的简单化不能体现风电机组的复杂功能。文献在考虑未知执行器增益和延迟两种情况下,提出了基于离散时间卡尔曼滤波器和交互多模型估计器的风电机组转换器故障诊断方法。以三叶片水平轴风电机组为研究对象,利用改进未知输入观测器方法进行故障识别,实现了干扰解耦和噪声降低的效果,提高了诊断精度,但该方法的自适应能力不强。 2.2基于数据驱动的方法基于数据驱动的诊断方法包含2种方式1分析处理监测信号以提取故障特征;2直接利用大量相关数据进行推理分析并得到诊断结果,主要包括信号处理法、人工智能定量法与统计分析法,是目前风电机组故障诊断所采用的主流方法。 3风力发电故障诊断系统为提高风场经济效益,改善运维现状,越来越多的机构致力于研发风电机组在线故障诊断系统,已经取得了许多卓有成效的成就,主要针对风电机组的关键部件,包括机舱、基础、塔架、叶片、齿轮箱等。数据采集与监控系统是目前较为成熟的商业软件之一,除了通过分析收集到的数据预测轴承和其他机械等最基本的故障以外,该系统还具有控制发电应用数据的作用。为提高风电机组故障预测精度,产生了许多结合SCADA数据进行状态监测的系统。其中通用电气的风电状态监测系统采用傅里叶频域和加速度包络分析机组运行信息,并对主轴承、发电机、机舱、齿轮箱等关键部件进行故障诊断,达到了每年每台风电机组节省 3000 美元的效果。Mita-Teknik的状态监测系统使用傅里叶振幅谱、傅里叶包络谱、峭度值分析等方法分析振动信号以判定主轴承、发电机、齿轮箱等部件的故障,大大地提高了机组的运行效率。为配合管理人员、操作人员和维修工程师的工作任务,斯凯孚的 3.0状态监测系统采用傅里叶频域分析、时域分析和包络分析等方法确定风电机组的故障类型,但该系统对风电机组主传动链的监测不太全面。相对国外而言,国内风力发电监测技术比较落后且故障自诊断技术较为不成熟,导致目前该系统以状态监测为主,并辅以专家远程人工分析,实现机组的故障诊断及其定位。主要有东北大学、华中科技大学的“风力发电在线监测和故障诊断系统”,以及金风科技公司的“风电机组在线监测系统”和唐智科技的风电机组在线故障诊断系统”等。 4结束语:随着大功率风电机组的快速发展和并网运行,对其运行可靠性与系统稳定性提出了更高的要求,必将促进风电机组状态监测、故障诊断和智能维护技术的进一步发展。任何一种单独技术或绝对方法都无法解决风电机组所有故障诊断问题,因此,采取多种技术方法相结合,取长补短实现风电机组的故障诊断将逐步成为未来的研究热点。参考文献:

风电机组叶片防雷检查

关于叶片防雷及接地的避免措施和检查方法整理如下,希望有所帮助。 一、目前叶片雷击基本为:雷电释放巨大能量,使叶片结构温度急剧升高,分解叶片内部气体高温膨胀, 压力上升造成爆裂破坏(更有叶片内存在水分而产生高温气体,爆裂)。叶片防雷系统的主要目标是避免雷电直击叶片本体而导致叶片损害。经过统计:不管叶片是用木头或玻璃纤维制成,或是叶片包导电体,雷电导致损害的范围取决于叶片的形式。叶片全绝缘并不减少被雷击的危险,而且会增加损害的次数。多数情况下被雷击的区域在叶尖背面(或称吸力面)。根据以上叙述,叶片防雷设计一般在叶尖装有接闪器捕捉雷电,再通过敷设在叶片内腔连接到叶片根部的导引线使雷电导入大地,约束雷电,保护叶片。 二、按IEC61400-24标准的推荐值,叶片防雷击铜质电缆导线截面积最小为50平方毫米。如果为高发区, 可适当增加铜质电缆导线截面积。 三、我集团近期刚出的一个检查标准: 1、叶片吊装前,逐片检查叶片疏水孔通畅。 2、叶片吊装前,逐片检查叶片表面是否存在损伤。 3、叶片吊装前,应逐片检查叶片防雷引下线连接是否完好、防雷引下线截面是否损伤,检测叶片接闪器到叶片根部法兰之间的直流电阻,并做好检测记录。若叶片接闪器到叶片根部法兰之间的直流电阻值

高于20 mΩ,应仔细检查防雷引下线各连接点联接是否存在问题。 叶片接闪器到叶片根部法兰之间直流电阻测量采用直流微欧计、双臂电桥或直流电阻测试仪(仪器分辨率不低于 1 mΩ),采用四端子法测量,检查叶片叶尖及叶片上全部接闪点与叶片根部法兰之间直流电阻,每点应测三次取平均值。 4、机组吊装前后,应检查变桨轴承、主轴承、偏航轴承上的泄雷装置(碳刷、滑环、放电间隙 等)的完好性,并确认塔筒跨接线连接可靠。 表1 防雷检查及测试验收清单

大型风力发电机组远程故障诊断系统资料

大型风力发电机组远程故障诊断系统 南京协宏软件技术有限公司 2015年01月

目录 1系统概述 (4) 1.1系统名称 (4) 1.2风电背景 (4) 2编制依据及系统概述 (4) 2.1系统概述 (5) 2.2技术基础 (5) 2.3项目技术特点 (5) 2.4设计制造的行业技术标准 (6) 3系统结构与特点 (7) 3.1系统结构总图 (7) 3.2系统测点配置 (7) 3.3系统硬件特点 (8) 3.3.1数据采集监测站Drivetrain DAU (8) 3.3.2数据服务器 (9) 3.3.3传感器 (9) 3.4系统实时监测功能 (10) 3.4.1实时监测 (10) 3.4.1总貌图描述 (12) 3.4.2棒图描述 (13) 3.4.3波形频谱图描述 (13) 3.4.4趋势跟踪图描述 (14) 3.5分析诊断功能 (15) 3.6数据管理功能 (20) 3.6.1数据记录的存储策略 (20)

3.6.2事故追忆功能 (20) 3.6.3数据传输的可靠性策略 (20) 3.6.4数据记录稀疏策略 (21) 3.6.5数据备份方法 (21) 3.6.6用户数据检索功能 (21) 4远程监测与诊断中心 (22) 4.1远程监测中心系统结构图 (22) 4.2系统硬件特点 (22)

1系统概述 1.1系统名称 大型风力发电机组远程故障诊断系统 1.2风电背景 近十年来,风力发电在全世界范围内得到了持续高速发展,为应对全球气候变化作出了重要贡献。风能作为一种清洁的可再生能源已成为低碳经济的重要标志之一。我国在大规模的风能利用方面虽然起步较晚,但近些年来发展非常快,到2009年年底,全国风力机械标准化技术委员会共制定发布风力发电国家标准和行业标准61项,累计装机容量跃过20GW大关,达到25.8053GW。2009年当年,我国新增风机10129台,装机容量13,8032GW,占全球新增风电装机的1/3,超过美国排名全球第一。据国家发改委能源司对未来国家能源战略划,到2020年中国的风电装机总容量将达到30GW。 风力发电机组面对各种恶劣的工作环境及严格的电网条件,运行工况复杂多变,各种因素使风力发电机组的可利用率,风电转换效率及使用寿命受到很大影响,很多重大事故的发生,往往源于一个数据的错误或一种信息的疏忽。在一个现代化的大型风电场中,可能会有十几台甚至几十台上百台风力机,如何有效地对各风力机状态进行监测和分析,使整个风电场安全、可靠、经济地运行就变得至关重要。 由于风场的选址受到地理条件及风能资源的限制,各风场之间的距离可能会非常遥远,特别是对于海上风场的情况。在这样的前提下,如何方便快捷地对各风场运行状况进行监测和分析以及实现风场间的远距离数据通讯,保证多风场的统一管理运营及维护,并使得广泛的国内、国际技术合作和多方在线断得以实现,成为今后风电行业的新兴发展方向。 本技术方案是依据风力发电机组远程状态监测与故障诊断的需求,结合我公司多年从事旋转机械远程在线状态监测和分析诊断以及风电设备状态监测及分析产品的开发和规模应用经验而编制的。 2编制依据及系统概述

风力发电机组主控制系统

密级:公司秘密 东方汽轮机有限公司 DONGFANG TURBINE Co., Ltd. 2.0MW108C型风力发电机组主控制系统 说明书 编号KF20-001000DSM 版本号 A 2014年7 月

编制 <**设计签字**> <**设计签字日期**> 校对 <**校对签字**> <**校对签字日期**> 审核 <**审核签字**> <**审核签字日期**> 会签 <**标准化签字**> <**标准化签字日期**> <**会二签字**> <**会二签字日期**> <**会三签字**> <**会三签字日期**> <**会四签字**> <**会四签字日期**> <**会五签字**> <**会五签字日期**> <**会六签字**> <**会六签字日期**> <**会七签字**> <**会七签字日期**> <**会八签字**> <**会八签字日期**> <**会九签字**> <**会九签字日期**> 审定 <**审批签字**> <**审批签字日期**> 批准 <**批准签字**> <**批准签字日期**> 编号

换版记录

目录 序号章 节名称页数备注 1 0-1 概述 1 2 0-2 系统简介 1 3 0-3 系统硬件11 4 0-4 系统功能 5 5 0-5 主控制系统软件说明12 6 0-6 故障及其处理说明64

0-1概述 风能是一种清洁环保的可再生能源,取之不尽,用之不竭。随着地球生态保护和人类生存发展的需要,风能的开发利用越来越受到重视。 风力发电机就是利用风能产生电能,水平轴3叶片风力发电机是目前最成熟的机型,它主要是由叶片、轮毂、齿轮箱、发电机、机舱、变频器、偏航装置、刹车装置、控制系统、塔架等组成。 风力发电机的控制技术和伺服传动技术是其核心和关键技术,这与一般工业控制方式不同。风力发电机组控制系统是一个综合性的控制系统,主要由机舱主控系统、变桨系统、变频控制系统三部分组成,通过现场总线以及以太网连接在一起,各个模块都有独立的控制单元,可独立完成与自身相关的功能(图0-1-1)。目的是保证机组的安全可靠运行、获取最大风能和向电网提供优质的电能。 图0-1-1

风力发电机组防雷接地施工专项方案

目录

防雷接地施工专项方案 1.编制目的 目前,风力发电被称为明日世界的能源。由于它属于可再生能源,为人与自然和谐发展提供了基础,而且不像火电、核电、水电会造成环境问题,所以符合社会可持续发展对能源的要求。所以,风力发电已在我国达到了举足轻重的地位。 然而,风力发电机组是在空旷、自然、外露的环境下工作,不可避免的会遭受到直接雷击。由于现代科学技术的迅猛发展,风力发电机组的单机容量越来越大。主体高度约80米、叶片长度约45米、即最高点高度约为120米的风机,在雷雨天气时极易遭受直接雷击。雷击是自然界中对风力发电机组安全运行危害最大的一种灾害,雷电释放的巨大能量会造成风力发电机组叶片损坏、发电机绝缘击穿、控制元器件烧毁等。 风机的防雷是一个综合性的防雷工程,防雷设计的到位与否,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害。为保证风力发电机组的正常、安全使用,特编制此方案。 2.风电厂地貌及接地电阻要求 甄家湾风电场位于河北张家口蔚县地区,风力发电机组功率2000KW。此地,土壤电阻率比较高,超过450Ω.m,加之有岩石的存在,造成不同深度的土壤电阻率分布不均匀。 风机基础占地面积为*π,距其处有一台箱式变压器,再远处亦是35KV集电线路终端铁塔。为保证风电场不遭受雷击而正常发电运行,要求风力发电机组的接地电阻值≤Ω,35KV集电线路铁塔的接地电阻值详见接地装置数据表。

3.编制依据 (1)施工招标文件及相关施工图; (2)国家、行业及自治区现行的有关工程建设标准、规范、规程及相关的法律、法规,具体如下: 《电气装置安装工程接地装置施工及验收规范》GBJ50242—2002 《风力发电场项目建设工程验收规范》DLT5191-2004 4.防雷接地系统 总接地网 图1、风机与升压变接地网布置图 风力发电机组接地布置

最新风力发电标准大全

风力发电标准大全 本文从国家标准、电力行业标准、机械行业标准、农业标准、IEC标准、AGMA美国齿轮制造商协会标准、ARINC美国航空无线电设备公司标准、ASTM 美国材料和实验协会标准等几个方面总结风力发电标准大全。1、风力发电国家标准 GB/T 2900.53-2001电工术语风力发电机组 GB 8116—1987风力发电机组型式与基本参数 GB/T 10760.1-2003离网型风力发电机组用发电机第1部分:技术条件 GB/T 10760.2-2003离网型风力发电机组用发电机第2部分:试验方法 GB/T 13981—1992风力设计通用要求 GB/T 16437—1996小型风力发电机组结构安全要求GB 17646-1998小型风力发电机组安全要求 GB 18451.1-2001风力发电机组安全要求 GB/T 18451.2-2003风力发电机组功率特性试验 GB/T 18709—2002风电场风能资源测量方法 GB/T 18710—2002风电场风能资源评估方法 GB/T 19068.1-2003离网型风力发电机组第1部分技术条件 GB/T 19068.2-2003离网型风力发电机组第2部分试验方法 GB/T 19068.3-2003离网型风力发电机组第3部分风洞试验方法 GB/T 19069-2003风力发电机组控制器技术条件 GB/T 19070-2003风力发电机组控制器试验方法 GB/T 19071.1-2003风力发电机组异步发电机第1部分技术条件

GB/T 19071.2-2003风力发电机组异步发电机第2部分试验方法 GB/T 19072-2003风力发电机组塔架 GB/T 19073-2003风力发电机组齿轮箱 GB/T 19115.1-2003离网型户用风光互补发电系统第1部分:技术条件 GB/T 19115.2-2003离网型户用风光互补发电系统第2部分:试验方法 GB/T 19568-2004风力发电机组装配和安装规范 GB/T 19960.1-2005风力发电机组第1部分:通用技术条件 GB/T 19960.2-2005风力发电机组第2部分:通用试验方法 GB/T 20319-2006风力发电机组验收规范 GB/T 20320-2006风力发电机组电能质量测量和评估方法GB/T 20321.1-2006离网型风能、太阳能发电系统用逆变器第1部分:技术条件 GB/T 21150-2007失速型风力发电机组 GB/T 21407-2008双馈式变速恒频风力发电机组 2、风力发电电力行业标准 DL/T 666-1999风力发电场运行规程 DL 796-2001风力发电场安全规程 DL/T 797—2001风力发电厂检修规程 DL/T 5067—1996风力发电场项目可行性研究报告编制规程 DL/T 5191—2004风力发电场项目建设工程验收规程DL/T 5383-2007风力发电场设计技术规范3、风力发电机械行业标准 JB/T 6939.1—2004离网型风力发电机组用控制器第1部分:技术条件

相关主题
文本预览
相关文档 最新文档