当前位置:文档之家› 工程硕士现代信号处理复习(word版)

工程硕士现代信号处理复习(word版)

工程硕士现代信号处理复习(word版)
工程硕士现代信号处理复习(word版)

学习要点 ◆ 1.课随机变量的描述 ◆ 2.随机变量的数值特征 ◆ 3.离散随机过程 ◆ 4.狭义平衡随机过程 ◆ 5.随机过程的数值特征 ◆ 随机过程的数值特征 ◆ 6.自相关序列和自协方差序列 ◆ 7.离散随机过程的平均 ◆ 8.相关序列和协方差序列的性质 ◆ 9.功率谱 ◆ 10.离散随机信号通过线性非移变系统 习题一

解:

因为正弦与余弦为正交函数:

12()cos()sin(),()PSD p

i i i i i i i x n A w n B w n A B x n σ==+∑

设 其中随机变量都服从均值为零、方差为的高斯分布,并且两两之间互相独立。求的均值、自相关函数和功率谱密度()。[][][]111()()cos()sin() cos()+sin() =0

p

i i i

i i p p i i i i

i i x n E x n E A w n B w n E A w n E B w n ===??

=+ ?

??

∑∑∑的均值为:=[][]

1211221112121112()()()()=cos()sin()cos()sin()cos()cos()sin()sin()=cos(),-p p i i i i i i i i i i p p p p i j i j i j i j i j i i p

x n x n E x n x n E A w n B w n A w n B w n E A A w n w n E B B w n w n w m m n n φσ

======????

++

???????????+????=∑∑

∑∑∑∑

的自相关函数为:=

第二章维纳滤波器

第二章维纳滤波器习题课 内容

? 维纳滤波器分类 ? 维纳滤波器的时域解 ? 维纳滤波器的Z 域解 ? 维纳滤波器的预测器 一、维纳滤波分类

二、维纳滤波的时域解

三、维纳滤波的复频域(Z)解

[]

[][]

[

]

12212

2

2()P ()FT ()()=FT cos(),-(-)()=(-)()

p i i p

i i i

p

i i i x n x n x n x n w m m n n w w w w w w w w φσσπδδσπδδ??=??

??

=????=++++∑

∑∑的功率谱函数为:(2)?(),(-1),(-2),,()x n x n x n s n N +由过去的观测值估计当前甚至将来的信号值,即以来确定,这属于预测或外推。(1)?(),(-1),(-2),,()x n x n x n s n 由当前的及过去的观测值估计当前的信号值,即由来确定,这常作滤波。(3)?(),(-1),(-2),,(-)1

x n x n x n s

n N N ≥由过去的观测值估计过去的信号值,即以来确定,而内插,这或常被称作者平滑。[][][]

xs xx h φφ=为维纳-霍夫方程。

维纳滤波器的最佳解[][][][]

-1

xx xs opt h h φφ==z 维纳-霍夫方程不能直接转入域求解的根本原因是:系统的因果性。

比较因果维纳滤波器 与非因果维纳滤波器:

比较因果维纳滤波器与非因果维纳滤波器设计步骤:

因果滤波器设计实现步骤:

(1)Z 在域上,因果维纳滤波器的最小均方误差与非因果维纳滤波器的最小均方误差的形式相同:()-ss opt c z H ?Φ??

()opt H z 但公式中的的表达式不同:2

-1

()1

()()xs opt w z H B z B z σ

+

??Φ=

????因果:21

()()

1

()()()()

xs

xs opt w xx z z z B z z z H B σ-ΦΦ==

Φ非因果:(2)在时域上,因果维纳滤波器与非因果维纳滤波器的最小均方误差:222min -1

()(0)-

()

ss ws k w E e n k φφ

σ

=∞??=??

∑非因果:22

2min 01

()(0)-

()

ss ws

k w E e n k φφ

σ

∞=??=??

∑因果:它们第二项求和域不同。可通过计算积分函数在单位园内的极点的留数来得到。(1)()x n 根据观测信号的功率谱求出它所对应的信号模型的传输函数,

四、最佳线性预测滤波器

? 1、IIR 预测器

? 2、N 步IIR 纯预测器 ? 3、一步线性预测器 1、IIR 预测器

基本的维纳预测器

2-1

-12

()()()()()xx w w z B z B z B z B z σσΦ=具体方法为:把单位园内的零极点分配给,单位园外的零极点分配给,系数分配给。-1-1(2)()()z ()()xs xs z B z z B z +

??Φ??????Φ??

??求的反变换,

取其因果部分再做变换。即舍掉单位园外的极点,得:2-12-1-1

min 2min ()1()()()1

()=()-()()2()(3())xs opt w ss opt xs c opt z H z B z B z E e n z H z z z dz

j H z E e n σπ+

??

Φ=????????ΦΦ??

??????

?积分曲线取计算单位和园,应用式:。

输入与输出关系:

非因果IIR 预测器

0()()(-) 0

d xy opt xx m k h m k m k φφ∞==≥∑()()

d N

xy xs z z z Φ=Φ[]{

}

2

2min

min

-1

-1

N ?()=()-()1

()-()()2d ss opt xy c E e n N E s n N s

n N z H z z z dz j π??+++????=

ΦΦ?

??步预测的维纳预测器的最小均方误差:[]{}

2

min

--1-1()

()

()()()

? ()-()1=

()-()()2d N

xy xs opt xx xx N ss opt xs c

z z z H

z z z E s n N s n N z H z z z z dz

j

πΦΦ==

ΦΦ++??ΦΦ???

因果IIR 预测器

2、N 步IIR 纯预测器

纯预测器

2-1

+

2

-1

()1

()()()()1

=()()d xy opt w N xs w z H

z B z B z Z z B z B z σσ+

Φ??=??????Φ????[]{}

2

min

-1-1

--1-1?()-()1

()-()()21

=()-()()2d ss opt xy c N ss opt xs c E s n N s n N z H z z z dz j z H z z z z dz j

ππ++??=ΦΦ?

???ΦΦ????其最小均方误差:

()opt H

z 对比可知:因果、非因果表示形式完全一样,

只是不尽相同罢了。

(n)=0 ()()+(n)=()x n s n s n υυ

=纯预测:不考虑噪声信号,即:,

2

-1

+

2-12-1

()1

()()

()()()1

=()()1()()d xy opt w N w w N

z H z B z B z Z B z B z B z B z Z B z B z σσσ+

+

Φ??=????????????=?

?对于因果系统:-1

-0-1

-0()=()-()1()()-()()N N

N

k k N N k opt k Z B z Z B z b k z H z Z B z b k z B z +==???? ?

????

????=?? ?????

∑∑{}

2

min

-1-1

()1()-()()2d ss opt xy c

E e n N z H z z z dz j π??+????=ΦΦ???其最小均方误差:

{}

2-12--1-1

1

()()-()()2N N w w c

B z B z z B z z B z z dz j

σσπ+

??=

???{}

2min

2222

()()-()E e n N b n b n N σσ∞∞

+=+∑∑

特例:

3、一步线性预测器, 也称FIR 单步预测器

(-1),(-2),

(-)

x n x n x n p -1z -1z -1

z FIR p 一步线性预测器阶单步预测器

-2),(-)

x n p 一步线性预测

{}

2

2in

-20

1

m ()()

w

n N E e n N b n σ

=+=∑2

IIR (0)1,1

w b σ==单步纯预测器为:设[][]1

()()=()-1()

()

opt H

z ZB z Z B z B z B z +={}

-1

222

min

(1)()=1

n N w

E e n b

n σ

=+=∑1

?()()()(-) FIR p

k y n x

n h k x n k p ===∑是典其输出信号型的。

式中:为阶数,看出此线性预测一步器为线性预测计算公式:型。

Yule-Walker 方程

{}()(-)0, 1,2,

,Yule-Walker E e n x n l l p

==预测预测误差的均方值取得最小值时,推误差与进入预测的数据正交:出:方程。

()-pk

h k a =令2

min

11(0)()()()(-)0, 1,2,,

p

xx pk xx k p

xx pk xx

k a k E e n l a l k l p φφφφ==???+=??????+==??

∑∑2

min 11()(0)(1)()(1)(0)

(-1)0=()(-1)

(0)0

xx xx xx p xx

xx xx pp xx xx xx E e n p a p a p p φφφφφφφφφ??????????????

???

??????

?

??

???????

?????????

?

?

以矩阵形式表示:是求解一步维纳预测器的有效方法。

1(1)

1

(1)

12()(1)(2)()p p p p pp H z h h z h p z a a z a z

------=+++=--+-预测误差滤波器

题2

解:

(-1),(-2),(-)

x n x n x n p -1z -1z -1

z 一步线性预测误差滤波器

-12min ()()(),0.38

()(1-0.6)(1-0.6)

()1,()

()0,(()())

()(n)()()ss s opt x n s n n z z z z z s n n s n H z E e n υυυυυυ=+Φ=

Φ=Φ=????设已知:以及白噪声与不相关其中为希望得到的信号,为加性白噪声,试求物理可实现与物理不可实现两种情况时的

与相应的。

-1-1-12-1()0()1, ()() ()

0.38(1-0.4)(1-0.4)

=+1=1.5(1-0.6)(1-0.6)(1-0.6)(1-0.6)

()()()

()s xx ss xx w z z z z z z z z z z z z B z B z B z υ

υυυυσΦ=Φ=Φ=Φ+ΦΦ=设,所以:其中由单位园内的零、极点,

2-1-1

-1

=1.5,

(1-0.4)()=,(1-0.6)(1-0.4)()=

(1-0.6)

()0()1,

w s z B z z z B z z z z υυυσΦ=Φ=对于物理可实现情况:设,s 2-1+2

-1+-1-1-1+

()1()= ()()()1=()()1-0.60.38

=1.5(1-0.4)(1-0.6)(1-0.4)x opt w ss w z H z B z B z z B z B z z z z z σσ??

Φ??????Φ???

???????所以:

()()

()-1

-1-1-1

0n<0)

-1-10.38110.4=(1-0.6)(1-0.4)21-0.61-0.4110.6 2.522

01

0.382=(1-0.6)(1-0.4)1-0.6n n n z Z Z z z z z n z z z ≥????

??+ ?????????

??

=+≥??????时(时+

由于

由于讨论是物理可实现的情况,取之项。

-1-1-1-1

11

1-0.632()=

1.5(1-0.4)1-0.61-0.4opt z H z z z z =因此

第三章卡尔曼滤波器 内容

? 卡尔曼滤波器的信号模型-离散状态方程和量测方程 ? 卡尔曼滤波的算法

? 卡尔曼滤波与维纳滤波的关系

1.卡尔曼滤波器的信号模型-离散状态方程和量测方程

– 离散系统的n 维状态方程:

离散系统的m 维量测方程:

2.卡尔曼滤波算法

? 采用的误差准则:均方误差最小。 ? 采用递推估计方法。 统计特性:

初始条件:

1-1()k k k x k A x w

-=+k k k k

y c x υ=+[][]0cov ,0cov ,cov ,0, ,0,1,2T k k j k j k kj T k k j k j k kj

T k j k j E w w w E w w Q E E R w E w k j δυυυυυδυυ????===????

????===????????===?

????,,[][][][]000000

0000var (-)(-)cov ,0

cov ,0

T

T k k T

k k

E x

x E x x p x w E x w x E x μ

μμυυ=??==

????==????==??卡尔曼滤波算法的递推公式

3.卡尔曼滤波与维纳滤波的关系

题3

()()-1-1-1'''-1-1'???(-)-k k k k k k k k T T

k k k k k k k T k k k k k k k k k x A x H y C A x H P C C P C R P A P A Q P I H C P =+??=+??

=+??=?

递推公式增益方程 均方误差阵 均方误差阵

1()k H H z 当卡尔曼滤波:

()把稳态的代入有关式子,得到与维纳滤波有相同结果。

2k H ()用不稳态的代入,将不可能与维纳滤波有相同结果。

-1-2-3

-1-2-38-411-2()5311--448

()z z z H z z z z H z +=

+已知网络的传输函数:

用直接法,由求状态方程和量测方程。

-1-2-3

-1-2-38-411-2()5311--448

z z z H z z z z +=

+解:已知传输函数:信号流图为:

题4(P56)

()

x n ()

y n 8

3()

w n []112233

1235311-(1)()4480(1)100()()0(1)010()()()65-1()8()()w n w n w n w n x n w n w n w n y n w n x n w n ??????+??????????????+=+????????

??????+????????????

????=+??????状态方程:输出方程为:[]-1-100

0.36

()(1-0.8)(1-0.8)

()=1,()=0

?0,var =1,0?(.k k

xx x k k k k k x z z z z z x

P x k y y x x

υυυυυΦ=

ΦΦ====+设与为实离散时间随机过程,具有功率谱密度:

并已知在时开始观测信号),试用卡尔曼滤波公式求

第四章 自适应滤波器 本章内容

? 自适应横向滤波器的基本概念 ? 自适应滤波的手段 ? 自适应滤波器实现方法

? LMS (最小均方误差)自适应滤波器原理 ? 最陡下降算法 ? LMS 递推算法

? LMS 格型自适应滤波器 ? 自适应滤波器的应用 1、自适应滤波理论

利用前一时刻所获得的滤波器参数等结果 自动调整现在时刻的滤波器参数 使滤波系统的参数按某种最佳准则 要求达到最佳状态

无需任何关于信号与噪声的先验统计知识 2、自适应滤波的手段

3、自适应滤波器实现方法

()h n 自适应滤波器通过自动调节系统的值,以满足最小的均方误差的准则。具体设计时,人们常以横向滤波器构成这种自适应滤波系统。::i i w d 自适应滤波器加权系数,

表示所期望的输出。

4、LMS 自适应滤波器原理

N

.LMS 图最小均方误差自适应滤波器结构自适应是通过输出信号的反馈实现,具有“闭环”结构。()

22

()-j j j E e E d y =LMS 自适应滤波器:以均方误差最小

(即作为其最佳滤波准则的。

与维纳滤波器一样。

-T

j j j j j

e d y d W X ==-()222--2j j j T T T j j j j j E e E d y E d E d X W W E X X W

????=??????

??????=+??????12,,,T

j j j j j j

j Nj P E d X E d x d x d x d X ????==????

=与的互相关矢量

11122122=j j j j j j j j

T j j Nj Nj

j x x x x x x x x R E X X E x x X ????????==?????????

?

输入的自相关矩阵

22-21T T

j j E e E d P W W RW ????=+????

 于是:

()j

?均方误差的梯度j w 由上式对权矢量的各进行微分得到

,E e w ????

5、最陡下降算法

*

*-1-22=0==3P RW W W R P +即 或 ()

6、LMS 递推算法

维德罗-霍夫最小均方误差算法(Widrow-Hoff LMS) 为了便于实时系统实现

μ靠拢的步距由确定。

2j e 取单个误差样本的平方的梯度作为均方误差梯度的估计

?j ?以表示这个估计j

N j N e W e W ?

???????

????-210E E e X ?????=?= ()

? LMS 格型自适应滤波器

?j j j ?

??即的期望值等于其真值,故这种对的估计是无偏估计

?j j j j

j j e X E e X ??????

????即的估计值是用的瞬时值代替它的期望值得到的。

1?-=+211j j j j j j W W W e X μμ+=? ()

-T

j j j

j

e

d W X =其中:(Widrow-Hoff LMS)

此算法称为维德罗-霍夫最小均方 算法。11()()(-1)

p p p p e n e n k b n =+--前向预测误差的递推公式为:

-11()(-1)()

p p p p b n b n k e n =+-后向预测误差的递推公式为:

现代信号处理复习要点总结

《信号处理技术及应用》复习要点总结 题型:10个简答题,无分析题。前5个为必做题,后面出7个题,选做5个,每个题10分。 要点: 第一章:几种变换的特点,正交分解,内积,基函数; 第二章:信号采样中的窗函数与泄露,时频分辨率,相关分析及应用(能举个例子最好) 第三章:傅里叶级数、傅里叶变换、离散傅里叶变换(DFT)的思想及公式,FFT校正算法、功率谱密度函数的定义,频谱细化分析,倒频谱、解调分析、时间序列的基本原理(可能考其中两个)第四章:一阶和二阶循环统计量的定义和计算过程,怎么应用? 第五章:多分辨分析,正交小波基的构造,小波包的基本概念 第六章:三种小波各自的优点,奇异点怎么选取 第七章:二代小波提出的背景及其优点,预测器和更新器系数计算方法,二代小波的分解和重构,定量识别的步骤 第八章:EMD基本概念(瞬时频率和基本模式分量)、基本原理,HHT的基本原理和算法。看8.3小节。 信号的时域分析 信号的预处理 传感器获取的信号往往比较微弱,并伴随着各种噪声。 不同类型的传感器,其输出信号的形式也不尽相同。 为了抑制信号中的噪声,提高检测信号的信噪比,便于信息提取,须对传感器检测到的信号进行预处理。 所谓信号预处理,是指在对信号进行变换、提取、识别或评估之前,对检测信号进行的转换、滤波、放大等处理。 常用的信号预处理方法 信号类型转换 信号放大 信号滤波 去除均值 去除趋势项 理想低通滤波器具有矩形幅频特性和线性相位特性。 经典滤波器 定义:当噪声和有用信号处于不同的频带时,噪声通过滤波器将被衰减或消除,而有用信号得以保留 现代滤波器 当噪声频带和有用信号频带相互重叠时,经典滤波器就无法实现滤波功能 现代滤波器也称统计滤波器,从统计的概念出发对信号在时域进行估计,在统计指标最优的意义下,用估计值去逼近有用信号,相应的噪声也在统计最优的意义下得以减弱或消除 将连续信号转换成离散的数字序列过程就是信号的采样,它包含了离散和量化两个主要步骤 采样定理:为避免混叠,采样频率ωs必须不小于信号中最高频率ωmax的两倍,一般选取采样频率ωs为处理信号中最高频率的2.5~4倍 量化是对信号采样点取值进行数字化转换的过程。量化结果以一定位数的数字近似表示信号在采样点的取值。 信号采样过程须使用窗函数,将无限长信号截断成为有限长度的信号。 从理论上看,截断过程就是在时域将无限长信号乘以有限时间宽度的窗函数 数字信号的分辨率包括时间分辨率和频率分辨率 数字信号的时间分辨率即采样间隔ρt,它反映了数字信号在时域中取值点之间的细密程度 数字信号的频率分辨率为ρω=2π/T

现代信号处理方法1-3

1.3 时频分布及其性质 1.3.1 单分量信号与多分量信号 从物理学的角度看,信号可以分为单分量信号和多分量信号两类,而时-频分布的一个主要优点就是能够确定一个信号是单分量的还是多分量的。所谓单分量信号就是在任一时间只有一个频率或一个频率窄带的信号。一般地,单分量信号看上去只有一个山峰(如图 1.2.2),图中所示的是信号)()()(t j e t A t s ?=的时-频表示,在每一个时间,山峰的峰值有明显的不同。如果它是充分局部化的,那么峰值就是瞬时频率;山峰的宽度就是瞬时带宽。一般地,如果)(t z 是信号)(cos )()(t t a t s φ=的解析信号,)(f Z 是)(t z 对应的频谱, 图1.2.2 单分量信号时-频表示及其特征 则其瞬时频率定义如下: )]([arg 21)(t z dt d t f i π= (1.2.1) 与瞬时频率对偶的物理量叫做群延迟,定义如下: )]([arg 21)(f Z dt d f g πτ= (1.2.2) 而多分量信号是由两个(或多个)山峰构成, 每一个山峰都有它自己不同的瞬时 频率和瞬时带宽。(如图1.2.3所示)。 图1.2.3 多分量信号时-频表示及特征

1.3.2 时-频分布定义 Fourier 变换的另一种形式 ?∞ ∞ --=dt e t s f S ft j π2)()( ?∞ ∞ -=df e f S t s tf j π2)()( Cohen 指出,尽管信号)(t z 的时-频分布有许多形式,但不同的时-频分布只是体现 在积分变换核的函数形式上,而对于时-频分布各种性质的要求则反映在对核函数的约束条件上,因此它可以用一个统一形式来表示,通常把它叫做Cohen 类时-频分布,连续时间信号)(t z ()(t z 为连续时间信号)(t s 的解析信号)的Cohen 类时-频分布定义为 ττφτττπdudvd e v u z u z f t P vu f vt j ) (2*),()2 1()21(),(-+-∞ ∞ -∞ ∞ -∞ ∞ --+=?? ? (1.3.1) 式中),(v τφ称为核函数。原则上,核函数可以是时间和频率两者的函数,但常用的核函数与时间和频率无关,只是时延τ和频偏v 的函数,即核函数具有时、频移不变性。这个定义提供了全面理解任何一种时-频分析方法的通用工具,而且能够在信号分析中将信号的一种时-频表示及其性质同另一种时-频表示及其性质联系在一起。进一步可将(1.3.1)简记为 ττφττπdvd e v v A f t P f vt j z )(2),(),(),(+-∞ ∞ -∞ ∞ -? ? = (1.3.2) 式中),(v A z τ是双线性变换(双时间信号))2 ()2(),(*τ τ τ-+ =t z t z t k z 关于时间t 作 Fourier 反变换得到的一种二维时-频分布函数,称为模糊函数,即 dt e t z t z v A tv j z πτ ττ2*)2 ()2(),(-+=?∞ ∞- (1.3.3) 因为Cohen 类时-频分布是以核函数加权的模糊函数的二维Fourier 变换,所以Cohen 类 时-频分布又称为广义双线性时-频分布。 两个连续信号)(t x ,)(t y 的互时-频分布定义为: ???∞ ∞-∞ ∞--+-∞ ∞ --+= ττφτττπdudvd e v u y u x f t P vu f vt j xy ) (2*),()2 1()21(),( ? ? ∞ ∞-∞ ∞ -+-=dv d e v v A f tv j xy ττφττπ)(2),(),( (1.3.4) 式中 du e u y u x v A vu j xy πτ ττ2*)2 ()2(),(?∞ ∞--+= (1.3.5) 是)(t x 和)(t y 的互模函数。

现代信号处理教程 - 胡广书(清华)

81 为了看清图3.3.4中交叉项的行为,我们将该图作了旋转,因此,水平方向为频率,垂直方向为时间。 图3.3.3 例3.3.3的WVD 图3.3.4 例3.3.4的WVD 例3.3.5 令 ()21 4 2 t x t e ααπ-??= ??? (3.3.5) 可求出其WVD 为 ()22,2exp[]x W t t ααΩ=--Ω (3.3.6) 这是一个二维的高斯函数,,且()Ω,t W x 是恒正的,如图3.3.5所示。 由该图可以看出,该高斯信号的WVD 的中心在()()0,0,=Ωt 处,峰值为2。参数α控制了WVD 在时间和频率方向上的扩展。α越大,在时域扩展越小,而在频域扩展越大,反之亦然。其WVD 的等高线为一椭圆。当WVD 由峰值降到1 -e 时,该椭圆的面积π=A 。它反映了时-频平面上的分辨率。 如果令 ()21 42t h t e ααπ-??= ???,()214 2 t x t e ββπ-??= ??? ,则()t x 的谱图 ()?? ????Ω+-+-+=Ω222 1exp 2,βαβααββααβ t t STFT x (3.3.7)

82 图3.3.5 例3.3.5的WVD,(a )高斯信号,(b )高斯信号的WVD 它也是时-频平面上的高斯函数。当其峰值降到1 -e 时,椭圆面积π2=A 。这一结果说明,WVD 比STFT 有着更好的时-频分辨率。 如果令 ()()t j e t t x t x 001Ω-= (3.3.8) 式中()t x 是(3.3.5)式的高斯函数。()t x 1是()t x 的时移加调制,其WVD 是: ()12 2 00,2exp[()()/]x W t t t ααΩ=---Ω-Ω (3.3.9) 它将(3.3.6)式的()Ω,t W x 由()()0,0,=Ωt 移至()()00,,Ω=Ωt t 处。其WVD 图形请读者自己画出。 例3.3.6 令 ()2201 4 22j t t j t z t e e e αβαπΩ-??= ??? (3.3.10) 它是由(3.3.5)式的()t x 与

(完整版)数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

Word文字处理软件练习题及答案

Word文字处理软件练习题 一、选择题 1、在Word 2010文字编辑中,不能实现的功能是()。 A. 把文档的标题文字设置成不同的颜色 B. 把选定的英文单词翻译成相应的中文词 C. 打开一个低版本的文档 D. 把当前文档保存成一个低版本的文档 2、在Word中,打开文档是指()。 A. 为指定的文档创建一个空白文档窗口 B. 为指定的文档开辟一块硬盘空间 C. 把文档的内容从内存中读出并且显示出来 D. 将指定的文档从硬盘调入内存并且显示出来 3、在Word的文档编辑中,如果选定的文字块中含有几种不同字号的汉字,则在工具栏的“字号”下拉列 表中,显示出的字号是()。 A. 选定文字块中的第一个汉字的字号 B. 选定文字块中最后一个汉字的字号 C. 文字块中使用最多的字号 D. 空白 4、启动Word有多种方式,在下列给出的几种方式: (1)在桌面上双击Word快捷方式图标 (2)在“快速启动”栏中单击Word快捷方式图标 (3)在“开始”菜单的“所有程序”级联菜单中单击Word程序名 (4)通过“开始”菜单的“搜索程序和文件”找到Word应用程序后,单击该程序图标 正确的说法是() A. 只有(1)是正确的 B. 只有(2)、(3)是正确的 C. 只有(2)、(3)、(4)是正确的 D.(1),(2)、(3)、(4)都正确 5、在Word中,要把整个文档中的所有“电脑”一词修改成“计算机”一词,可能使用的功能是()。 A. 替换 B. 查找 C. 自动替换 D. 改写 6、Word的主要功能是()。 A. 文档的编译 B. 文档的编辑排版 C. 文档的输入输出 D. 文档的校对检查 7、在Word的“页面设置”对话框中,不能设置的选项为()。 A. 字体 B. 页边距 C. 纸张方向 D. 纸张大小 8、在Word 2010中,要在文档中加入页眉,页脚,应该使用()选项卡中的相关命令按钮。 A. “插入” B. “开始” C. “页面布局” D. “文件” 9、在Word中输入文本时,当输入满一行时会自动换到下一行,这样的换行是插入了一个()。 A. 硬回车符 B. 分页符 C. 分节符 D. 软回车符 10、在Word 2010中,在“字体”对话框的“高级”选项卡中不能实现的功能是() A.缩放 B. 间距 C. 位置 D. 字形 11、在Word中,能将剪贴板上的内容拷贝到“插入点”处的操作是() A. 单击“开始”选项卡中的“剪切”按钮 B. 单击“开始”选项卡中“复制”按钮 C. 单击“开始”选项卡中“替换”命令 D. 按Ctrl+V键 12、在Word 的“字体”对话框中,不能设置的字符格式是() A. 上标 B. 加下划线 C. 字符间距 D. 首行缩进 13、下面哪种方法可以选择一个矩形的文字块( )。 A. 按住Ctrl键,再按下鼠标左键,并拖动到矩形字块的右下角 B. 不能一次选定,只能分步来选 C. 按住Alt键,再按下鼠标左键,并拖动到矩形字块的右下角 D. 按住Shift键,再按下鼠标左键,并推动到进行字块的右下角 14、在Word主窗口中,要给一段选定的文本加上边框,应从()选项卡中选择“边框和底纹”命令。 A. “插入” B. “视图” C. “开始” D. “文件” 15、在编辑Word文档中,“Ctrl+A”表示( )。

现代信号处理复习题

1、已知0()2cos(2)a x t f t π=式中0f =100HZ,以采样频率s f =400Hz 对()a x t 进行采样,得 到采样信号?()a x t 和时域离散信号()x n ,试完成下面各题: (1)写出()a x t 的傅里叶变换表示式()a X j Ω; (2)写出()a x t 和()x n 的表达式; (3)分别求出()a x t 的傅里叶变换和()x n 的傅里叶变换。 解:(1) 000()()2cos()()j t j t a a j t j t j t X j x t e dt t e dt e e e dt ∞ ∞ -Ω-Ω-∞ -∞ ∞Ω-Ω-Ω-∞ Ω==Ω=+??? 上式中指数函数和傅里叶变换不存在,引入奇异函数δ函数,它的傅里叶变换可以表示成: 00()2[()()]a X j πδδΩ=Ω-Ω+Ω+Ω (2) 0?()()()2cos()() ()2cos(),a a n n x t x t t nT nT t nT x n nT n δδ∞∞ =-∞ =-∞ =-=Ω-=Ω-∞<<∞ ∑∑ 2、用微处理器对实数序列作谱分析,要求谱分辨率50F Hz ≤,信号最高频率1KHz,是确定以下各参数: (1)最小记录时间min p T (2)最大取样时间max T (3)最少采样点数min N (4)在频带宽度不变的情况下将频率分辨率提高一倍的N 值。 解:(1)已知50F Hz ≤ min 11 0.0250p T s F = ≥= (2) max 3 min max 111 0.52210s T ms f f ====? (3) min 30.02400.510p T s N T s -= ==? (4)频带宽度不变就意味着采样间隔T 不变,应该使记录时间扩大一倍为实频率分辩率提高1倍(F 变成原来的12) min 30.04800.510p T s N T s -===? 3、在时域对一有限长的模拟信号以4KHZ 采样,然后对采到的N 个抽样做N 点DFT ,所得离散谱线的间距相当于模拟频率100HZ 。某人想使频率能被看得清楚些,每50HZ 能有一根谱线,于是他用8KHZ 采样,对采到的2N 个样点做2N 点DFT 。问:他的目的能达到吗? 答:不能,因为他忽略了数字频率和模拟频率的区别。 提高采样频率s f ,N 固然大了,数字频率(单位圆)上的样点数确实增加了,但从模拟频率谱看,样点一点也没有变得密集,这是因为数字频率π2总是对应模拟频率s f 。 采样频率由s f 到2s f 增加一倍,N 也增加一倍,但模拟频率的采样间隔Hz N f N f s s 10022== 一点也没有变。所以,增大采样频率,只能提高数字频率的分辨率)222(N N ππ→ ,不能提高模拟频率的分辨率。

现代信号处理期末试题

2011年的题(大概) P29采样、频率混叠,画图说明 P33列举时域参数(有量纲和无量纲),说明其意义与作用 P37~自相关互相关及作用(举例说明) P51~蝶形算法 P61频谱细化过程,如何复调制 P67Hilbert 变换过程,瞬时频率 循环平稳信号,调频调幅信号边频带的分析 小波双尺度方程 P128下方的图 第六章三种连续小波的原理性质及应用 P157算法图示 P196图7.1.1和图7.1.2 P219EMD 基本流程 P230端点效应的处理 2012年1月9日现代信号处理试题(无敌回忆版) 一、必选题 1.请说明基函数在信号分解与特征提取中的作用。 2.什么是信号的相关分析?试举一例说明其工程应用。 3.什么是倒频谱?倒频谱的量纲单位是什么?如何利用倒频谱实现时域信号解卷积? 4.解释尺度函数和小波函数的功能,并给出小波分解三层和小波包分解三层的频带划分示意图。 5.试举例说明将任意2种信号处理方法相结合的特征提取技术及其故障诊断工程应用案例。 二、选答题(7选5) 1.请列出你认为重要的小波基函数两种性质,说明理由。 2.解释机械信号在离散化过程中产生的频率混叠现象及其原因?在实践中如何避免发生频率混叠现象? 3.试说明旋转机械故障诊断中二维全息谱的原理,工频全息谱椭圆较扁说明转子系统存在什么状态现象? 4.以五点序列为例,给出预测器系数为N=2,更新器系数为2=-N 时的第二代小波分解图。 5.给出经验模式分解(EMD )的基本过程,并分析出现端点效应的原因与两种减弱或消除端点效应的措施。 6.给出循环平稳信号的定义,并列出机械设备循环平稳信号的特点。 7.根据你的学习体会,谈谈实现故障定量诊断的重要性,并举例说明某一种故障定量诊断方法。

现代信号处理教程 - 胡广书(清华)

320 第11章 正交小波构造 我们在上一章中集中讨论了离散小波变换中的多分辨率分析,证明了在空间0V 中存在正交归一基}),({Z k k t ∈-φ,由)(t φ作尺度伸缩及位移所产生的},),({,Z k j t k j ∈φ是j V 中的正交归一基。)(t φ是尺度函数,在有的文献中又称其为“父小波”。同时,我们假定j V 的正交补空间j W 中也存在正交归一基},),({,Z k j t k j ∈ψ,它即是小波基,)(t ψ为小波函数,又称“母小波”。本章,我们集中讨论如何构造出一个正交小波)(t ψ。所谓“正交小波”,指的 是由)(t ψ生成的}),({Z k k t ∈-ψ,或j W 空间中的正交归一基},),({,Z k j t k j ∈ψ。 Daubechies 在正交小波的构造中作出了突出的贡献。本章所讨论的正交小波的构造方法即是以她的理论为基础的。 11.1 正交小波概述 现在举两个大家熟知的例子来说明什么是正交小波及对正交小波的要求, 一是Haar 小波,二是Shannon 小波。 1.Haar 小波 我们在10.1节中已给出Haar 小波的定义及其波形,见图10.1.1(d),Haar 小波的尺度函数 )(t φ如图10.1.1(a)所示。重写其定义,即 ??? ??-=011 )(t ψ 其它12/12/10<≤<≤t t (11.1.1) ? ??=01 )(t φ 其它10<≤t (11.1.2) 显然, )(t ψ的整数位移互相之间没有重叠,所以)()(),(' 'k k k t k t -=--δψψ,即它们

321 是正交的。同理, )()(),(',,' k k t t k j k j -=δψψ。 很容易推出)(t ψ和)(t φ的傅里叶变换是 4 /4 /sin )(22 /ωωωωj je -=ψ 2 /2 /sin )(2 /ωωωωj e -=Φ 注意式中ω实际上应为Ω。由于Haar 小波在时域是有限支撑的,因此它在时域有着极好的定位功能。但是,由于时域的不连续引起频域的无限扩展,因此,它在频域的定位功能极差,或者说频域的分辨率极差。 上一章指出,Haar 小波对应的二尺度差分方程中的滤波器是: ??????=21,21)(0n h ,??????-=21,2 1 )(1 n h (11.1.5) 它们是最简单的两系数滤波器。 2.Shannon 小波 令 t t t ππφsin )(= (11.1.6) 则 ?? ?=Φ01)(ω 其它π ω≤ (11.1.7) 由于 ?ΦΦ= --ωωωπ φφd k t k t k k )()(21 )(),(',0*,0' )(21')(' k k d e k k j -==? ---δωπ π π ω (11.1.8) 所以{}Z k k t ∈-),(φ构成0V 中的正交归一基。)(t φ称为Shannon 小波的尺度函数。 由于0,0)(V t k ∈φ,100-=⊕V W V ,由二尺度性质,1)2(V k t ∈-φ,因此 ???=Φ-0 1 )(,1ωk 其它πω2≤ (11.1.9) 这样,对0)(W t ∈ψ,有

现代信号处理考试题

一、 基本概念填空 1、 统计检测理论是利用 信号 与 噪声 的统计特性等信息来建立最佳判决的数学理论。 2、 主要解决在受噪声干扰的观测中信号有无的判决问题 3、 信号估计主要解决的是在受噪声干扰的观测中,信号参量 和 波形 的确定问题。 4、 在二元假设检验中,如果发送端发送为H 1,而检测为H 0,则成为 漏警 ,发送端发送H 0,而检测为H 1,则称为 虚警 。 5、 若滤波器的冲激响应时无限长,称为 IIR 滤波器,反之,称为 FIR 滤波器 6、 若滤波器的输出到达 最大信噪比 成为 匹配 滤波器;若使输出滤波器的 均方估计误差 为最小,称为 维纳 滤波器。 7、 在参量估计中,所包含的转换空间有 参量空间 和 观测空间 8、 在小波分析中,小波函数应满足 ∫φφ(tt )ddtt =0+∞?∞ 和 ∫|φφ(tt )|ddtt =1+∞ ?∞ 两个数学条件。 9、 在小波的基本概念中,主要存在 F (w )=∫ff (tt )ee ?ii ii ii ddtt +∞?∞和f(t)=12ππ∫FF (ww )ee ii ii ii ddww +∞?∞ 两个基本方程。(这个不确定答案,个人感觉是) 10、 在谱估计中,有 经典谱估计 和 现代谱估计 组成了完整的谱估计。 11、 如果系统为一个稳定系统,则在Z 变换中,零极点的分布

应在单位圆内,如果系统为因果系统,在拉普拉斯变换中, 零极点的分布应在左边平面。 二、问题 1、在信号检测中,在什么条件下,使用贝叶斯准则,什么条 件下使用极大极小准则?什么条件下使用Neyman-Pearson准 则? 答:先验概率和代价函数均已知的情况下,使用贝叶斯准则,先验概率未知,但可选代价函数时,使用极大极小准则,先验 概率和代价函数均未知的情况下,使用Neyman-Pearson准则。 2、在参量估计中,无偏估计和渐进无偏估计的定义是什么? 答:无偏估计:若估计量的均值等于被估计量的均值(随机变 量),即E?θθ??=EE(θθ)或等于被估计量的真值(非随机参 量)E?θθ??=θθ,则称θθ?为θ的无偏估计。 渐进无偏估计:若lim NN→∞EE?θθ??=EE(θ ),称θθ?为θ的渐进无偏估计。 3、卡尔曼滤波器的主要特征是什么? 答:随机过程的状态空间模型,用矩阵表示,可同时估计多参 量,根据观测数据,提出递推算法,便于实时处理。 4、在现代信号处理中,对信号的处理通常是给出一个算法, 对一个算法性能的评价,应从那些方面进行评价。 答:算法的复杂度,算法的稳定性和现有算法的比较,算法的 运算速度、可靠性、算法的收敛速度。

现代信号处理复习题

现代信号处理复习题Revised on November 25, 2020

1、已知0()2cos(2)a x t f t π=式中0f =100HZ,以采样频率s f =400Hz 对()a x t 进行采 样,得到采样信号?()a x t 和时域离散信号()x n ,试完成下面各题: (1)写出()a x t 的傅里叶变换表示式()a X j Ω; (2)写出()a x t 和()x n 的表达式; (3)分别求出()a x t 的傅里叶变换和()x n 的傅里叶变换。 解:(1)000()()2cos()()j t j t a a j t j t j t X j x t e dt t e dt e e e dt ∞∞-Ω-Ω-∞-∞ ∞ Ω-Ω-Ω-∞Ω==Ω=+??? 上式中指数函数和傅里叶变换不存在,引入奇异函数δ函数,它的傅里叶变换可以表示成:00()2[()()]a X j πδδΩ=Ω-Ω+Ω+Ω (2)00?()()()2cos()()()2cos(),a a n n x t x t t nT nT t nT x n nT n δδ∞∞=-∞=-∞ =-=Ω-=Ω-∞<<∞ ∑∑ 2、用微处理器对实数序列作谱分析,要求谱分辨率50F Hz ≤,信号最高频率1KHz,是确定以下各参数: (1)最小记录时间min p T (2)最大取样时间max T (3)最少采样点数min N (4)在频带宽度不变的情况下将频率分辨率提高一倍的N 值。 解:(1)已知50F Hz ≤ (2) max 3 min max 1110.52210s T ms f f ====? (3) min 30.02400.510p T s N T s -===? (4)频带宽度不变就意味着采样间隔T 不变,应该使记录时间扩大一倍为实频率分辩率提高1倍(F 变成原来的12) 3、在时域对一有限长的模拟信号以4KHZ 采样,然后对采到的N 个抽样做N 点DFT ,所得离散谱线的间距相当于模拟频率100HZ 。某人想使频率能被看得清楚些,每50HZ 能有一根谱线,于是他用8KHZ 采样,对采到的2N 个样点做2N 点DFT 。问:他的目的能达到吗 答:不能,因为他忽略了数字频率和模拟频率的区别。 提高采样频率s f ,N 固然大了,数字频率(单位圆)上的样点数确实增加了,但从模拟频率谱看,样点一点也没有变得密集,这是因为数字频率π2总是对应模拟频率s f 。采样频率由s f 到2s f 增加一倍,N 也增加一倍,但模拟频率的采样间隔Hz N f N f s s 10022== 一点也没有变。所以,增大采样频率,只能提高数字频率的分辨率)222(N N ππ→ ,不能提高模拟频率的分辨率。 4、在A/D 变换之前和D/A 变换之后都要让信号通过一个低通滤波器,他们分别起什么作用

现代信号处理论文(1)

AR 模型的功率谱估计BURG 算法的分析与仿真 钱平 (信号与信息处理 S101904010) 一.引言 现代谱估计法主要以随机过程的参数模型为基础,也可以称其为参数模型方法或简称模型方法。现代谱估计技术的研究和应用主要起始于20世纪60年代,在分辨率的可靠性和滤波性能方面有较大进步。目前,现代谱估计研究侧重于一维谱分析,其他如多维谱估计、多通道谱估计、高阶谱估计等的研究正在兴起,特别是双谱和三谱估计的研究受到重视,人们希望这些新方法能在提取信息、估计相位和描述非线性等方面获得更多的应用。 现代谱估计从方法上大致可分为参数模型谱估计和非参数模型谱估计两种。基于参数建摸的功率谱估计是现代功率谱估计的重要内容,其目的就是为了改善功率谱估计的频率分辨率,它主要包括AR 模型、MA 模型、ARMA 模型,其中基于AR 模型的功率谱估计是现代功率谱估计中最常用的一种方法,这是因为AR 模型参数的精确估计可以通过解一组线性方程求得,而对于MA 和ARMA 模型功率谱估计来说,其参数的精确估计需要解一组高阶的非线性方程。在利用AR 模型进行功率谱估计时,必须计算出AR 模型的参数和激励白噪声序列的方差。这些参数的提取算法主要包括自相关法、Burg 算法、协方差法、 改进的协方差法,以及最大似然估计法。本章主要针对采用AR 模型的两种方法:Levinson-Durbin 递推算法、Burg 递推算法。 实际中,数字信号的功率谱只能用所得的有限次记录的有限长数据来予以估计,这就产生了功率谱估计这一研究领域。功率谱的估计大致可分为经典功率谱估计和现代功率谱估计,针对经典谱估计的分辨率低和方差性能不好等问题提出了现代谱估计,AR 模型谱估计就是现代谱估计常用的方法之一。 信号的频谱分析是研究信号特性的重要手段之一,通常是求其功率谱来进行频谱分析。功率谱反映了随机信号各频率成份功率能量的分布情况,可以揭示信号中隐含的周期性及靠得很近的谱峰等有用信息,在许多领域都发挥了重要作用。然而,实际应用中的平稳随机信号通常是有限长的,只能根据有限长信号估计原信号的真实功率谱,这就是功率谱估计。 二.AR 模型的构建 假定u(n)、x(n)都是实平稳的随机信号,u(n)为白噪声,方差为 ,现在,我们希望建立AR 模型 的参数和x(n)的自相关函数的关系,也即AR 模型的正则方程(normal equation)。 由 )}()]()({[)}()({)(1 n x m n u k m n x E m n x n x E m p k k x a r ++-+-=+=∑= )()()(1 m k m m r r a r xu x p k k x +--=∑= (1) 由于u(n)是方差为 的白噪声,有 ?? ?=≠=-0 00)}()({2 m m m n x n u E σ (2) 由Z 变换的定义, ,当 时,有h(0)=1。综合(1)及(2)两式, ???????=-≥--=∑∑==0)(1)()(1 2 1 m k m k m m p k x k p k x k x r a r a r σ (3) 在上面的推导中,应用了自相关函数的偶对称性。上式可写成矩阵式:

现代信号处理教程 - 胡广书(清华)

1 第1章 信号分析基础 1.1 信号的时-频联合分析 我们生活在一个信息社会里,而信息的载体就是我们本书要讨论的主题——信号。在我们身边以及在我们身上,信号是无处不在的。如我们随时可听到的语音信号,随时可看到的视频图像信号,伴随着我们生命始终的心电信号,脑电信号以及心音、脉搏、血压、呼吸等众多的生理信号。 对一个给定的信号,如)(t x ,我们可以用众多的方法来描述它,如)(t x 的函数表达式, 通过傅立叶变换所得到的)(t x 的频谱,即)(Ωj X ,再如)(t x 的相关函数,其能量谱或功率谱等。在这些众多的描述方法中,有两个最基本的物理量,即时间和频率。显然,时间和频率与我们的日常生活关系最为密切,我们时时可以感受到它们的存在。时间自不必说,对频率,如夕阳西下时多变的彩霞,音乐会上那优美动听的旋律以及在一片寂静中突然冒出的一声刺耳的尖叫等,这些都包含了丰富的频率内容。正因为如此,时间和频率也成了描述信号行为的两个最重要的物理量。 信号是变化着的,变化着的信号构成了我们周围五彩斑斓的世界。此处所说的“变化”,一是指信号的幅度随时间变化,二是指信号的频率内容随时间变化。幅度不变的信号是“直流”信号,而频率内容不变的信号是由单频率信号,或多频率信号所组成的信号,如正弦波、方波、三角波等。不论是“直流”信号还是正弦类信号都只携带着最简单的信息。 给定了信号)(t x 的函数表达式,或x 随t 变化的曲线,我们可以由此得出在任一时刻处 该信号的幅值。如果想要了解该信号的频率成分,即“在××Hz 处频率分量的大小”,则可通过傅立叶变换来实现,即 ?∞ ∞ -Ω-=Ωdt e t x j X t j )()( (1.1.1a ) ? ∞ ∞ -ΩΩΩ= d e j X t x t j )()(21π (1.1.1b ) 式中f π2=Ω,单位为弧度/秒,将)(Ωj X 表示成) (|)(|ΩΩ?j e j X 的形式,即可得到 |)(|Ωj X 和)(Ω?随Ω变化的曲线,我们分别称之为)(t x 的幅频特性和相频特性。 如果我们想知道在某一个特定时间,如0t ,所对应的频率是多少,或对某一个特点的频

复习题

“现代数字信号处理”学习重点及复习题 1.现代信号处理的范畴主要包含哪几个方面?它们与经典信号处理有何联系与区别? 2.严平稳和弱平稳随机信号在概念上有何区别?严平稳随机信号是否一定是弱平稳的?试以严平稳和弱平稳白噪声(其均值与方差相同)为例,说明严平稳和弱平稳随机信号的区别。 3.随机信号的均值、均方值和方差等数值特征与随机变量的这些数值特征在形式上有何区别?为什么会出现这种区别?而平稳随机信号的这些数值特征在形式上与随机变量的数值特征相同,它们在含义上有何区别? 4.自相关函数的直观物理含义是什么?如何理解白噪声自相关函数的特点?一个方差为2σ的平稳白噪声序列,试写出其n 阶自相关函数矩阵和自协方差矩阵。 5.试证明实平稳随机信号自相关函数和互相关函数的以下性质: (1)()(), ()()xx xx xy yx r m r m r m r m =-=-; (2)[]2(0)()xx r E x n =; (3)(0)(), for any integer xx xx r r m m ≥; (4)2 lim (), lim ()xx x xy x y m m r m m r m m m →∞ →∞ ==。 6.两个实平稳随机信号的互功率谱是否一定为实函数? 7.随机信号的独立性和相关性之间有什么联系与区别?试证明两个相互独立的随机信号必然是不相关的。 8.结合随机过程数字特征的含义以及维纳-辛钦定理,根据你的理解,阐述弱平稳随机信号定义中的两个条件:(1)()()x x x m n m n l m =+=,(2) 1122(,)(,)()xx xx xx r n n m r n n m r m +=+=分别体现了平稳随机信号哪 些方面的特性。 9.试叙述你对“平稳随机过程各态历经性”的理解。平稳随机信号的各态历经性对简化其分析过程有什么帮助?

现代信号处理试题及答案总结

P29采样、频率混叠,画图说明 将连续信号转换成离散的数字序列过程就是信号的采样。 它包含了离散和量化两个主要步骤。 若采样间隔Δt 太大,使得平移距离2π/Δt 过小。移至各采样脉冲函数对应频域序列点上的频谱X(ω)就会有一部分相互重叠, 由此造成离散信号的频谱与原信号频谱不一致,这种现象称为混叠。 P33列举时域参数(有量纲和无量纲),说明其意义与作用。 有量纲参数指标包括方根幅值、平均幅值、均方幅值和峰值四种。 无量纲参数指标包括了波形指标、峰值指标、脉冲指标和裕度指标。 偏斜度指标S 表示信号概率密度函数的中心偏离正态分布的程度,反映信号幅值分布相对其均值的不对称性。 峭度指标K 表示信号概率密度函数峰顶的陡峭程度,反映信号波形中的冲击分量的大小。 P37~自相关互相关及作用(举例说明) 相关,就是指变量之间的线性联系或相互依赖关系。 信号x (t )的自相关函数: 信号中的周期性分量在相应的自相关函数中不会衰减,且保持了原来的周期。因此,自相关函数可从被噪声干扰的信号中找出周期成分。 在用噪声诊断机器运行状态时,正常机器噪声是由大量、无序、大小近似相等的随机成分叠加的结果,因此正常机器噪声具有较宽而均匀的频谱。当机器状态异常时,随机噪声中将出现有规则、周期性的信号,其幅度要比正常噪声的幅度大得多。 依靠自相关函数就可在噪声中发现隐藏的周期分量,确定机器的缺陷所在。 (如:自相关分析识别车床变速箱运行状态,确定存在缺陷轴的位置;确定信号周期。) 互相关函数: 互相关函数的周期与信号x(t)和y(t)的周期相同,同时保留了两个信号的相位差信息φ。可在噪音背景下提取有用信息;速度测量;板墙对声音的反射和衰减测量等。 (如:利用互相关分析测定船舶的航速;探测地下水管的破损地点。P42) P51~蝶形算法 FFT 的基本思想是把长度为2的正整数次幂的数据序列{x k }分隔成若干较短的序列作DFT 计算,用以代替原始序列的DFT 计算。然后再把他们合并起来。得到整个序列{x k }DFT 。(图示N=8时FFT) t t x t x T R T T x d )()(1lim )(0 ? ±=∞ →ττt t y t x T R T T xy d )()(1lim )(0 ? +=∞ →ττ x 0 x 1x 2x 3x 4x 5x 6 x 7x 0x 4x 6x 3x 5 x 0x 4x 2x 6x 1x 5x 3x 7x 0x 4x 2x 6x 1x 5x 3x 7x'0 x'4 x' 2x'6 x'1 x'5x'3 x'7 -1 -1 -1 -1 -1 -1 -1-1 -1 -1 -1 -1 X 0 X 1 X 2X 3 X 4X 5X 6X 7 x 7x 1x 2N W N W N W 0N W 0N W N W N W 1 N W 1 N W 1 N W 0N 0N W 2N W 3

现代信号处理教程---胡广书(清华)

第5章信号的抽取与插值 5.1前言 至今,我们讨论的信号处理的各种理论、算法及实现这些算法的系统都是把抽样频率 f视为恒定值,即在一个数字系统中只有一个抽样率。但是,在实际工作中,我们经常会s 遇到抽样率转换的问题。一方面,要求一个数字系统能工作在“多抽样率(multirate)”状态,以适应不同抽样信号的需要;另一方面,对一个数字信号,要视对其处理的需要及其自身的特征,能在一个系统中以不同的抽样频率出现。例如: 1. 一个数字传输系统,即可传输一般的语音信号,也可传输播视频信号,这些信号的频率成份相差甚远,因此,相应的抽样频率也相差甚远。因此,该系统应具有传输多种抽样率信号的能力,并自动地完成抽样率的转换; 2. 如在音频世界,就存在着多种抽样频率。得到立体声声音信号(Studio work)所用的抽样频率是48kHz,CD产品用的抽样率是44.1kHz,而数字音频广播用的是32kHz[15]。 3. 当需要将数字信号在两个具有独立时钟的数字系统之间传递时,则要求该数字信号的抽样率要能根据时钟的不同而转换; 4.对信号(如语音,图象)作谱分析或编码时,可用具有不同频带的低通、带通及高通滤波器对该信号作“子带”分解,对分解后的信号再作抽样率转换及特征提取,以实现最大限度减少数据量,也即数据压缩的目的; 5. 对一个信号抽样时,若抽样率过高,必然会造成数据的冗余,这时,希望能在该数字信号的基础上将抽样率减下来。 以上几个方面都是希望能对抽样率进行转换,或要求数字系统能工作在多抽样率状态。近20年来,建立在抽样率转换理论及其系统实现基础上的“多抽样率数字信号处理”已成为现代信号处理的重要内容。“多抽样率数字信号处理”的核心内容是信号抽样率的转换及滤波器组。 减少抽样率以去掉过多数据的过程称为信号的“抽取(decimatim)”,增加抽样率以增加数据的过程称为信号的“插值(interpolation)。抽取、插值及其二者相结合的使用便可实现信号抽样率的转换。 推荐精选

现代信号处理方法及工程应用的研究

现代信号处理方法及工程应用的研究 班级:研1102 学号:2011020058 姓名:赵鹏飞 摘要 本文首先介绍了时频发展的基本概念和比较成熟的时频分析方法一一短时Fourier分析。然后给出了实际转子振动信号的时频分析。其次,介绍了二进小波分析,并应用二进小波分析实现了对透平压缩机信号的监测分析,得到了压缩机原始信号在不同频率段分解的细节信号和逼近信号。用小波分析和谱分析相结合的方法对某国产电机的噪声进行了分析,找出了人的听闭不阅的几个高谱峰位置,进行了空气动力噪声计算,通过与理论计算结果进行对比分析,进一步找出了产生该频闻谱峰的几个原因。第三,介绍了谐波小波和分形的基本原理。对车辆的一般振动信号和复杂振动信号进行了分形分析。第四,对车辆传动系的振动信号进行了检测分析与故障诊断。首先对汽车传动系进行了模态测试与分析,然后对汽车传动系各部分在垂直方向上的相对振动幅值进行了测试与分析。根据上述测试分析并综合其它因素得出了结论。 关键词:小波分析,分形,故障诊断,信号 第一章绪论 世界从本质上说是非线性的,线性是非线性的特殊情况:以非线性为特征的非线性科学是一门跨学科的综合性基础科学,旨在揭示非线性系统的共同性质、基本特征和运动规律。当前研究非线性科学的主要工具有Fourier变换(STFT)、小波分析(Wavelet Analysis)、分形理论、人工神经网络等。 1.1时频分析的发展及应用 Fourier分析方法的应用,使科学与技术研究领域发生了具大的变化,从而极大地推动了经济发展乃至社会变革,目前在信号处理与图象处理方面Fourier 变换是不可缺少的分析工具。在机械设备状态监测与诊断系统中,应用最广泛也是最成功的就是基于Fourier变换的各种分析方法:许多在时域分析困难的问

现代信号处理

现代信号处理 一 信号分析基础 傅里叶变换的不足: ()()1()()2j t j t X j x t e dt x t X j e d π ∞ -Ω-∞∞ Ω-∞ Ω== ΩΩ?? 1.不具有时间和频率的“定位”功能; 2.傅里叶变换对于非平稳信号的局限性; 3.傅里叶变换在分辨率上的局限性。 频率不随时间变化的信号,称为时不变信号(又称为平稳信号),频率随时间变化的信号称为时变信号(又称为非平稳信号),傅里叶变换反映不出信号频率随时间变化的行为,只适合于分析平稳信号。而我们希望知道在哪一时刻或哪一段时间产生了我们所要考虑的频率,现代信号处理主要克服傅里叶变换的不足,这些方法构成了现代信号处理。 分辨率包括频率分辨率和时间分辨率,含义是指对信号能作出辨别的时域或频域的最小间隔。分辨率的好坏一是取决于信号的特点,二是取决于信号的长度,三是取决于所用的算法。 克服傅里叶变换不足的主要方法有: 方法一:STFT (Short Time Fourier Transform ) 方法二:联合时频分析Cohen 分布,联合时频分析Wigner 分布 方法三:小波变换 方法四:信号的子带分解,将信号的频谱均匀或非均匀地分解成若干部分,每一个部分都对应一个时间信号。 方法五:信号的多分辨率分析,与方法四类似,为了适应在不同频段对时域和频域分辨率的不同要求,可以将信号的频谱做非均匀分解。 明确概念:时间中心、时间宽度、频率中心和频带宽度 信号能量: 2 2 2 1()()()2E x t x t dt X j d π === ΩΩ<∞?? 时间中心: 2 1()()t t x t dt E μ= ? 频率中心: 2 1()()2x d E μπΩ= ΩΩΩ? 时间宽度: 2 2 201()()t t t x t dt E ∞ -∞ ?=-? 频率宽度:

相关主题
文本预览
相关文档 最新文档