当前位置:文档之家› 排队论中三种典型的分布

排队论中三种典型的分布

排队论中三种典型的分布
排队论中三种典型的分布

排队论

顾客到达时间的间隔分布和服务时间的分布

(1)泊松分布(顾客到达数满足泊松分布)

随机变量x (单位时间内顾客到达数),满足泊松分布:x~P(λ),概率分布为:

()!k

P x k e k λ

λ-==

注意:泊松分布中的λ,既是数学期望又是方差,即E(x)=D(X)= λ(单位时间内平均到达的顾客数)

(2)负指数分布

随机变量T (顾客相继到达时间间隔),满足负指数分布,

即:

~()()t T f t e λλ-=密度函数

注意:E(T)=1/λ(为相继到达平均间隔时间),21

D(T)λ=。

说明:顾客到达数满足泊松分布等价于顾客相继到达时间间隔满足负指数分布。随机变量v (顾客相继离开的间隔时间),满足负指数分布,

即:

~()()t v f t e μμ-=密度函数

注意:E(v)=1/μ(为相继离开平均间隔时间),D(v)= 1/μ2 。

(3)爱尔朗分布

设k 个顾客到达系统的时间间隔序列为:v1 , v2 ,…, vk ,(为相互独立

的随机变量),且都服从参数为kλ的负指数分布,

即:

k),...,2,1(i e k ~ vi k -=λλ 则随机变量T

k I=1i

T v =∑

服从k 阶爱尔朗分布

()()()()

()()()1

21

~0,01!111,,k k t k i i i k k t T f t e t k E v E T v D T k k λλλλλλλ--==>>-====∑ 说明1:K=1时,就是负指数分布。

说明2:假设系统中有串联的K 个服务台,每个服务台对顾客的服务时间相互独立,且服从参数为kμ的负指数分布,则一个顾客接受完k 个服务台服务所需的总时间T 就服从k 阶爱尔朗分布。

排队论的应用

排队论的应用 ——食堂排队问题 刘文骁 摘要 本文通过运筹学中排队论的方法,为食堂排队问题建立模型,研究学生排队就餐时间节约的影响因素,通过简单计算,得出影响最大因素。排队论是通过研究各种服务系统的排队现象,解决服务系统最优设计和最优化控制的一门科学。本文将根据食堂排队状况建立数学模型,运用排队论的观点进行分析,找出可以减少排队时间的最大影响因素。 关键词 排队论;M/M/s模型;食堂排队 引言 在学校里,常常可以看到这样的情况:下课后,许多同学正想跑到食堂买饭,小小的买饭窗口前没过几分钟便排成了长长的队伍,本来空荡荡的食堂立即变得拥挤不堪。饥肠辘辘的学生门见到这种长蛇阵,怎能不怨声载道。减少排队等待时间,是学生们十分关心的问题。 1.多服务台排队系统的数学模型 1.1排队论及M/M/s模型 排队论是研究排队系统(又称为随即服务系统)的数学理论和方法,是运筹学的一个重要分支。在日常生活中,人们会遇到各种各样的排队问题。排队问题的表现形式往往是拥挤现象。 排队系统的一般形式符号为:X/Y/Z/A/B/C。 其中:X表示顾客相继到达时间间隔的分布;Y表示服务时间的分布;Z表

示服务台的个数;A 表示系统的容量,即可容纳的最多顾客数;B 表示顾客源的数目;C 表示服务规则。 排队论的基本问题是研究一些数量指标在瞬时或平稳状态下的概率分布及其数字特征,了解系统运行的基本特征;系统数量指标的统计推断和系统的优化问题等。 当系统运行一定时间达到平稳后,对任一状态n 来说,单位时间内进入该状态的平均次数和单位时间内离开该状态的平均次数应相等,即系统在统计平衡下“流入=流出”。 据此,可得任一状态下的平衡方程如下: 由上述平衡方程,可求的: 平衡状态的分布为:)1(,2,1,0 ==n p C p n n 其中:)2(,2,1,1 10 21 == ---n C n n n n n μμμλλλ 有概率分布的要求:10=∑∞ =n n p ,有:1100=?? ? ???+∑∞ =p C n n ,则有: )3(1100 ∑∞ =+= n n C p 注意:(3)式只有当级数∑∞=o n n C 收敛时才有意义,即当∑∞ =?∞o n n C 时才能由上 述公式得到平稳状态的概率分布。

排队论模型

排队论模型 随机服务系统理论是研究由顾客、服务机构及其排队现象所构成的一种排队系统的理论,又称排队论。排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设计与性能估价,等等。随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。 排队论模型及其在医院管理中的作用 每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。排队论就是对排队进行数学研究的理论。在医院系统内,“三长一短”的现象是司空见惯的。由于病人到达时间的随机性或诊治病人所需时间的随机性,排队几乎是不可避免的。但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。 一、医院系统的排队过程模型 医院是一个复杂的系统,病人在医院中的排队过程也是很复杂的。如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。 图1 医院系统的多级排队过程模型 二、排队系统的组成和特征 一般的排队系统都有三个基本组成部分: 1. 输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。 2. 排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗,在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。排队的列数还分单列和多列。 3. 服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的;服务时间的分布与时间有关或无关。

排队论例题

排队论例题 1、某重要设施是由三道防线组成的防空系统。第一道防线上配备两座武器;第二道防线上配备三座武器;第三道防线上配备一座武器。所有的武器类型一样。武器对来犯敌人的射击时间服从μ=1(架/分钟)的指数分布,敌机来犯服从λ=2(架/分钟)的泊松流。试估计该防空系统的有效率。

解: 武器联合发挥作用 该防空系统有效率 = 1- (三道防线后的损失率) 三道防线均可看成M/M/1/1系统 第一道防线:λ=2架/分钟, μ=2架/分钟(两座武器) ρ=λ/μ=1 .P )A (P ,P ,P ,P P P 1212111110001=======λλρ损 第二道防线 : .P )A (P ,P ,P ,P P P ,)(.414 143313131122100011========= ===λλρμλρμλλ损损三座武器第三道防线: 975 .0,025.0.05.020 1)(,51,54,1,41,41,1.41 313310100012===========∴=+==== ===总损失率该防空系统的有效率总损失率损损损-12 0.05λλλλρμλρμλλP A P P P P P P P P

2、某汽车加油站只有一个加油灌,汽车到达为泊松流,加油时间服从指数分布。平均到达率和平均服务率分别为λ和μ。已知汽车排队等待(不含服务时间)1小时的损失费为C元,加油站空闲1小时损失费为2C元。试求使总的损失费(包括顾客排队等待的损失费和服务机构空闲时的损失费)最小的最优服务强度ρ(ρ=λ/μ)。

解:该排队系统为M/M/1系统 μλρ= W q ==-)(λμμλρρ-12 P0 = 1-ρ=μλ (空闲概率) 每小时空闲时间为1×P0= P0 总损失费为: ρρρ-+-=+=1)1(2220C C Cw Cp y q 对 ρ 求导 C C C C y 22 22)1(22)1()1(22ρρρρρρρ--+-=-+-+-=' ∴22±=ρ 又∵ ρ<1 ∴22-=ρ 由于2阶导数 0)1()2)(1(2)1)(22(422>---+--=''ρρρρρρy ∴在22-=ρ时为0<ρ<1上取最小值 动态规划问题 1.某企业生产某种产品,每月月初按定货单发货,生产得 产品随时入库,由于空间限制,仓库最多能够贮存产品90000件。在上半年(1至6月)其生产成本(万元/ 6个月的生产量使既能满足各月的订单需求同时生产成本最低?

排队论习题

排队论习题 1、某大学图书馆的一个借书柜台的顾客流服从泊松流,平均每小时50人,为顾客服 务的时间服从负指数分布,平均每小时可服务80人,求: (1)顾客来借书不必等待的概率3/8 (2)柜台前平均顾客数5/3 (3)顾客在柜台前平均逗留时间1/30 (4)顾客在柜台前平均等待时间1/80 2、一个新开张的理发店准备雇佣一名理发师,有两名理发师应聘。由于水平不同,理发师甲平均每小时可服务3人,雇佣理发师甲的工资为每小时14元,理发师乙平均每小时可服务4人,雇佣理发师乙的工资为每小时20元,假设两名理发师的服务时间都服从负指数分布,另外假设顾客到达服从泊松分布,平均每小时2人。问:假设来此理发店理发的顾客等候一小时的成本为30元,请进行经济分析,选出一位使排队系统更为经济的理发师。 3、一个小型的平价自选商场只有一个收款出口,假设到达收款出口的顾客流为泊松流,平均每小时为30人,收款员的服务时间服从负指数分布,平均每小时可服务40人。(1)计算这个排队系统的数量指标P0、L q、L s、W q、W s。 (2)顾客对这个系统抱怨花费的时间太多,商店为了改进服务准备队以下两个方案进行选择。 1)在收款出口,除了收款员外还专雇一名装包员,这样可使每小时的服务率从40人提高到60人。 2)增加一个出口,使排队系统变成M/M/2系统,每个收款出口的服务率仍为40人。 对这两个排队系统进行评价,并作出选择。 4、汽车按泊松分布到达某高速公路收费口,平均90辆/小时。每辆车通过收费口平均需时间35秒,服从负指数分布。司机抱怨等待时间太长,管理部门拟采用自动收款装

置使收费时间缩短到30秒,但条件是原收费口平均等待车辆超过6辆,且新装置的利用率不低于75%时才使用,问上述条件下新装置能否被采用。 5、有一台电话的共用电话亭打电话的顾客服从λ=6个/小时的泊松分布,平均每人打电话时间为3分钟,服从负指数分布。试求: (1)到达者在开始打电话前需等待10分钟以上的概率 (2)顾客从到达时算起到打完电话离去超过10分钟的概率 (3)管理部门决定当打电话顾客平均等待时间超过3分钟时,将安装第二台电话,问当λ值为多大时需安装第二台。 6、某无线电修理商店保证每件送到的电器在1小时内修完取货,如超过1小时分文不收。已知该商店每修一件平均收费10元,其成本平均每件5.5元,即每修一件平均赢利4.5元。已知送来修理的电器按泊松分布到达,平均6件/小时,每维修一件的时间平均为7.5分钟,服从负指数分布。试问: (1)该商店在此条件下能否赢利 (2)当每小时送达的电器为多少件时该商店的经营处于盈亏平衡点。 7、顾客按泊松分布到达只有一名理发员的理发店,平均10人/小时。理发店对每名顾客的服务时间服从负指数分布,平均为5分钟。理发店内包括理发椅共有三个座位,当顾客到达无座位时,就依次站着等待。试求: (1)顾客到达时有座位的概率 (2)到达的顾客需站着等待的概率 (3)顾客从进入理发店到离去超过2分钟的概率 (4)理发店内应有多少座位,才能保证80%顾客在到达时就有座位。 8、某医院门前有一出租车停车场,因场地限制,只能同时停放5辆出租车。当停满5辆后,后来的车就自动离去。从医院出来的病人在有车时就租车乘坐,停车场无车时就向附近出租汽车站要车。设出租汽车到达医院门口按λ=8辆/小时的泊松分布,从医院依次出来的病人的间隔时间为负指数分布,平均间隔时间6分钟。又设每辆车每次只载一名病人,并且汽车到达先后次序排列。试求:

排队论医院应用

医院排队论模型 医院排队论模型 医院就医排队是一种经常遇见的非常熟悉的现象.它每天以这样或那样的形 式出现在我们面前. 例如,患者到医院就医,患者到药房配药、患者到输液室输液等,往往需要排队等待接受某种服务. 这里,护士台、收费窗口、输液护士台及其服务人员都是服务机构或服务设备.而患者与商店的患者一样, 统称为患者. 以上排队都是有形的,还有些排队是无形的.由于患者到达的随机性,所以排队现象是不可避免的. 排队系统模拟 所谓排队系统模拟,就是利用计算机对一个客观复杂的排队系统的结构和行 为进行动态模拟,以获得反映其系统本质特征的数量指标结果,进而预测、分析或评价该系统的行为效果,为决策者提供决策依据. 如果医院增添服务人员和设备,就要增加投资或发生空闲浪费;如果减少服务 设备,排队等待时间太长,对患者和社会都会带来不良影响. 因此,医院管理人员要考虑如何在这两者之间取得平衡,以便提高服务质量,降低服务费用. 医院排队论,就是为了解决上述问题而发展起来的一门科学.它是运筹学的重 要分支之一. 在排队论中,患者和提供各种形式服务的服务机构组成一个排队系统,称为随 机服务系统. 这些系统可以是具体的,也可以是抽象的. 排队系统模型已广泛应用于各种管理系统.如手术管理、输液管理、医疗服务、医技业务、分诊服务,等等. 医院排队系统的组成 排队系统的基本结构由四个部分构成:来到过 程(输入)、服务时间、服务窗口和排队规则.

1、来到过程(输入)是指不同类型的患者按照各种 规律来到医院. 2、服务时间是指患者接收服务的时间规律. 3、服务窗口则表明可开放多少服务窗口来接纳患者. 4、排队规则确定到达的患者按照某种一定的次序接 受服务. ⑴来到过程 常见的来到过程有定长输入、泊松(Poisson)输入、埃尔朗(A. K. Erlang)输入等,其中泊松输入在排队系统中的应用最为广泛. 所谓泊松输入即满足以下4个条件的输入: ①平稳性:在某一时间区间内到达的患者数的概率只与这段 时间的长度和患者数有关; ②无后效性:不相交的时间区间内到达的患者数是相互独立 的; ③普通性:在同时间点上就诊或手术最多到达1个患者, 不 存在同时到达2个以上患者的情况; ④有限性:在有限的时间区间内只能到达有限个患者, 不可 能有无限个患者到达. 患者的总体可以是无限的也可以是有限的; 患者到来方式可以是单个的,也可以是成批的; 相继到达的间隔时间可以是确定的,也可是随机的; 患者的到达可以是相互独立的,也可以是关联; 到来的过程可以是平稳的,也可是非平稳的; ⑵服务时间

数学建模港口问题-排队论

排队模型之港口系统 本文通过排队论和蒙特卡洛方法解决了生产系统的效率问题,通过对工具到达时间和服务时间的计算机拟合,将基本模型确定在//1 M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使用计算机模拟仿真(蒙特卡洛法)对生产系统的整个运行过程进行模拟,得出最后的结论。好。关键词:问题提出: 一个带有船只卸货设备的小港口,任何时间仅能为一艘船只卸货。船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。一艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。 那么,每艘船只在港口的平均时间和最长时间是多少 若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是多少 卸货设备空闲时间的百分比是多少 % 船只排队最长的长度是多少 问题分析: 排队论:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。本题研究的是生产系统的效率问题,可以将磨损的工具认为顾客,将打磨机当做服务系统。【1】 M M:较为经典的一种排队论模式,按照前面的Kendall记号定义,前//1 面的M代表顾客(工具)到达时间服从泊松分布,后面的M则表示服务时间服从负指数分布,1为仅有一个打磨机。 蒙特卡洛方法:蒙特卡洛法蒙特卡洛(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神

排队论练习题

第9章排队论 判断下列说法是否正确: (1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,…名顾客到达的间隔时间也服从负指数分布; (4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统; (9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 M/M/1 、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时间服从负指数分布,平均需6小时,求: (1)理发店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内至少有1个顾客的概率; (4)在店内顾客平均数; (5)在店内平均逗留时间; (6)等待服务的顾客平均数; (7)平均等待服务时间; (8)必须在店内消耗15分钟以上的概率。 、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4 人,修理时间服从负指数分布,平均需6分钟。求: (1)修理店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内顾客平均数; (4)店内等待顾客平均数; (5)顾客在店内平均逗留时间; (6)平均等待修理时间。

(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题 转载请注明 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求:

排队论习题及答案

《运筹学》第六章排队论习题 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求: (1)系统内没有顾客的概率; (2)系统内顾客的平均数;

胡运权排队论习题解

胡运权排队论习题解 某修理店只有一个修理工人,来修理的顾客到达次数服从普阿松分布,平均每小时3人,修 理时间服从负指数分布,平均需10分钟,求 (1) 修理店空闲时间概率; (2) 店内有4个顾客的概率; (3) 店内至少有一个顾客的概率 ; (4) 在店内顾客平均数; (5) 等待服务的顾客平均数; (6) 在店内平均逗留时间; (7) 平均等待修理(服务)时间; (8) 必须在店内消耗15分钟以上的概率. (1)P o (3)1 P o 1(人 ); 1 1 (小时); 3 1 1 答:(1修理店空闲时间概率为-;(2)店内有三个顾客的概率为 —;(3)店内至少 1 1 有一个顾客的概率为寸;(4)店内顾客平均数为1人;(5)等待服务顾客平均数为1 2 人; (6)在店内平均逗留时间 1 分钟;(7)平均等待修理时间为丄分钟;(8)必须在店内 3 6 15 消耗15分钟以上的概率为e 20. 1 丄(小时); 6 解:该系统为(M/M/1/ / )模型, 3, 60 6. 10 ⑵P 4 (1 (1 扯4 1 ; ; ⑷L s (5)L q 23 1(人); (8)1-F( )e -(-) e^ 60 e -25

90 3600 38 94.7 94.7 0.95 10.2设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为 打字时间服从指数分布,平均时间为 15分钟,求 (1) 顾客来打字不必等待的概率; (2) 打字室内顾客的平均数; (3) 顾客在打字室内平均逗留时间; (4) 若顾客在打字室内的平均逗留时间超过 1.25小时,则主人将考虑增加设备 及打字员,问顾客的平均到达概率为多少时,主人才会考虑这样做? 解:该题属M /M /1模型. (1)P 0 1 1 - 4 4 (2)L s - 3 3(人 ); 4 3 ⑶W s - — 1 1(小时); 4 3 ⑷Q W s 1 1.25; 1.25, 323.2 3 0.2(人 /小时). 4 1 答:1)顾客来打字不必等待的概率为-;(2)打字室内顾客平均数为3人;(3)顾客在 4 打字室内平均逗留时间为1小时;(4)平均到达率为0.2人/小时时,店主才会考 虑增加设备及打字员. 汽车按平均90辆/h 的poission 流到达高速公路上的一个收费关卡,通过关卡的平均时间 为38s 。由于驾驶人员反映等待时间太长,主管部门打算采用新装置,使汽车通过关卡的平 均时间减少到平均30s 。但增加新装置只有在原系统中等待的汽车平均数超过 5辆和新系统 中关卡空闲时间不超过 10%时才是合算的。根据这一要求,分析新装置是否合算。 解:该系统属于 M/M/1模型 旧装置各参数计算: 90/h 20分钟, 60 3(人/小时), 20 60 4(人/小 时). 15

排队论运筹学论文

排队论 摘要:医院就医排队是一种经常遇见的非常熟悉的现象.它每天以这样或那样的形式出现在我们面前. 例如,患者到医院就医,患者到药房配药、患者到输液室输液等,往往需要排队等待接受某种服务.这里,护士台、收费窗口、输液护士台及其服务人员都是服务机构或服务设备.而患者与商店的患者一样, 统称为患者.以上排队都是有形的,还有些排队是无形的.由于 患者到达的随机性,所以排队现象是不可避免的.如果医院增添服务人员和设备,就要增加投 资或发生空闲浪费;如果减少服务设备,排队等待时间太长,对患者和社会都会带来不良影响. 因此,医院管理人员要考虑如何在这两者之间取得平衡,以便提高服务质量,降低服务费用. 所谓排队系统模拟建模,就是利用计算机对一个客观复杂的排队系统的结构和行为进行动态模拟,以获得反映其系统本质特征的数量指标结果,进而预测、分析或评价该系统的行为效果,为决策者提供决策依据. 关键字:随机性,排队系统,动态模拟 正文:排队系统的基本结构由四个部分构成:来到过程(输入)、服务时间、服务窗口和排队规则.简单的排队系统的服务时间往往服从负指数分布, 即每位患者接受服务的时间是独立同分布的,本文用泊松输入,建立模型。 泊松输入即满足以下4个条件的输入: (1)、来到过程(输入)是指不同类型的患者按照各种规律来到医院. (2)、服务时间是指患者接收服务的时间规律. (3)、服务窗口则表明可开放多少服务窗口来接纳患者. (4)、排队规则确定到达的患者按照某种一定的次序接受服务. 患者的总体可以是无限的也可以是有限的;患者到来方式可以是单个的,也可以是成批的;相继到达的间隔时间可以是确定的,也可是随机的;患者的到达可以是相互独立的,也可以是关联;到来的过程可以是平稳的,也可是非平稳的; 患者接受服务的时间规律往往也是通过概率分布描述的. 常见的服务时间分布有定长分布、负指数分布和埃尔朗分布. 一般来说, 简单的排队系统的服务时间往往服从负指数分布, 即每位患者接受服务的时间是独立同分布的, 其分布函数为 B ( t ) = 1- e - m t (t ≥0). 其中m>0为一常数, 代表单位时间的平均服务率. 而1/m 则是平均服务时间. 服务窗口的主要属性是服务台的个数. 其类型有:单服务台、多服务台. 多服务台又分并联、串联和混合型三种. 最基本的类型为多服务台并联. 分为三类:损失制、等待制、混合制. 损失制:患者到达时,如果所有服务台都没有空闲,该患者不愿等待,就随即从系统消失. 等待制:患者到达时,如果所有服务台都没有空闲,他们就排队等待. 等待服务的次序又有各种不同的规则: ①先到先服务,如就诊、排队取药等; ②后到先服务,如医院处理急症病人; ③随机服务, 服务台空闲时,随机挑选等待的患者进行服务; ④优先权服务,如照顾号.

排队论练习题

第9章排队论 9.1 判断下列说法是否正确: (1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、 3、5、7,…名顾客到达的间隔时间也服从负指数分布; (4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统; (9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 M/M/1 9.2、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时 间服从负指数分布,平均需6小时,求: (1)理发店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内至少有1个顾客的概率; (4)在店内顾客平均数; (5)在店内平均逗留时间; (6)等待服务的顾客平均数; (7)平均等待服务时间; (8)必须在店内消耗15分钟以上的概率。 9.3、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4 人,修理时间服从负指数分布,平均需6分钟。求: (1)修理店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内顾客平均数; (4)店内等待顾客平均数; (5)顾客在店内平均逗留时间; (6)平均等待修理时间。

排队论习题

排队论习题 1. 一个车间内有10台相同的机器,每台机器运行时每小时能创造4元的利润,且平均每小时损坏一次。而一个修理工修复一台机器平均需4小时。以上时间均服从指数分布。设一名修理工一小时工资为6元,试求: (i )该车间应设多少名修理工,使总费用为最小; 解:这个排队系统可以看成是有限源排队模型M/M/s/10,已知 11,0.25,4,104m λλμρμ ====== 设修理工数为s , 由公式()()11010!!!!!!s m n n n n n s m m p m n n m n s s ρρ---==??=+??--??∑∑ ()11001m q n n s s s s n q n n n L n s p L np L s p =--===-??=++- ??? ∑∑∑ 目标函数为min 64s s L =+,用lingo 求解得到1s =,此时平均队长9.5s L =台,又因为当维修工数10s =时平均队长8s L =,说明此模型不合理。 对模型进行修正,由于要求顾客的平均到达率小于系统的平均服务率,才能使系统达到统计平衡。所以假设一名修理工修复一台机器平均需0.5小时,即设2μ=。用lingo 求解得维修工数3s =,平均队长,此时的最小费用为35.97元。(1)

程序: model: lamda=1;mu=2;rho=lamda/mu;m=10; load=m*rho; L_s=@pfs(load,s,m); lamda_e=lamda*(m-L_s); min=6*s+4*L_s; @gin(s); end Local optimal solution found. Objective value: 35.97341 Objective bound: 35.97341 Infeasibilities: 0.1000005E-09 Extended solver steps: 0 Total solver iterations: 388 Variable Value LAMDA 1.000000 MU 2.000000 RHO 0.5000000 M 10.00000 LOAD 5.000000 L_S 4.493352 S 3.000000 LAMDA_E 5.506648 (ii)若要求不能运转的机器的期望数小于4台,则应设多少名修理工; L ,求得应设解:同上,用有限源排队模型求解,增加约束条件4 s 4名修理工。 程序: model: lamda=1;mu=2;rho=lamda/mu;m=10; load=m*rho; L_s=@pfs(load,s,m); lamda_e=lamda*(m-L_s);

排队论及其应用

排队系统的符号表述 描述符号:①/②/③/④/⑤/⑥ 各符号的意义: ①——表示顾客相继到达间隔时间分布,常用下列符号: M——表示到达的过程为泊松过程或负指数分布; D——表示定长输入; EK——表示K阶爱尔朗分布; G——表示一般相互独立的随机分布。 ②——表示服务时间分布,所用符号与表示顾客到达间隔时间分布相同。 ③——表示服务台(员)个数:“1”表示单个服务台,“s”(s>1)表示多个服务台。 ④——表示系统中顾客容量限额,或称等待空间容量。如系统有K个等待位子,则,0

排队论测试题

首页 | 课程介绍 | 教学大纲| 授课教案| 测试习题| 教学视频| 实践教学| 考研指导| 参考资料| 前沿追踪| 教学队伍| 交流空测试习题 课后习题 第一章线性规划 第三章图与网络分析 第五章存储论 第七章对策论 综合测试 运筹学(96学时) 运筹学(48学时) 在线测试

以上分别服从泊松分布和负指数分布。为减轻打字员负担,有两个方案;一是增加一名打字员,每天费为 40 元,其工作效率同原打字员;二为购一台自动打字机,以提高打字效率,已知有三种类型打字机其费用及提高打字的效率如表 6-1 所示。 表 6-1 型号每天费用 / 元打字员效率提高程度 /% 1 37 50 2 39 75 3 43 150 据公司估测,每个文件若晚发出 1h 将平均损失 0.80 元。设打字员每天工作 8h ,试确定该公司应采用的方案。 6.8 某商店收款台有 3 名收款员,顾客到达率为每小时 504 人,每名收款员服务率为每小时 240 人,设顾客到达为泊松流,收款服务时间服从负指数分布,分别求 P 0 、 L q 、 L s 、 W q 及 W s 。 6.9 某设备维修中心有 k 名工人,每天到达的需检修的设备服从λ=10 的负指数分布,每名工人维修设备的平均时间服从μ=3 的负指数分布。现已知设置一名工人的服务成本为每天 4 元,而设备等待损失为每天 25 元,试决定此设备维修中心工人的最佳数字 k 。 6.10 考虑某个只有一个服务员的排队系统,输入为参数λ的普阿松流。假定服务时间的概率分布未知,但期望值已知为 1/ μ。 (a) 比较每个顾客在队伍中的期望等待时间,如服务时间的分布为:①负指数分布;②定长分布;③爱郎分布,` 值为负指数分布的 1/2 ; (b) 如与值均增大为原来的 2 倍,值也相应变化,求上述三种情况下顾客在队伍中期望等待间的改变情况。 6.11 汽车按泊松分布到达一个汽车服务部门,平均 5 辆 /h 。洗车部门只拥有一套洗车设备,试分别计算在下列服务时间分布的情况下系统的 L s , L q , W s 与 W q 的值: (a) 洗车时间为常数,每辆需 10min ; (b) 负指数分布, 1/u=10min; (c) t 为 5~15min 的均匀分布; (d) 正态分布,μ=9min,Var(t)=42 ; (e) 离散的概率分布 P ( t=5 ) =1/4 , P(t=10)=1/2, P(t=15)=1/4 。 6.12 某仓库贮存的一种商品,每天的到货与出货量分别服从普阿松分布,其平均值为λ和μ,因此该系统可近似看成为( M/M/1/ ∞ / ∞)的排队系统。设该仓库贮存费为每天每件 c 1 元,一旦发生缺货时,其损失为每天每件 c 2 元,已知 c 2 >c 1 , 要求: (a) 推导每天总期望费用的公式; (b) 使总期望费用为最小的λ/ μ值。 6.13 设顾客按泊松流到达某服务台,平均到达率为λ=12 位 /h ,设每一位接收服务的顾客的等候成本为每小时 5 元,服务台的服务成本为每位顾客 2 元。试确定使此服务台总费用最少的平均服务率μ* 。 6.14 填空

排队论模型

排队论模型 研究系统随机聚散现象和随机服务系统工作过程的数学理论和方 法,又称随机服务系统理论,为运筹学的一个分支。 日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。排队论的基本思想是1910年丹麦电话工程师A.K.埃尔朗在解决自动电话设计问题时开始形成的,当时称为话务理论。他在热力学统计平衡理论的启发下,成功地建立了电话统计平衡模型,并由此得到一组递推状态方程,从而导出著名的埃尔朗电话损失率公式。自20世纪初以来,电话系统的设计一直在应用这个公式。30年代苏联数学家А.Я.欣钦把处于统计平衡的电话呼叫流称为最简单流。瑞典数学家巴尔姆又引入有限后效流等概念和定义。他们用数学方法深入地分析了电话呼叫的本征特性,促进了排队论的研究。50年代初, 美国数学家关于生灭过程的研究、英国数学家D.G.肯德尔提出嵌入马尔可夫链理论,以及对排队队型的分类方法,为排队论奠定了理论 基础。在这以后,L.塔卡奇等人又将组合方法引进排队论,使它更能适应各种类型的排队问题。70年代以来,人们开始研究排队网络和复杂排队问题的渐近解等,成为研究现代排队论的新趋势。 排队系统模型的基本组成部分 排队系统又称服务系统。服务系统由服务机构和服务对象(顾客)构成。服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)

都是随机的。图1为一最简单的排队系统模型。排队系统包括三个组成部分:输入过程、排队规则和服务机构。 输入过程 输入过程考察的是顾客到达服务系统的规律。它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。例如,在生产线上加工的零件按规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。随机型的输入是指在时间t内顾客到达数n(t)服从一定的随机分布。如服从泊松分布,则在时间t内到达n个顾客的概率为 排队规则 排队规则分为等待制、损失制和混合制三种。当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。在等待制中,

排队论例题

几种典型的排队模型 (1)M/M/1/∞/∞/FCFS 单服务台排队模型 系统的稳态概率n P 01P ρ=-,/1ρλμ=<为服务强度;(1)n n P ρρ=-。 系统运行指标 a.系统中的平均顾客数(队长期望值) .s n i L n P λμλ ∞ == = -∑ ; b.系统中排队等待服务的平均顾客数(排队长期望值) (1).q n i L n P ρλμλ ∞ == -= -∑ ; c.系统中顾客停留时间的期望值 1 []s W E W μλ== -; d.队列中顾客等待时间的期望值 1 q s W W ρμ μλ =- = -。 (2) M/M/1/N/∞/FCFS 单服务台排队模型 系统的稳态概率n P 01 1,11N P ρρρ +-= ≠-; 1 1,1n n N P n N ρρρ +-= <- 系统运行指标 a .系统中的平均顾客数(队长期望值) 1 1 (1)11N s N N L ρρρ ρ +++= - -- b .系统中排队等待服务的平均顾客数(排队长期望值) 0(1)q s L L P =-- c .系统中顾客停留时间的期望值 0(1) s s L W P μ= - d .队列中顾客等待时间的期望值 。1 q s W W μ =- (3) M/M/1/∞/m/FCFS (或M/M/1/m/m/FCFS )单服务台排队模型 系统的稳态概率n P

00 1 ! ( ) ()! m i i P m m i λμ == -∑; 0! ( ),1()!n n m P P n m m n λ μ =≤≤- 系统运行指标 a .系统中的平均顾客数(队长期望值) 0(1)s L m P μ λ =- - b .系统中排队等待服务的平均顾客数(排队长期望值) 00() (1)(1)q s L m P L P λμλ +=--=-- c .系统中顾客停留时间的期望值 01 (1) s m W P μλ = - - d .队列中顾客等待时间的期望值 1 q s W W μ =- (4) M/M/c/∞/∞/FCFS 单服务台排队模型 系统的稳态概率n P 1 00 111[()()!!1c k c k P k c λλμρμ-==+-∑ ; 001(),!1(),!n n n n c P n c n P P n c c c λμλμ-?≤?? =? ?>?? 系统运行指标 a .系统中的平均顾客数(队长期望值): s q L L λ μ =+ b .系统中排队等待服务的平均顾客数(排队长期望值): 02 1 ()(1)!(1) c q n n c c L n P P c ρρρ∞ =+= -= -∑ c .系统中顾客停留时间的期望值: s s L W λ= d .队列中顾客等待时间的期望值: q q L W λ = [典型例题精解] 例1:在某单人理发馆,顾客到达为普阿松流,平均到达间隔为20分钟,理发时间服从负指数分布,平均时间为15分钟。求: (1)顾客来理发不必等待的概率;(2)理发馆内顾客平均数;

相关主题
文本预览
相关文档 最新文档