当前位置:文档之家› 晶体光学性质的观测分析

晶体光学性质的观测分析

晶体光学性质的观测分析
晶体光学性质的观测分析

中山大学实验报告:晶体光学性质的观测分析

理工学院光学工程系05级光信2班05323057号参加人实验人:李洁芸

日期:2007. 10.15 . 温度:气压:

[引言]

在晶体中,除立方晶系晶体外,都表现出光学各向异性(双折射现象)。当光经过各向异性晶体时,光的性质会随着晶体的取向不同而发生改变,并表现出各种有趣的光学现象.利用晶体的各向异性,可以制成光学偏振器,应用分析器,电光调制器等.观测和研究晶体的光学性质,对我们充分认识晶体的光学性质有十分重要的意义。

[实验目的] 1.熟悉单轴晶体光学性质,晶体的消光现象,干涉色级序;

2.了解偏光显微镜原理并掌握其使用方法;

3.观察晶体的类别,轴向和光性正负等过程,估计晶片的光程差

[实验仪器]透射偏光显微种类很多,但基本原理都大同小异。图11为本实验所用的XP-201型透射偏光显微镜的构造图,主要结构包括:

1.光源:卤素灯12V/20W,亮度可调节。

2.起偏镜:用于产生偏振光,可转动调节方向。

3.聚光镜:位于物台下面,有一组透镜组成,可以把来自下偏光镜的平行光聚敛成锥形偏光,聚光镜连有手柄,可根据需要旋入或旋出光路。

4.旋转载物台:用于放置观察样品,可360度旋转。

5.物镜:由四个放大倍数分别我为4x,10x,40x,60x的物镜,物镜的前镜片与样品之间的距离称为工作距离,

图11 XP-201型透射偏光显微镜

物镜的工作距离随着放大倍数的增加而减小,所以用高倍物镜时要特别小心,应先将物镜调至最低,然后

逐步升高对焦。

6,λ及石英楔子等补偿器。

7.检偏镜:摆动式,可移出光路,进行单偏光观察。

8.勃氏镜:位于目镜与上偏光镜之间,为一小凸透镜,与目镜联合组成一望远镜,勃氏镜可左右移动,分别移入、移出光路。

9.目镜:目镜中装有十字丝和刻度尺。 [实验基本原理]

(一)晶体的双折射和光率体

折射率与光的传播方向和光矢振动方向有关的晶体称为各向异性晶体。除立方晶系的晶体外,所有的晶体都是各向异性晶体。

当光通过各向异性晶体时,会产生双折射现象,并表现出偏振性质。当光沿各向异性晶体传播时,总存在一个或两个方向不发生双折射现象,此方向称为晶体的光轴,按晶体的光轴分,各向异性晶体又可分为单轴晶和双轴晶,单轴晶只有一个光轴;而双轴晶则有两个光轴。其中,折射率不随入射光方向而变的称为寻常光或o 光(折射率为n o ),折射率随入射光方向而变的称为非寻常光或e 光(折射率为n e )。o 光和e 光都是偏振光,并且它们的振动方向互相垂直。o 光的振动方向垂直于包含光轴和o 光波法线所组成的平面,e 光的振动方向则平行于包含光轴和e 光波法线所组成的平面。

折射率椭球(或光率体)是描述晶体光学性质最常用的晶体光学示性曲面,它是以主折射率为主值的椭球。在主轴坐标系,折射率椭球可以表示为:

123

2322222121=++n X n X n X (1) 1. 立方晶系(高级晶族)

1230n n n n ===

120

232221=++n X X X (2) 2.单轴晶(中级晶族) 图1 立方体系晶体光率体

1203,e n n n n n === 1223202221=++e

n X n X X (3) (a )正单轴晶 (b )负单轴晶

图2 单轴晶光率体图 图3 单轴晶光率体的三种中心截面

单轴晶光率体的光轴(3x ),必须与晶体中的主对称轴(唯一的高次轴)一致。o e

n n >的单轴晶称为正光性单轴晶,它的光率体是沿光轴方向拉长了的旋转椭球(图2(a )),o e n n <的单轴晶称为负光性单轴晶,它的光率体是沿光轴方向压扁了的旋转椭球(图2(b ))。由于光速v=c/n ,折射率越大,其光速越慢,所以在晶体中,折射率最大的方向成为晶体慢轴方向,而折射率最小的方向成为晶体快轴方向。

图3给出了单轴晶光率体中三种中心截面。圆截面:垂直光轴的圆,半径为0n 。主截面:包含光轴的椭圆截面,它的一个半径为0n ,与光轴垂直,另一个半径为e n ,与光轴平行。由图可见:o 光的振动方向必垂直于主截面,e 光的振动方向则平行于主截面。任意截面:是一个椭圆,截面法线N 与光轴成θ角。

3.双轴晶(低级晶族)

123n n n ≠≠

123

2322222121=++n X n X n X (4) 在低级晶族光率体中,可以找到两个圆截面,即存在两个光轴。双轴晶的光学性质比较复杂,这里不作详细讨论,以下分析讨论都是单轴晶情况。

(二)正交偏光干涉

在偏光显微镜中,当上下偏光镜的振动面互相垂直时,称为正交偏光镜。如在正交偏光镜间不放任和介质或放入各相同晶体时,光线无法通过正交偏光镜,所以视阈是黑暗的;当在正交偏光镜间放入各相异晶体时,由于晶体双折射效应和晶片厚度、晶轴取向的不同而产生不同的干涉现象。

图4 正交偏光镜间的干涉现象

如图4,在正交偏光镜中加入一晶片,其中PP表示起偏镜的振动方向,AA表示检偏镜的振动方向,OO表示晶片光轴方向。透过起偏镜的偏振光振幅为

oe A ,光线到达厚度为d 的晶片后,分解成振幅分别为e A 和o A 的e 光和o 光:cos ,e oe A A α= s i n .o o e A A α=再经过检偏镜后,e 光和o 光振幅

分别变为:

11sin cos sin ,cos cos sin .e e oe o o oe A A A A A A αααααα====各向异性晶体的双折射率:e o n n n ?=-光透过厚度为d 的晶片时,必产生光程差:()e o d n n ?=-相位差:2()/e o d n n δπλ=-。由此可见,经过正交偏振片和晶片后产生的两束光满足相干条件:①频率相同 ②相位差恒定 ③有相同方向的偏振分量.必然产生干涉。根据平面波迭加原理,两束光的合成光波振幅:

])

n n (d [sin 2sin A cos A 2A A A A o e 222oe o1e12o12e12

πλαδ-=-+=+ (5)

合成光强:

])

n n (d [sin 2sin A A I o e 222oe 2

πλα-=∝+ (6)

由式(6)可看出:正交偏光干涉光强分布状况与晶片的轴向α,厚度d ,双折射率Δn 及入射波长λ有关。

1.单色光干涉 对于单色光,当0,,2π

απ=,…时,sin 20α=,即当晶片的轴向与两正交偏光镜其中之一的偏振方向一致时,合成光强为零,视野全暗,此现象称为消光现象。此时,晶片的位置称为消光位置。当35,,,444πππ

α=…时,sin 21α=±,即当晶片的轴向处于两个偏光镜的偏振方向中间时,合成光强最大,视阈最亮。很显然,如转动晶片360度,会出现四暗、四明现象。

当晶片的双折射率Δn 不变,厚度变化,这相当于石英锲子的情况。石英锲子是一个磨成一端薄一端厚的石英晶片,长边平行于n o ,短边平行于n e ,双折射率Δn=0.009。当正交偏光镜中插入的是石英锲子,由于石英锲子厚度不同,其不同厚度出的光程差)n n (d o e -=?也不相同,所以当石英锲子由薄至厚插入时,就会观察到有规律的明暗相间的干涉条纹。如图5所示。

(a )石英楔子 (b ) 石英楔子干涉条纹

图5 正交偏光下石英楔子干涉

2.白光干涉

用白光照明时,由于白光是由红橙黄绿蓝靛紫七色组成,且各色光波长范围不同,所以对于某一个d 值,不同色的光不可能同时达到相消或相长,干涉条纹也就不再是明暗不同的条纹,而只能是由光强不为零的各种单色光混合组合而成的,称为干涉色。

当晶片的双折射率n ?不变,厚度变化,如石英锲子情况,其折射率随光波变化很小,可看作基本不变。当正交偏光镜中插入的是石英锲子,随着石英锲子厚度得变化其颜色发生有规律的变化,就是干涉色级序,大约每560nm 光程差划分一个干涉色级序,通常可分为四个级序,光程差越大则干涉色级序越高。每个干

涉色级序中,颜色的一次明显改变称为一个色序,各色序之间颜色是连续变化的。对于同一石英锲子,波长越短,其明暗条纹间距亦越短。

3.光程差补偿原理

如果在正交偏光镜间放两块晶片,设光线通过晶片1和晶片2的光程差分别为Δ1和Δ2,当两晶片同名轴(快慢轴)平行时,如图6a所示,则通过两晶片的总光程差Δ=Δ1+Δ2,其干涉色比原来两晶片单独放入时的干涉色都高;当两晶片异名轴平行时,如图6b所示,则通过两晶片的总光程差Δ=Δ1+Δ2,其干涉色比其中之一单独放入时的干涉色低。若两晶片的光程差相等,则Δ=Δ1-Δ2=0,此时两晶片的光程差互相补偿,视阈全暗。上述光程差叠加和补偿的规律称为补色法则

(a)同名轴平行(b)异名轴平行

图6单轴晶体光性正负的测定

若将晶片2换成石英锲子,且慢慢推入石英锲子,使Δ2逐渐增加。此时,如果晶片1与石英锲子同名轴平行,总光程差Δ是递增的,导致干涉色逐渐升高;如果晶片1与石英锲子异名轴平行,总光程差Δ是递减的,导致干涉色逐渐降低。

当两个晶片相叠时,如果一个晶片的快慢轴方向已知,可根据补色法则,利用干涉色升降情况,确定出另一晶片的快慢轴方向,并可通过查干涉色表估算出另一晶片的光程差。

(三)锥光干涉

对于晶体的轴性、光性符号、光性方位、光轴角等根本问题,则要通过锥光观测才能最后下结论。

在正交偏光镜的条件下,在广路中加入聚光镜和勃氏镜便构成了锥光装置。追光装置加入聚光镜可是平行入射的偏振光高度聚敛,形成锥形偏光;加入勃氏镜可以得到放大了的清晰、完整的干涉图,如不加勃氏镜,必须拔出目镜,才能看到物镜焦平面上小得多的干涉图。通过锥光装置在视阈中显现的干涉图称为锥光干涉图,它不是晶片本身的像,而是锥形偏光通过镜片后到达上偏光镜所发生的干涉效应的总和。下面根据光轴在晶体切片中方位的不同分几种情况讨论。

(a)立体图(b)俯视图

图7 单轴晶体垂直光轴切片锥光干涉图

1.垂直光轴切片的晶体干涉

图7给出了光源为单色光时垂直光轴切片晶体锥光干涉图,它是由一个黑十字和亮暗相间的同心圆环组成。当光源为白光时,则同心圆环变为干涉彩环。图中十字交点为光轴的露点,近光轴处黑臂较细,远离光轴处黑臂较粗。自光轴露点向外,等色环由疏变密,干涉色级由低到高,旋转载物台,干涉色不发生变化。具有高双折射率的晶体所形成的干涉环,要比低双折射率晶体的多。对于同一种晶体,厚的晶片所形成的干涉环,要比薄的晶片多。此外,所使用物镜的数值孔径越高,则所观察到的干涉环也越多。

在锥光干涉中,光锥中有一系列的光通过晶片,而每一条光在晶片中都有两个互相垂直的振动方向,其折射率分别为n e和n o。由图7可知,越到视阈边缘,光线方向对光轴倾斜的越厉害,双折射率就越大,对应的光率体切面之形状也就越加长而扁。包含在PP(或AA)面内的光与光轴组成的面是PP(或AA)面,即主截面,非常光是在PP(或AA)面内振动,而常光则在垂直PP(或AA)面内振动。但由于来自下偏光镜的光都是在PP面内振动的线偏光,所以包含在PP面内的光会全部从非常光的振动面内通过,而包含在AA面内的光则会全部从常光的振动面内通过,因此通过PP和AA面内的光在通过晶片后,其偏振方向不会发生改变,都平行于下偏光镜的偏振方向,与上偏光镜的偏振方向垂直,无法通过上偏光镜,因而在视阈中平行PP和AA方向就产生一个黑十字消光影。只有位于PP和AA面内的光才是绝对消光,而光锥中位于PP和AA面附近的光,它们都会有极小一部分通过上偏光镜而互相干涉,但由于人的眼睛感觉不到,所以此时用人眼观察仍然是暗的,所以十字消光影是两条有一定宽度的黑臂。转动载物台,消光影的位置不发生变动,这是因为不论载物台怎样转动,光锥中总是有部分光位于PP和AA面内或其附近,因此消光影总是存在的,并且消光影始终与下偏光镜和上偏光镜的振动面平行。

在单色光中产生的光轴干涉图除了黑十字消光影外,还有互相交替的亮环与暗环。这主要是因为当光上升到晶片上时,原来平行PP方向的振动在晶片中要分解为两互相垂直的振动,由图7可知,非常光总是在入射光与光轴组成的主截面内振动,而常光则在与之垂直的面内振动。当入射光与光轴斜交越大时,光在晶片中走过的距离越长,双折射率越大,所以从光锥的轴越向外去,光程差就越大。与光轴成某一角度的光线组成一个光锥,而同一光锥内的每一条光线均与光轴成相同的角度,通过晶片后产生相同的光程差Δ。如果Δ=(n+1/2)λ,光程差是光波长的奇数倍,就会出现干涉相长,观察到一个亮环。仔细观察会发现在同一亮环上亮度是不均匀的,这是由于在同一环上光的振动方向是变化的,如图7所示越靠近消光

45位置,亮环的亮度最大。

影处,与PP(或AA)夹角越小,因此亮度越暗,而在每一象限的

如用白色光源,仍可观察到黑十字状消光影,所不同的是原来交替出现的亮环与暗环,变成了交替出现的彩环。靠近视阈的中央是一级灰色,然后是一级黄环,红环,二级紫环,蓝环等,越向视阈的边缘,干涉色的级数越高,等色曲线的数目越多,密度越大。

在实际晶体光学检测中,我们可以利用垂直光轴切片的锥光干涉图来检测和判断晶体光性正负。在垂直光轴切片的锥光干涉图上,o光和e光的振动方向如图8所示。此时插入试板,观察干涉图中四个象限内干涉色序的升降,根据消光原理判断n e是快轴还是慢轴,从而确定代测样品的光性正负。另一种判定的方法是:插入试板,观察四个象限干涉彩环的移动方向,或哪两个对称象限在靠近黑十字交点附近出现黑点,例如,插入石英锲子,如果一、三象限干涉色序升高,二、四象限干涉色序降低,或者一、三象限干涉彩环向内收缩,二、四象限干涉彩环向外扩张,或者二、四象限在靠近黑十字交点附近出现黑点,而一、三象限在对应位置上没有黑点,则待测样品为正光性;反之,待测样品为负光性。

(a)正光性(b)负光性

图8 单轴晶体光性正负的测定

2.平行光轴切片的晶体干涉

45位置

(a) 0位置(b)

图9 单轴晶体平行光轴切片锥光干涉图

对于平行光轴的切片,当光轴与上偏光镜(或下偏光镜)振动方向平行时,视域中出现模糊粗大的黑十字,只有在四象限中接近边缘有小部分明亮,此时稍微转动载物台,黑十字立即分裂成一对双曲线,并迅速沿光轴方向离开视域,因其变化迅速,又称为瞬变干涉图。自二相对的象限离开视域就是包含光轴

45角,视域最亮,出现对称的双曲干涉带,的象限。继续转动载物台,当光轴与上下偏光镜振动方向成

45其干涉色是由光程差所决定的,因而不同的样品其干涉图不尽相同。对于双折射率较高的晶体,当处于

位置时,视域中出现干涉色,在两两相对的象限中,干涉色由视域中心向边缘逐渐升高,据此可以判断光

45位置时,视域中呈现一片白色或一片灰色,上述干涉色轴的位置。对于双折射率较低的晶体,当处于

升高和降低现象不明显,此时如插入一石膏试板,现象会清楚很多。

3.斜交光轴切片的晶体干涉

在实际晶体分析中,恰巧与光轴垂直或平行的切面极为少见,大部分切面和光轴成各种角度的斜交,斜交程度可从正交偏光镜间切面的干涉色加以估计。如果切面的干涉色很低,表示切面与光轴接近垂直,如果切面的干涉色很高,则说明切面与光轴接近平行。假如切面的干涉色不很高也不很低,则切面和光轴斜交为45度左右。斜交光轴的切面在聚敛偏光镜间,干涉图的形态往往是不对称的,黑十字的交点即光轴点不在视域中心,但仍在视域之内,转动载物台,光轴露点也随之转动,方向与载物台的转动方向相同,随着光轴露点移动,消光影的位置也跟着转移。但不论怎样转移,消光影的两臂仍保持与下偏光镜或上偏光镜的振动面相平行。当载物台旋转360度,光轴绕显微镜轴旋转,在空间画出一个锥体,而光轴在视野中的出露点画出一个圆。当切面与光轴斜交角度角较小时,光轴露出可能不在视野之内,此时,适当旋转载物台,可观察到一条黑色条带。如果切面与光轴斜交角越来越小,消光影的黑臂就变弯曲起来,最后当

切面与光轴平行时,就变为瞬变干涉图了。

(四)晶体旋光性、埃利旋

当一束线偏振光通过某些物质后,光的振动方向会随着物质中的传播距离增加而逐渐发生旋转,这种现象称为旋光现象。旋光有左右旋之分,旋光物质也有左旋物质和右旋物质之分。 对于旋光物质而言,振动面旋转的角度ψ与通过旋光物质厚度d 成正比,即

d ψα= (7)

其中,比例系数 α称为该旋光物质的旋光率。

如果将相当厚度的右旋与左旋石英晶片叠置在一起,在聚敛光中可以看到特殊旋转干涉图,其四臂或是右旋或是左旋,主要决定于是哪一晶片放在下面。如图10(a ),右旋石英置于左旋石英之下,会观察到右旋,而图10(b )是左旋置于右旋石英之下,会观察到左旋。以上图形称为埃利旋。利用埃利旋可以在晶片中识别有左旋和右旋两种石英单体所构成的双晶。

图10 埃利旋

菲涅耳对物质的旋光性做出了合理解释:他认为任一线偏光都可看作由两个振幅相等、沿同一方向传播的左旋和右旋圆偏振光组合而成。如组成线偏振光的左旋与右旋圆偏光的折射率分别用L n 和R n ,光波长用λ,通过晶体厚度用d 表示,在两圆偏光自晶片透出的瞬间,二者各具一定周相,二等分其周相差,就得到离开晶片后的平面偏光的振动方向,此振动方向比原来进入晶片前时的振动方向转动了一个角度ψ:

(8) 由上式可以看出:当L R n =n 时,ψ=0不存在旋光;当L R n >n ,

0ψ>为右旋;当L R n < n ,0ψ<为左旋。

[实验内容]

实验给出两组样品:第一组样品的每个晶片都标明了晶体材料及其切割面与光轴的大致关系(垂直切、平行切、斜切),对第一组样品的观测可使同学们对晶体的相关光学性质有一些基本了解和认识;第二组样品都是未知镜片,可供进一步实际练习和晶体鉴定之用。

1.仔细阅读说明书,了解偏光显微镜的结构及使用方法。

2.校正仪器中心,即调节物镜光轴与物台中心重合。选用低倍物镜,在玻璃片上选一小黑点,并将小黑点转至十字丝中心,调节物镜中心调节螺丝,使物镜在中心移至载物台中心,反复调节直至小黑点不再转动为止。

3.调整偏光片正交。调节下偏光镜对准0°,固定之。调节上偏光镜于0°,再仔细微调使视域变得最暗,此时上下偏光片正交。将A 、B 、C 样品分别置于载物台中心,缓缓转动载物台一周,分别观测得一下数据,

如表1。

表1 晶体性质测量数据表

在载物台放上样品A 和B 时,转动载物台一周,可观察到光强明暗等间隔出现,总共四明四暗,每隔45?转换一次。放上样品C 时,无论如何转动载物台,光场总是暗的。

(1)放上样品A时,可观察到明亮的黄光,缓慢转动载物台一周,可观察到四明四暗的现象。由于上下偏光片正交,消光位置就是晶片光轴与其中一个偏光镜的检偏方向平行的位置,有四个这样的消光位置,从表1中可看出,每两个相邻消光位置的角度间隔分别约为90.5°、89.6°、90.1°、89.8°,消光位置角度间距与90°存在一定误差,主要来源于对消光位置判断的主观性,由此我们判断样品A 为各向异性晶体。转动载物台一周,也有四个光强最大位置,这是因为根据正交偏光干涉光强分布公式(6)

])

n n (d [sin 2sin A A I o e 222oe 2

πλα-=∝+,可见轴向3,.....44ππ

α=时,当晶片的轴处于两个偏

光镜的偏振方向中间时,合成光强最大,所以有四个明亮的位置,明暗位置相差45°。

(2)放上样品B 时,也可以观察到明亮的黄光,缓慢转动载物台一周,可观察到四明四暗的现象。与样品A 一样,记录下四次全消光的位置,从表1可以看出,每两个相邻消光位置间的间隔约为90.5°、89.5°、90.0°、90.0°,间隔约为90°,误差来源与样品A 分析相同,我们可以判断样品B 也是各向异性晶体。

(3)放上样品C ,视域全暗,缓慢转动载物台,视域无明暗变化。光通过各向同性晶体时,光强没有不同方向的相位变化,不能产生正交偏光干涉,因此视域全暗,与实验现象相符。由此我们判断晶体样品C 是各向同性晶体。

4.用一级红插片判断慢光方向并估计光程差

保持上下偏光镜正交。在载物台上放上A 晶片和B 晶片,为了比较两者快慢轴的角度,将两者的外框固定于同一位置,固定外框的长边使与载舞台的上的固定架平行,分别调到它们的消光位置,由表1可知A 样品为42°,B 样品为20.0°。插入一级红插片,转动载物台,每45°记录一次颜色,干涉色变化如下:

A 晶片:

棕色(-3°)←紫红(42°)→蓝绿(87°)

B 晶片:

蓝绿(-25°)←紫红(20°)→棕色(65°)

由实验原理可知,当放置晶体转动到消光位置时,总光程差等于一级红插片的干涉厚度。当转动载物台,总光程差有时大于此厚度,有时小于此厚度。当光轴与一级红插片的同名轴平行时,总光程差最大,干涉级数最高。

由于一级红插片的光程差在第一级序的红光附近(观测到为紫红色),随着晶体的转动,总光程差总是在一级红附近上下转换,故可根据观测到的颜色与干涉色序表对照,得到干涉级数最大的位置,由此判断出晶体的慢轴方向。干涉色序表如下:

表2 干涉色级序表

由观测到的颜色变化可以判断:

1) 放置A 晶片时,载物台逆时针转至-3°和177°时,干涉为棕色,其波长为378.7nm ;载物台顺

时针转至87°和267°时,干涉为蓝绿色,其波长为761.4nm 。

2) 放置B 晶片时,载物台逆时针转至60.6°和240.6°时,干涉级数最高,此时晶体的慢轴平行于

一级红插片的慢轴。载物台转至65°和245°时,干涉为棕色,其波长为378.7nm ;载物台顺时

针转至335°和155

°时,干涉为蓝绿色,其波长为761.4nm 。

由此可判断出晶体的慢轴方向和慢轴方向。红插片插入的方向与载物台0刻度成135°夹角,固同样放置时,A

片与一级红插片慢轴的夹角为42°-45°=-5°, B 片与一级红插片慢轴的夹角为20°+45

°=65°。

图11

各晶片慢轴示意图

补色法则指出,当两晶片同名轴平行时,通过两晶片的总光程差为21?+

?=?,其干涉色比原来两晶片单独放入时的干涉色都高。当两晶片异名轴平行时,则通过两晶片的总光程差12?=?-?,其干涉色比其中之一单独放入时的干涉色低。

这种方法测量的晶体光程差具有较大的误差,主要原因是判断干涉级时用肉眼判断干涉颜色,精确度低且主观性大。

5.晶片慢光振动方向的确定

保持上下偏光镜正交,将A 晶片置于载物台中心,转动载物台使全消光,此时o 光和e 光的振动方向

45角。然后在试片孔中缓慢插入石英楔子。观察到干涉色的变化如下:

就和上下偏光镜成

白→浅橙→红橙→蓝绿→黄绿→橙→粉红→蓝绿→绿→蓝→紫红→橙黄→浅黄→灰白

查干涉色序表可知,A晶片干涉色序逐渐降低,故A晶片的慢光振动方向与石英楔子的慢光方向相垂直。

同理对B晶片可观察到干涉色的变化如下:

灰白→浅黄→红橙→蓝→蓝绿→黄绿→紫红→蓝绿→绿→黄→橙红→粉红→浅绿→浅橙→紫红

查干涉色序表可知,B晶片干涉色序逐渐升高,故B晶片的慢光振动方向与石英楔子的慢光方向相平行。

6.锥光干涉观测及光性正负鉴定

将晶片放在载物台中心,推入勃氏镜,仔细观察晶片的锥光干涉图,再插入石英楔子,观察图像变化,能观察到以下现象:

(1)KDP:

插入石英楔子前,能观察到干涉图由一个黑十字和以黑十字中心为圆心的同心干涉彩环组成。干涉图如图12所示:

图12 KDP、KNSBN晶体样品锥光干涉示意图

图中黑十字近光轴处黑臂较细,远离光轴处黑臂较粗。视域被黑十字分为四个象限。自中心向外,等色环由疏变密,视域中央为灰白色,向外依次出现黄环、橙红环、紫环、蓝环、浅绿环等。转动载物台,干涉图的形象不变。

缓慢插入石英楔子,可以观察到一、三象限干涉彩环向外扩张,二、四象限干涉彩环向内收缩。

(2)KNSBN:

KNSBN样品的干涉图案与KDP样品类似,图象亦如图13所示。

插入石英楔子前,能观察到干涉图由一个黑十字和以黑十字中心为圆心的同心干涉彩环组成。黑十字近光轴处黑臂较细,远离光轴处黑臂较粗。视域被黑十字分为四个象限。自中心向外,等色环由疏变密,视域中央为灰白色,向外依次出现黄环、橙红环、紫环、蓝环、浅绿环等,不过环的半径与KDP稍有不同。转动载物台,干涉图的形象不变。

缓慢插入石英楔子,可以观察到一、三象限干涉彩环向外扩张,二、四象限干涉彩环向内收缩。

石英:

插入石英楔子前,把载物台转动到适当方向,可以看到颜色稍暗的彩色同心圆环,由里向外的颜色依次为黄、橙、紫红、紫、蓝、绿。增大视场范围,可以勉强见到模糊粗大的黑十字,四个象限中接近边缘的地方比较明亮,干涉图如图14所示:

图13石英晶体样品锥光干涉示意图

转动载物台,黑十字立即分裂成一对双曲线,沿相对的两个方向迅速逃出视域。

缓慢插入石英楔子,可以观察到一、三象限干涉彩环向外扩张,二、四象限干涉彩环向内收缩。

分析:

①KDP,KNSBN的锥光干涉,黑十字消光影细长且明显,且转动载物台时干涉图案不变,由实验原理可知这两种晶体都是垂直切片。

观察KDP,KNSBN,插入石英楔子后,一、三象限干涉彩环向外扩张,二、四象限干涉彩环向内收缩,说明一、三象限干涉色序降低,二四象限干涉色序升高。这是由于一、三象限的为异名轴平行,其光程差正交方向互相抵消,光程差减小,彩环向外扩张;二、四象限为同名轴平行,其光程差正交方向互相增强,光程差增大,彩环向内收缩。由原理可判断KDP,KNSBN为负光性晶体。

②石英的锥光干涉,发现其黑色十字粗大且非常模糊,很难辨别,且转动时黑十字分裂为双曲线并迅速逃离,由原理可知石英样品是平行切片的。

观察石英,插入石英楔子后一、三象限干涉彩环向内收缩,二、四象限干涉彩环向外扩张,说明一、三象限干涉色序升高,二四象限干涉色序降低,情况与KDP,KNSBN相反,一、三象限同名轴平行,二、四象限异名轴平行,由原理可判断石英为正光性晶体。

实际上观察垂直切片样品时只有位于PP和AA面内的光才是绝对消光的,而光锥中位于PP和AA面附近的光,它们都会有极小一部分通过上偏光镜而互相干涉,但由于人的眼睛探测精度不够,所以此时用人眼观察仍然觉得是暗的,以至十字消光影在观察时是两条有一定宽度的黑臂。转动载物台图象不变是因为晶体性质是轴对称的。

表3为各种样品的性质对比表:

表3样品性质对比表

7.观察晶片的埃利旋并判断其旋光性质

将圆石英晶片和方石英晶片以不同顺序叠合在一起,放入载物台,调节偏光显微镜观察到如表4所示:

对照原理中埃利旋的示意图,可知方石英为左旋石英晶体,圆石英为右旋石英晶体。

石英晶体的旋光性是由于石英晶体分子排列结构的镜像对称所引起,右旋石英与左旋石英在几何形态上是有差别的:右旋石英晶体上三方偏方体面位于三方锥面之右下方,而在左旋石英晶体上三方偏方体面位于三方锥面之左下方。

旋光效应的产生原因:任一线偏光都可看作由两个振幅相等、沿同一方向传播的左旋和右旋圆偏振光组合而成。如组成线偏振光的左旋与右旋圆偏光的折射率分别用L n 和R n ,光波长用λ,通过晶体厚度用d 表示,在两圆偏光自晶片透出的瞬间,二者各具一定周相,二等分其周相差,就得到离开晶片后的平面偏光的振动方向,此振动方向比原来进入晶片前时的振动方向转动了一个角度ψ:

当L R n =n 时,0ψ

=不存在旋光;当L R n >n 时,0ψ>为右旋;当L R n

R n n ≠,故出现旋光性。

[思考与讨论]

1.对于观察者来说,观察消光现象和观察锥光干涉图时,应分别注重观察什么内容?

答:

A.观察消光现象时,应仔细观察四次消光的出现和消光的位置,注重对此现象原理的思考和理解。 B.观察锥光干涉图时,应注重观察各种样品锥光干涉图像的相同点和不同点,再仔细观察转动载物台观察图像的变化。结合原理理解不同干涉图像出现的原因。

2.实际观察到的消光现象与你设想的有哪些不同?如何解释?

答:实际观察到消光时并不是完全全消光,而是还有较弱的光透出来。造成这种情况的原因有以下几

个:

A.有外部环境的光线进入观察系统。

B.偏振片的非偏振方向不能完全把光线隔绝,透过的只是近似线偏振光的椭圆偏振光。

C.调节偏振片的时候未能使起偏器和检偏器完全正交。

3.观察消色时,你看到的颜色可能没有列表中的那么丰富,为什么?此时你应该如何利用消色法则?

答:在实际观察中,颜色的变化是连续的,而在紫光波段附近肉眼不敏感,故某些颜色色带窄,稍微移动晶片颜色就会发生剧烈变化,人眼难以准确分辨。在绿光附近肉眼敏感,图像颜色色带宽,不同波长的颜色不容易区分。如上述白光干涉的观测可知当光轴与一级红插片的光轴平行时有消光位置,与一级红插片的光轴成45°时有最亮位置,而这些位置正是代表了同名轴平行和异名轴平行以及他们的中间位置的情况,故只需观测这些位置,便可忽略其他的位置及色序。

考虑到绿色和黄色的色带宽,人眼敏感,色带较宽而人眼判断的主观性很强,对于定出干涉光的波长可能误差较大,这样估计出的晶片的光程差会有很大的误差。我们可以考虑找一些色带较小的波段,使用该波段对应的插片,再根据干涉色序表定出其波长,其对应的颜色也较为容易判断。也可以使用频谱探测仪器代替眼睛,这样能得到十分精确的结果。

4. 向异性的晶片放于正交偏光镜下,当转动载物台一周时,出现四次消光,如何解释?

答:由原理可知,合成光强公式为

])

n n (d [sin 2sin A A I o e 222oe 2

πλα-=∝+ 对于单色光,当30,,,22

π

παπ=时,sin 20α=,即当晶片的轴向与两正交偏光镜其中之一的偏振方向一致时,合成光强为零,视野全暗,此时,晶片的位置处于消光位置。当转动一周时,会有四次晶片的轴向与两正交偏光镜其中之一的偏振方向一致,因此出现四次消光。

5.双折射率较低时,黑十字粗些,而双折射率较高或双折射率不太高而晶片较厚时,黑十字较前者细些,

如何解释?

答:在锥光干涉中,包含在PP (或AA )面内的光与光轴组成的面是PP (或AA )面,即主截面,非常光是在PP (或AA )面内振动,而常光则在垂直PP (或AA )面内振动。但由于来自下偏光镜的光都是在PP 面内振动的线偏光,所以包含在PP 面内的光会全部从非常光的振动面内通过,而包含在AA 面内的光则会全部从常光的振动面内通过,因此通过PP 和AA 面内的光在通过晶片后,其偏振方向不会发生改变,都平行于下偏光镜的偏振方向,与上偏光镜的偏振方向垂直,无法通过上偏光镜,因而在视阈中平行PP 和AA 方向就产生一个黑十字消光影。

只有位于PP 和AA 面内的光才是绝对消光,而光锥中位于PP 和AA 面附近的光,它们都会有极小一部分通过上偏光镜而互相干涉,但由于人的眼睛感觉不到,所以此时用人眼观察仍然是暗的,所以十字消光影是两条有一定宽度的黑臂。

而对于双折射率较高的晶体,要产生相同的光程差只要通过更短的距离;双折射率不太高而较厚的晶片产生的光程差更大,因此产生的消光影要比双折射率较低时的细些,表现为观察到的黑十字比较细小。

6.平行光轴切片的晶体厚度较大时,沿光轴方向的干涉色是否肯定愈向外愈低,为什么?

答:不一定。

干涉色由光程差

)(o e n n d -=?

所共同决定决定。当光线与锥轴夹角增大,两种折射率的差会变小,不过在晶体内经过的距离会增加。如

果d 足够大,使得d 增的趋势比e o n n -减小的趋势快,则?不会随光线与锥轴夹角的增大而减小,那么沿光轴方向的干涉色也不会愈向外愈低。

胆甾相液晶的光学性质

一、胆甾相液晶的光学性质 胆甾相液晶同其他液晶态物质一样,既有液体的流动性、形变性、粘性,又具有晶体光学各向异性,是一种优良的非线性光学材料。较一般液晶不同的是它具有螺旋的状的分子取向的排列结构,因此,它除了具有普通液晶具有的光学性质外还具有它本身特有的光学特性。 (1)选择性反射 有些胆甾相液晶在白光的照射下,会呈现美丽的色彩。这是它选择反射某些波长的光的结果。实验表明,这种反射遵守晶体衍射的布拉格(Bragg)公式。 一级反射光的波长为: λ=2nPsinφ 其中:λ为反射波的波长,P为胆甾相液晶的螺距,n为平均折射率,φ为 入射波与液晶表面的夹角。 (2)旋光效应 在液晶盒中充入向列相液晶,把两玻璃片绕于他们相互垂直的轴相对扭转90°角度,这样向列相液晶的内部就发生了扭曲,于是形成一个具有扭曲排列的向列相液晶的液晶盒。这样的液晶盒前后放置起偏振片和检偏振片,并使其偏振方向平行。在不加电场时,一束白光射入,液晶盒使入射光的偏振光轴顺从液晶分子的扭曲而旋转了90°。因而光进入检偏振片时,由于偏振光轴相互垂直,光不能通过检偏片,液晶盒不透明,外视场呈暗态,增加外电压,超过某一电压值时,外视场呈亮态,由此就可以得到黑底白像若起偏片与检偏片的偏振方向互相垂直,可得到白底黑像。 (3)圆二色性 圆二色性指材料选择性吸收或反射光束中两个旋向相反的圆偏振光分量中的一个。如果一束入射光照射在液晶盒上,位于反射带内与盒中液晶旋向相同的圆偏振光几乎都被反射出去,而旋向相反的圆偏振光几乎都透射过去,这是一个非常罕见的性质,荷兰菲利浦实验室的两位科学家1998年在Nature上撰文说,利用凝胶态液晶(liquid-crystal gels)的圆二色性,可以实现镜面状态和透明状态之间的切换。 二、胆甾相液晶的电光效应

高考物理光学知识点之几何光学易错题汇编及答案

高考物理光学知识点之几何光学易错题汇编及答案 一、选择题 1.下列说法正确的是() A.麦克斯韦通过实验证实了电磁波的存在 B.光导纤维传送图象信息利用了光的衍射原理 C.光的偏振现象说明光是纵波 D.微波能使食物中的水分子热运动加剧从而实现加热的目的 2.如图所示,一束光由空气射入某种介质,该介质的折射率等于 A.sin50 sin55 ? ? B.sin55 sin50 ? ? C.sin40 sin35 ? ? D.sin35 sin40 ? ? 3.题图是一个1 4 圆柱体棱镜的截面图,图中E、F、G、H将半径OM分成5等份,虚线 EE1、FF1、GG1、HH1平行于半径ON,ON边可吸收到达其上的所有光线.已知该棱镜的折 射率n=5 3 ,若平行光束垂直入射并覆盖OM,则光线 A.不能从圆孤射出B.只能从圆孤射出C.能从圆孤射出D.能从圆孤射出

4.如图所示,一细束平行光经玻璃三棱镜折射后分解为互相分离的a、b、c三束单色光。比较a、b、c三束光,可知() A.当它们在真空中传播时,a光的速度最大 B.当它们在玻璃中传播时,c光的速度最大 C.若它们都从玻璃射向空气,c光发生全反射的临界角最大 D.若它们都能使某种金属产生光电效应,c光照射出的光电子最大初动能最大 5.如图所示,口径较大、充满水的薄壁圆柱形浅玻璃缸底有一发光小球,则() A.小球必须位于缸底中心才能从侧面看到小球 B.小球所发的光能从水面任何区域射出 C.小球所发的光从水中进入空气后频率变大 D.小球所发的光从水中进入空气后传播速度变大 6.一细光束由a、b两种单色光混合而成,当它由真空射入水中时,经水面折射后的光路如图所示,则以下看法正确的是 A.a光在水中传播速度比b光小 B.b光的光子能量较大 C.当该两种单色光由水中射向空气时,a光发生全反射的临界角较大 D.用a光和b光在同一装置上做双缝干涉实验,a光的条纹间距大于b光的条纹间距7.一束单色光由玻璃斜射向空气,下列说法正确的是 A.波长一定变长 B.频率一定变小 C.传播速度一定变小 D.一定发生全反射现象 8.如图所示,黄光和紫光以不同的角度,沿半径方向射向半圆形透明的圆心O,它们的出射光线沿OP方向,则下列说法中正确的是()

物理光学梁铨廷答案

第一章光的电磁理论 在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez=,(各 量均用国际单位),求电磁波的频率、波长、周期和初相位。 解:由Ex=0,Ey=0,Ez=,则频率υ= ==×1014Hz,周期T=1/υ=2×10-14s, 初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。 .一个平面电磁波可以表示为Ex=0,Ey=,Ez=0,求: (1)该电磁波的振幅,频率,波长和原点的初相位是多少(2)波的传播和电矢量的振动取哪个方向(3)与电场相联系的磁场B的表达式如何写 解:(1)振幅A=2V/m ,频率υ=Hz,波长λ==,原点的初相位φ0=+π/2;(2)传播沿z轴,振动方向沿y 轴;(3)由B=,可得By=Bz=0,Bx= .一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0,Ex=, 试求:(1)光的频率;(2)波长;(3)玻璃的折射率。 解:(1)υ===5×1014Hz; (2)λ=; (3)相速度v=,所以折射率n= 写出:(1)在yoz平面内沿与y轴成θ角的方 向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。 解:(1)由,可得 ; (2)同理:发散球面波 , 汇聚球面波 。 一平面简谐电磁波在真空中沿正x方向传播。其频率为Hz,电场振幅为m ,如果该电磁波的振动面与xy平面呈45o,试写出E ,B表达式。解:,其中 = = = , 同理:。 ,其中 = 。 一个沿k方向传播的平面波表示为 E=,试求k 方向的单位矢。 解:, 又, ∴=。

证明当入射角=45o时,光波在任何两种介质分界面上的反射都有。 证明: = === 证明光束在布儒斯特角下入射到平行平面玻璃片的上表面时,下表面的入射角也是布儒斯特角。证明:由布儒斯特角定义,θ+i=90o , 设空气和玻璃的折射率分别为和,先由空气入射到玻璃中则有,再由玻璃出射到空气中,有, 又,∴, 即得证。 平行光以布儒斯特角从空气中射到玻璃 上,求:(1)能流反射率和;(2)能流透射率和。 解:由题意,得, 又为布儒斯特角,则=.....① ..... ② 由①、②得,,。 (1)0, , (2)由,可得, 同理,=。 证明光波在布儒斯特角下入射到两种介质的分界面上时,,其中。 证明:,因为为布儒斯特角,所以, =,又根据折射定律,得,则,其中,得证。 利用复数表示式求两个波 和 的合成。 解: = = = =。 两个振动方向相同的单色波在空间某一点产生的振动分别为和 。若Hz,V/m ,8V/m,,,求该点的合振动表达式。 解:= = = =。 求如图所示的周期性三角波的傅立叶分析表达式。解:由图可知, , =, =)=,(m为奇数),,

物理光学作业参考答案 第十五章

物理光学作业参考答案 [15-1] 一束自然光以 30角入射到玻璃-空气界面,玻璃的折射率54.1=n ,试计算(1)反射光的偏振度;(2)玻璃-空气界面的布儒斯特角;(3)以布儒斯特角入射时透射光的偏振度。 解: (1)入射自然光可以分解为振动方向互相垂直的s 波和p 波,它们强度相等,设以0I 表示。已知: 301=θ,所以折射角为: 35.50)30sin 54.1(sin )sin (sin 1 112=?==--θθn 根据菲涅耳公式,s 波的反射比为: 12.0)35.5030sin()35.5030sin()sin()sin(2 2 2121=?? ? ???+-=? ???? ?+-= θθθθρs 4 因此,反射波中s 波的强度: 00) (124.0I I I s R s ==ρ 而p 波的反射比为: 004.0881.5371.0)()(2 2 2121=?? ? ???= ? ???? ?+-=θθθθρ tg tg p 因此,反射波中p 波的强度: 00) (004.0I I I p R p ==ρ 于是反射光的偏振度: %94%8.93004.0124.0004.0124.00 000≈=+-= I I I I P (2)玻璃-空气界面的布儒斯特角: 3354 .1111 1 1 21 ====---tg n tg n n tg B θ (3)对于以布儒斯特角入射时的透射光,s 波的透射系数为: 4067.133 cos 57sin 2cos sin 2) sin(cos sin 2122112===+= θθθθθθs t 式中, 331==B θθ,而 57902=-=B θθ 所以,s 波的透射强度为:

物理光学第二章答案

第二章光的干涉作业 1、在杨氏干涉实验中,两个小孔的距离为1mm,观察屏离小孔的垂直距离为1m,若所用光源发出波长为550nm和600nm的两种光波,试求: (1)两光波分别形成的条纹间距; (2)两组条纹的第8个亮条纹之间的距离。 2、在杨氏实验中,两小孔距离为1mm,观察屏离小孔的距离为100cm,当用一片折射率为1.61的透明玻璃贴住其中一小孔时,发现屏上的条纹系移动了0.5cm,试决定该薄片的厚度。 3、在菲涅耳双棱镜干涉实验中,若双棱镜材料的折射率为1.52,采用垂直的激光束(632.8nm)垂直照射双棱镜,问选用顶角多大的双棱镜可得到间距为0.05mm 的条纹。 4、在洛埃镜干涉实验中,光源S1到观察屏的垂直距离为1.5m,光源到洛埃镜的垂直距离为2mm。洛埃镜长为40cm,置于光源和屏的中央。(1)确定屏上看见条纹的区域大小;(2)若波长为500nm,条纹间距是多少?在屏上可以看见几条条纹? 5、在杨氏干涉实验中,准单色光的波长宽度为0.05nm,

平均波长为500nm ,问在小孔S 1处贴上多厚的玻璃片可使P ’点附近的条纹消失?设玻璃的折射率为1.5。 6、在菲涅耳双面镜的夹角为1’,双面镜交线到光源和屏的距离分别为10cm 和1m 。设光源发出的光波波长为550nm ,试决定光源的临界宽度和许可宽度。 7、太阳对地球表面的张角约为0.0093rad ,太阳光的平均波长为550nm ,试计算地球表面的相干面积。 8、在平行平板干涉装置中,平板置于空气中,其折射率为1.5,观察望远镜的轴与平板垂直。试计算从反射光方向和透射光方向观察到的条纹的可见度。 9、在平行平板干涉装置中,若照明光波的波长为600nm ,平板的厚度为 2mm ,折射率为 1.5,其下表面涂上高折射率(1.5)材料。试问:(1)在反射光方向观察到的干涉圆环条纹的中心是亮斑还是暗斑?(2)由中心向外计算,第10个亮环的半径是多少?(f=20cm )(3)第10个亮环处的条纹间距是多少? P P ’

晶体光学课后答案看完后考试局对没问题讲解

第一章 1.当入射光波射入一轴晶矿物时,发生双折射和偏光化,分解为两种振动方向相互垂直且传播速度不等的偏光,其中一种偏光无论入射光方向如何改变,其振动方向总是垂直于c轴的,相应折射率No 也始终保持不变。所以一轴晶光率体所有椭圆切面上都有No。 不是。(1)垂直光轴(OA)的切面(2)垂直锐角等分线(Bxa)的切面 (3)垂直钝角等分线(Bxo)的切面 2.一轴晶:Ne>No,光性符号为正;Ne<No,光性符号为负 二轴晶:确定Bxa方向是Ng轴还是Np轴,若Bxa=Ng(Bxo=Np),则光性符号为正;若bxa=Np(Bxo=Ng),则光性符号为负。 3.二轴晶两光轴相交的锐角称为光轴角以符号“2V”表示。 公式为tan2α= 4.P15图1-14,P16图1-15 (1)垂直光轴切面:双折射率为零(2)平行光轴切面:一轴正晶最大双折射率为Ne-No,一轴负晶最大双折射率为No-Ne (3)斜交光轴切面:一轴正晶Ne>Ne'>No,一轴负晶Ne<Ne'<No。5.P22图1-21 (1)垂直光轴(OA)的切面:双折射率为零(2)平行光轴面(OAP)的切面:最大双折射率Ng-Np (3)垂直锐角等分线(Bxa)的切面:二轴正晶Nm-Np,二轴负晶Ng-Nm (4)垂直钝角等分线(Bxo)的切面:二轴正晶Ng-Nm,二轴负晶Nm-Np 6.均不能。光率体是表示在晶体中传播的光波振动方向与晶体对该光波的折射率之间关系的立体几何图形。光性正负取决于Ne与No的相对大小,当Ne>No时为正光性,Ne<No时为负光性。无论正光性还是负光性其光率体直立旋转轴必定是Ne,水平旋转轴是No,放倒不能改变其光性正负。 7.由旋转椭球体逐渐变为圆球体。 8.光率体形状由三轴椭球体逐渐变为旋转椭球体。 Nm=Np时为一轴晶,光性符号为(+) Nm=Ng时为一轴晶,光性符号为(—) 9.中级晶族:三方晶系、四方晶系、六方晶系中,无论光性符号正、负,Ne轴总是与晶体的高次对称轴L3、L4、L6一致(或说平行)。 斜方晶系:其光性方位是光率体的三个主轴(Ng、Nm、Np)与三个结晶轴(a、b、c)分别一致(或说平行)。 单斜晶系:其光性方位是光率体三个主轴中有一个主轴与b轴一致(或平行),其余两主轴在ac平面内分别与a、c轴斜交。 三斜晶系:其光性方位是光率体的三个主轴与三个结晶轴均斜交,斜交的方向和角度则因矿物种属不同而异。 10.绿光下,Ne=No,为均质体;红光白光下,Ne>No,为一轴正晶;紫光下,Ne<No,为一轴负晶。 11.折射率色散:透明物质的折射率随入射光波长的不同而发生改变的现象。 双折射率色散:非均质体矿物斜交OA切面的双折射率一般随入射光波波长的改变而改变的现象。 光率体色散:由于非均质体的折射率色散强度随方向不同而不同,则随着入射光波长的改变,其光率体的大小、形态发生改变的现象。 12.变为均质体。 13.变为一轴晶。 15.(1)单斜(2)负(4)长轴Ng,短轴Nm (6)1.701-1.691 17.一轴晶,正光性。三组切面均有一相同值且其他两值均大于这一相同值。 第二章透明造岩矿物及宝石晶体光学鉴定常用仪器 1 透射偏光显微镜与生物显微镜和反射偏光显微镜的主要区别是什么?(31)

物理光学作业答案

3.13 波长为589.3nm 的钠黄光照在一双缝上,在距离双缝100cm 的观察屏上测量20个条纹共宽2.4cm,试计算双缝之间的距离。 解:设孔距l ,观测屏到干涉屏的距离为d ,条纹间距为e,所用光波的波长为λ; 条纹间距24 1.220mm l mm = = 根据d e l λ=可知:589.310.491.2d nm m l mm e mm λ?= == 3.18 在菲涅尔双面镜试验中,若单色光波长为500nm ,光源和观测屏到双面镜棱线的距离 分别为0.5m 和1.5m ,双面镜的夹角为10-3弧度:(1)、求观察屏上条纹间距。(2)、问观察屏上最多可以看到多少条两纹。 菲涅耳双面镜 l 解:根据已知条件, 条纹间距等于()933 500100.5 1.51101220.510 d e m mm s λα---??+===?=?? 能看到条纹的区域为P1P2,设反射镜棱至观察屏的距离为B 可以看出 ()312 102tan 2 1.5tan 1800.00333.1415926PP B m mm α-?? ==???== ??? 可看到条纹数:12 331 PP N e = == 3.21 在很薄的楔形玻璃板上用垂直入射光照射,从反射光中看到相邻暗纹的间隔为5mm , 已知光的波长为580nm ,波的折射率为1.5mm ,求楔形角。 解:相邻条纹的间距2e n λ θ ≈ 知: 953 58010 3.861022 1.5510m rad ne m λ θ---?≈==???? 3.24 为了测量一条细金属丝的直径,可把它夹在两块玻璃片的一段,如图所示,测得亮条

液晶的光学特性分析

液晶的光学特性分析 光的偏振性 光矢量 麦克斯韦在电磁波理论中指出电磁波是横波,由两个相互垂直的振动矢量即电场强度E和磁场强度H来表征,由于人们从光的偏振现象认识到光是横波,而且光速的测量值与电磁波速的理论计算值相符合,所以肯定光是一种电磁波,大量试验表明:在光波中产生感光作用和生理作用的是电场强度E,所以规定E 为光矢量,我们把E的振动称为光振动,光矢量E的方向就是光振动的方向。自然光: 一个原子或分子在某一瞬间发出的光本来是有确定振动方向的光波列,但是通常的光是大量原子的无规率发射,是一个瞬息万变、无序间歇过程,所以各个波列的光矢量可以分布在一切可能的方位,平均来看,光矢量对于光的传播方向成对成均匀分布,没有任何一个方位较其它方位更占优势,这种光就叫自然光。 自然光在反射、散射或通过某些晶体时,其偏振状态会发生变化。例如阳光是自然光,但经天空漫射后是部分偏振的,一些室内的透明塑料盒,如录音带盒,在某些角度上会出现斑澜色彩,就是偏振光干涉的结果。 自然光的分解: 在自然光中,任何取向的光矢量都可分解为两个相互垂直方向上的分量,很显然,自然光可用振幅相等的两个相互垂直方向上的振动来表示。 应当指出,由于自然光中振动的无序性,所以这两个相互垂直的光振动之间没有恒定的位相差,但应注意的是不能将两个相位无关联的光矢量合成为一个稳定的偏振光,显然对应两个相互垂直振动的光强各为自然光光强的一半。 如果采用某种方法能把两个相互垂直的振动之一去掉,那就获得了线偏振光,如果只能去掉两个振动之一的一部分,则称为部分偏振光。

偏振光 线偏振光:如果光矢量在一个固定平面内只沿一个固定的方向振动,这种光称为线偏振光,也叫面偏振光或全偏振光,线偏振光的光矢量方向和传播方向构成的平面称为振动面,线偏振光的振动面是固定不变的。 部分偏振光: 这是介于偏振光和自然光之间的一种偏振光,在垂直于这种光的传播方向的平面内,各方向的振动都有,但它们的振幅不相等。 值得注意的是,这种偏振光的各方向振动的光矢量之间也没有固定的相位关系,与部分偏振光相对应,有时称线偏振光为完全偏振光。 圆偏振光和椭圆偏振光: 这两种光的特点是在垂直于光的传播方向的平面内,光矢量按一定频率旋转(左旋或右旋),如果光矢量端点的轨迹是一个圆,这种光叫圆偏振光;如果光矢

纳米材料的光学特性

纳米材料的光学特性 美国著名物理学家,1965年诺贝尔物理奖获得者R.P Feynman在1959年曾经说过:“如果有一天能按人的意志安排一个个原子分子将会产生什么样的奇迹”,纳米科学技术的诞生将使这个美好的设想成为现实。 纳米材料是纳米科学技术的一个重要的发展方向。纳米材料是指由极细晶粒组成,特征维度尺寸在纳米量级(1~100nm)的固态材料。由于极细的晶粒,大量处于晶界和晶粒内缺陷的中心原子以及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等,纳米材料与同组成的微米晶体(体相)材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,因而成为材料科学和凝聚态物理领域中的研究热点。 1 纳米材料的分类和结构 根据不同的结构,纳米材料可分为四类,即:纳米结构晶体或三维纳米结构;二维纳米结构或纤维状纳米结构;一维纳米结构或层状纳米结构和零维原子簇或簇组装。纳米材料的分类如图表1所示。纳米材料包括晶体、赝晶体、无定性金属、陶瓷和化合物。 2 纳米材料的光学性质 纳米材料在结构上与常规晶态和非晶态材料有很大差别,突出地表现在小尺寸颗粒和庞大的体积百分数的界面,界面原子排列和键的组态的较大无规则性。这就使纳米材料的光学性质出现了一些不同于常规材料的新现象。

纳米材料的光学性质研究之一为其线性光学性质。纳米材料的红外吸收研究是近年来比较活跃的领域,主要集中在纳米氧化物、氮化物和纳米半导体材料上,如纳米Al2O3、Fe2O3、SnO2中均观察到了异常红外振动吸收,纳米晶粒构成的Si膜的红外吸收中观察到了红外吸收带随沉积温度增加出现频移的现象,非晶纳米氮化硅中观察到了频移和吸收带的宽化且红外吸收强度强烈地依赖于退火温度等现象。对于以上现象的解释基于纳米材料的小尺寸效应、量子尺寸效应、晶场效应、尺寸分布效应和界面效应。目前,纳米材料拉曼光谱的研究也日益引起研究者的关注。 半导体硅是一种间接带隙半导体材料,在通常情况下,发光效率很弱,但当硅晶粒尺寸减小到5nm或更小时,其能带结构发生了变化,带边向高能态迁移,观察到了很强的可见光发射。研究纳米晶Ge的光致发光时,发现当Ge晶体的尺寸减小到4nm以下时,即可产生很强的可见光发射,并认为纳料晶的结构与金刚石结构的Ge 不同,这些Ge纳米晶可能具有直接光跃迁的性质。Y.Masumato发现掺CuCl纳米晶体的NaCl在高密度激光下能产生双激子发光,并导致激光的产生,其光学增益比CuCl 大晶体高得多。不断的研究发现另外一些材料,例如Cds、CuCl、ZnO、SnO2、Bi2O3、Al2O3、TiO2、SnO2、Fe2O3、CaS、CaSO4等,当它们的晶粒尺寸减小到纳米量级时,也同样观察到常规材料中根本没有的发光观象。纳米材料的特有发光现象的研究目前正处在开始阶段,综观研究情况,对纳米材料发光现象的解释主要基于电子跃迁的选择定则,量子限域效应,缺陷能级和杂质能级等方面。 纳米材料光学性质研究的另一个方面为非线性光学效应。纳米材料由于自身的特性,光激发引发的吸收变化一般可分为两大部分:由光激发引起的自由电子-空穴对所产生的快速非线性部分;受陷阱作用的载流子的慢非线性过程。其中研究最深入的为CdS纳米微粒。由于能带结构的变化,纳米晶体中载流子的迁移、跃迁和复合过程均呈现与常规材料不同的规律,因而其具有不同的非线性光学效应。 纳米材料非线性光学效应可分为共振光学非线性效应和非共振非线性光学效应。非共振非线性光学效应是指用高于纳米材料的光吸收边的光照射样品后导致的非线性效应。共振光学非线性效应是指用波长低于共振吸收区的光照射样品而导致的光学非线性效应,其来源于电子在不同电子能级的分布而引起电子结构的非线性,电子结构的非线性使纳米材料的非线性响应显著增大。目前,主要采用Z-扫找(Z-SCAN)和DFWM技术来测量纳米材料的光学非线性。

(完整版)物理光学-第一章习题与答案

v= 物理光学习题 第一章波动光学通论 、填空题(每空 2分) 1、. 一光波在介电常数为£,磁导率为卩的介质中传播,则光波的速 度 【V 1】 【布儒斯特角】 t ],则电磁波的传播方 向 ____________ 。电矢量的振动方向 _______________ 【x 轴方向 y 轴方向】 4、 在光的电磁理论中,S 波和P 波的偏振态为 __________ ,S 波的振动方向为 ______ , 【线偏振光波 S 波的振动方向垂直于入射面】 5、 一束光强为I 0的自然光垂直穿过两个偏振片,两个偏振片的透振方向夹角为 45°则通 过两偏振片后的光强为 ____________ 。 【I 0/4】 6、 真空中波长为入。、光速为c 的光波,进入折射率为 n 的介质时,光波的时间频率和波长 分别为 ______ 和 ________ 。 【c/入o 入o /n 】 7、 证明光驻波的存在的维纳实验同时还证明了在感光作用中起主要作用是 __________ 。 【电场E 】 &频率相同,振动方向互相垂直两列光波叠加,相位差满足 _____________ 条件时,合成波为线偏 振光波。 【0或n 】 9、 会聚球面波的函数表达式 ____________ 。 A -ikr 【E(r) e 】 r 10、 一束光波正入射到折射率为 1.5的玻璃的表面,则 S 波的反射系数为 _____________ , P 波 2、一束自然光以 入射到介质的分界面上,反射光只有 S 波方向有振动。 13 10 3、一个平面电磁波波振动表示为 E x =E z =0, E y =cos[2

高二物理光学试题及答案详解

光学单元测试 一、选择题(每小题3分,共60分) 1 .光线以某一入射角从空气射人折射率为的玻璃中,已知折射角为30°,则入射角等于( ) A.30° B.45° C.60° D.75° 2.红光和紫光相比,( ) A. 红光光子的能量较大;在同一种介质中传播时红光的速度较大 B.红光光子的能量较小;在同一种介质中传播时红光的速度较大 C.红光光子的能量较大;在同一种介质中传播时红光的速度较小 D.红光光子的能量较小;在同一种介质中传播时红光的速度较小 3.一束复色光由空气射向玻璃,发生折射而分为a 、b 两束单色光, 其传播方向如图所示。设玻璃对a 、b 的折射率分别为n a 和n b ,a 、b 在玻璃中的传播速度分别为v a 和v b ,则( ) A .n a >n b B .n a v b D .v a v 2 C.n l >n 2、v 1<v 2 D.n l >n 2、v 1>v 2 5.如图所示,一束细的复色光从空气中射到半球形玻璃体球心O 点,经折射分为a 、b 两束光,分别由P 、Q 两点射出玻璃体。PP ’、QQ ’均与过O 点的界面法线垂直。设光线a 、b 在玻璃体内穿行所用时间分别为t a 、t b ,则t a : t b 等于( ) (A )QQ ’:PP ’ (B )PP ’:QQ ’ (C )OP ’:OQ ’ (D )OQ ’:OP ’ 6.图示为一直角棱镜的横截面,?=∠?=∠60,90abc bac 。一平行细光束从O 点沿垂直于bc 面的方向射入棱镜。已知棱镜材料的折射率n=2,若不考试原入射光在bc 面上的反射光,则有光线( ) A .从ab 面射出 B .从ac 面射出 C .从bc 面射出,且与bc 面斜交 c a

晶体光学性质的观测分析(预习)

晶体光学性质的观测分析(预习报告) 一、实验目的 熟悉单期自晶光学性质, 晶体的消光现象, 干涉色级序 了解偏光显微镜原理及掌握其使用方法 观察晶体的类别、軸向和光性正负等过程, 估计晶片光程差 二、实验原理 折射率与光的传播方向和光矢振动方向有关的晶体称为各向异性晶体。除立方晶系的晶体外,所有的晶体都是各向异性晶体。如:方解石、水晶、KDP、LiNb03, BaTi03等都是各向异性晶体。 当光通过各向异性晶体时, 会产生双折射现象, 并表现出偏振性质。当光沿各向异性晶体传播时, 总存在一个或画个方向不发生双折射现象, 此方向称为晶体的光轴, 按晶体的光轴分,各向异性品体又可分为単轴晶和双軸晶,单轴晶只有一个光轴,如:四方晶系、六方晶系、三方晶系的晶体;而双軸晶则有西个光抽,如:正交晶系、単斜晶系、三斜晶系的晶体。其中,折射率不随入射光方向而变的称为寻常光或o光(折射率为n。),折射率随入射光方向而变的称为非寻常光或e光(折射率为ne)。o光和e光都是偏振光,并且它们的振动方向互相垂直。 光波各矢量间关系较复杂, 因此需要用一些图形来直观地表示出晶体中光波各矢量间的方向关系, 及各传插方向相对应的光速或折射率在空间的取值分布, 这些几何图形称为晶体光学示性曲面。.折射率椭球(或光率体) 就是描述晶体最常用的晶体光学示性曲面, 它是以主折射率为主值的椭球。 在偏光显微镜中,当上下偏光镜的振动面互相垂直时,称为正父偏光镜。如在正交偏光镜间不放任何介质或放入各相同晶体时, 光线无法通过正交偏光镜, 所以视域是黑暗的; 当' 在正交偏光镜间放人各相异晶体后, 由于晶体双折射效应和晶片厚度、晶抽取向的不同而产生不同的干涉现象。如图4- l -4所示:在正交偏光镜之间加入一晶片,其中PP表示起偏镜(下偏光镜) 的振动方向, AA表示检偏镜(上偏光镜)的振动方向, 00表示晶片光轴方向(00平行于晶片,垂直于透光方向)。如透过起偏镜的偏振光振幅为Aoe, 光线到达厚度为d的晶片后, 分解成振幅分别为Ae和Ao的e光和o光, e光和o光的振动方向分别平行和垂直00方向, 00与PP的夹角为a,则e光和o光的振幅分别为: Ae=Aoe cosα, Ao= Aoe sinα。再经检偏镜(上偏光镜)后, Ae和Ao在检偏镜AA方向的投影。由于各相异晶体e光和o光的折射率不同,其差值为Δn= (ne -n0),所以当它们透过厚度为d的晶片后,必产生光程差Δ=d(ne-n。)

物理光学第一章答案..

第一章 波动光学通论 作业 1、已知波函数为:?? ? ???-?=-t x t x E 157 105.11022cos 10),(π,试确定其速率、波长和频率。 2、有一张0=t 时波的照片,表示其波形的数学表达式为 ?? ? ??=25sin 5)0,(x x E π。如果这列波沿负 x 方向以2m/s 速率运动, 试写出s t 4=时的扰动的表达式。 3、一列正弦波当0=t 时在0=x 处具有最大值,问其初位相为多少? 4、确定平面波:?? ? ??-+ + =t z k y k x k A t z y x E ω14314 214 sin ),,,(的传播方向。 5、在空间的任一给定点,正弦波的相位随时间的变化率为 s rad /101214?π,而在任一给定时刻,相位随距离 x 的变化是 m rad /1046?π。若初位相是 3 π ,振幅是10且波沿正x 方向前进, 写出波函数的表达式。它的速率是多少? 6、两个振动面相同且沿正x 方向传播的单色波可表示为: )](sin[1x x k t a E ?+-=ω,]sin[2kx t a E -=ω,试证明合成波的表达式可 写为?? ??? ???? ? ??+-?? ? ???=2sin 2cos 2x x k t x k a E ω。 7、已知光驻波的电场为t kzcoa a t z E x ωsin 2),(=,试导出磁场),(t z B 的表达式,并汇出该驻波的示意图。

8、有一束沿z 方向传播的椭圆偏振光可以表示为 )4 cos()cos(),(00π ωω--+-=kz t A y kz t A x t z E 试求出偏椭圆的取向 和它的长半轴与短半轴的大小。 9、一束自然光在30o 角下入射到空气—玻璃界面,玻璃的折射率n=1.54,试求出反射光的偏振度。 10、过一理想偏振片观察部分偏振光,当偏振片从最大光强方位转过300时,光强变为原来的5/8,求 (1)此部分偏振光中线偏振光与自然光强度之比; (2)入射光的偏振度; (3)旋转偏振片时最小透射光强与最大透射光强之比; (4)当偏振片从最大光强方位转过300时的透射光强与最大光强之比. 11、一个线偏振光束其E 场的垂直于入射面,此光束在空气中以45o 照射到空气玻璃分界面上。假设n g =1.6,试确定反射系数和透射系数。 12、电矢量振动方向与入射面成45o 的线偏振光入射到两种介质得分界面上,介质的折射率分别为n 1=1和n 2=1.5。(1)若入射角为50o ,问反射光中电矢量与入射面所成的角度为多少?(2)若入射角为60o ,反射光电矢量与入射面所成的角度为多少? 13、一光学系统由两片分离的透镜组成,两片透镜的折射率分别为1.5和1.7,求此系统的反射光能损失。如透镜表面镀

TFT-LCD光学膜介绍

一、光学薄膜简介 1、光学薄膜的定义 光学薄膜在我们的生活中无处不在,从精密及光学设备、显示器设备到日常生活中的光学薄膜应用;比方说,平时戴的眼镜、数码相机、各式家电用品,或者是钞票上的防伪技术,皆能被称之为光学薄膜技术应用之延伸。倘若没有光学薄膜技术作为发展基础,近代光电、通讯或是镭射技术将无法有所进展,这也显示出光学薄膜技术研究发展的重要性。 光学薄膜系指在光学元件或独立基板上,制镀上或涂布一层或多层介电质膜或金属膜或这两类膜的组合,以改变光波之传递特性,包括光的透射、反射、吸收、散射、偏振及相位改变。故经由适当设计可以调变不同波段元件表面之穿透率及反射率,亦可以使不同偏振平面的光具有不同的特性。 一般来说,光学薄膜的生产方式主要分为干法和湿法的生产工艺。所谓的干式就是没有液体出现在整个加工过程中,例如真空蒸镀是在一真空环境中,以电能加热固体原物料,经升华成气体后附着在一个固体基材的表面上,完成涂布加工。日常生活中所看到装饰用的金色、银色或具金属质感的包装膜,就是以干式涂布方式制造的产品。但是在实际量产的考虑下,干式涂布运用的范围小于湿式涂布。湿式涂布一般的做法是把具有各种功能的成分混合成液态涂料,以不同的加工方式涂布在基材上,然后使液态涂料干燥固化做成产品。在本文中仅讨论湿式涂布技术的光学薄膜产业。 2、光学薄膜种类 光学薄膜根据其用途分类、特性与应用可分为:反射膜、增透膜/减反射膜、滤光片、偏光片/偏光膜、补偿膜/相位差板、配向膜、扩散膜/片、增亮膜/棱镜片/聚光片、遮光膜/黑白胶等。相关衍生的种类有光学级保护膜、窗膜等。 2.1、反射膜 反射膜一般可分为两类,一类是金属反射膜,一类是全电介质反射膜。此外,还有将两者结合的金属电介质反射膜,功能是增加光学表面的反射率。 一般金属都具有较大的消光系数。当光束由空气入射到金属表面时,进入金属内的光振幅迅速衰减,使得进入金属内部的光能相应减少,而反射光能增加。消光系数越大,光振幅衰减越迅速,进入金属内部的光能越少,反射率越高。人们总是选择消光系数较大,光学性质较稳定的金属作为金属膜材料。在紫外区常用的金属薄材料是铝,在可见光区常用铝和银,在红外区常用金、银和铜,此外,铬和铂也常作一些特种薄膜的膜料。由于铝、银、铜等材料在空气中很容易氧化而降低性能,所以必须用电介质膜加以保护。常用的保护膜材料有一氧化硅、氟化镁、二氧化硅、三氧化二铝等。 金属反射膜的优点是制备工艺简单,工作的波长范围宽;缺点是光损大,反射率不可能很高。为了使金属反射膜的反射率进一步提高,可以在膜的外侧加镀几层一定厚度的电介质层,组成金属电介质反射膜。需要指出的是,金属电介质射膜增加了某一波长(或者某一波

物理光学第四章答案

第7章 光在各向异性介质中的传播 1、一束钠黄光以50o 角方向入射到方解石晶体上,设光轴与晶体表面平行,并垂直于入射面。问在晶体中o 光和e 光夹角是多少(对于钠黄光,方解石的主折射率 1.6584o n =, 1.4864e n =) 答案: 由于光轴和晶体表面平行,并垂直于入射面,所以e 光的偏振方向为光轴方向,其折射率为" 1.4864e n n ==,o 光折射率为' 1.6584o n n ==。 入射端为空气,折射率为1n =,入射角为50θ=o ,设o 光和e 光的折射角分别为'θ和"θ,则根据折射率定律有''sin sin n n θθ=和""sin sin n n θθ=,计算得到'27.5109θ≈o ,"31.0221θ≈o ,所以晶体中o 光和e 光夹角为"''331θθθ?=-≈o 2、如图所示的方解石渥拉斯顿棱镜的顶角15α=o 时,两出射光的夹角γ为多少 答案:

左边方解石晶体中的o 光(折射率' 1.6584o n n ==)进入到右边方解石晶体中变成了e 光(该e 光的偏振方向与光轴平行,折射率" 1.4864e n n ==);左边方解石晶体中的e 光(该e 光的偏振方向与光轴平行,折射率" 1.4864e n n ==)进入到右边方解石晶体中变成了o 光(折射率' 1.6584o n n ==)。 在两块方解石晶体的分界面上,应用折射定律有 2211sin arcsin 18.7842sin sin sin sin sin arcsin 13.4134o e o e e o e o n n n n n n n n αθαθαθαθ???==? ?=???????=????== ????? o o 在右边方解石晶体与空气的界面上,应用折射定律有 ()()()()24241313sin arcsin 2.9598sin sin sin sin sin arcsin 2.3587e e o o n n n n n n n n θαθθαθαθθαθθ???-==????-=???????-=??-???==?????? o o 所以出射光的夹角'34 5.3185519γθθ=+=≈o o 3、若将一线偏振光入射到以光束为轴、以角速度0ω转动的半波片上,出射光的偏振态如何其光矢量如何变化 答案:

TFT-LCD液晶显示器的工作原理(上)

TFT-LCD液晶显示器的工作原理(上) 谢崇凯 我一直记得,当初刚开始从事有关液晶显示器相关的工作时,常常遇到的困扰,就是不知道怎么跟人家解释,液晶显示器是什么? 只好随着不同的应用环境,来解释给人家听。在最早的时候是告诉人家,就是掌上型电动玩具上所用的显示屏,随着笔记型计算机开始普及,就可以告诉人家说,就是使用在笔记型计算机上的显示器。随着手机的流行,又可以告诉人家说,是使用在手机上的显示板。时至今日,液晶显示器,对于一般普罗大众,已经不再是生涩的名词。而它更是继半导体后另一种可以再创造大量营业额的新兴科技产品,更由于其轻薄的特性,因此它的应用范围比起原先使用阴极射线管(CRT,cathode-ray tube)所作成的显示器更多更广。 如同我前面所提到的,液晶显示器泛指一大堆利用液晶所制作出来的显示器。而今日对液晶显示器这个名称,大多是指使用于笔记型计算机,或是桌上型计算机应用方面的显示器。也就是薄膜晶体管液晶显示器。其英文名称为Thin-film transistor liquid crystal display,简称之TFT LCD。从它的英文名称中我们可以知道,这一种显示器它的构成主要有两个特征,一个是薄膜晶体管,另一个就是液晶本身。我们先谈谈液晶本身。 液晶(LC,liquid crystal)的分类 我们一般都认为物质像水一样都有三态,分别是固态液态跟气态。其实物质的三态是针对水而言,对于不同的物质,可能有其它不同的状态存在。以我们要谈到的液晶态而言,它是介于固体跟液体之间的一种状态,其实这种状态仅是材料的一种相变化的过程(请见图1),只要材料具有上述的过程,即在固态及液态间有此一状态存在,物理学家便称之为液态晶体。

物理光学梁铨廷版习题答案

第一章光的电磁理 论 1.1在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez=(102)Cos[π× 1014(t?x c )+π 2 ],(各 量均用国际单位),求电磁波的频率、波长、周期和初相位。 解:由Ex=0,Ey=0,Ez=(102)Cos[π× 1014(t?x c )+π 2 ],则频 率υ= ω 2π =π×10 14 2π =0.5× 1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m, 波长λ=cT=3×108×2×10-14=6×10-6m。 1.2.一个平面电磁波可以表示为Ex=0,Ey=2Cos[2π×1014(z c ?t)+π 2 ],Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场相联系的磁场B的表达式如何写? 解:(1)振幅 A=2V/m,频率υ=ω 2π = 2π×1014 2π =1014Hz,波长 λ=c υ =3×108 10 =3×

10?6m ,原点的初相位φ0=+π/2;(2)传播沿z 轴,振动方向沿y 轴;(3)由B =1 c (e k ???? ×E ? ),可 得By=Bz=0,Bx=2 c Cos [2π×1014(z c ? t)+π 2] 1.3.一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0, Ex=102Cos [π× 10 15 (z 0.65c ?t)],试 求:(1)光的频率;(2)波长;(3)玻璃的折射率。 解: (1) υ =ω 2π= π×1015 2π =5×1014 Hz ; (2)λ= 2πk = 2ππ×10/0.65c =2×0.65×3×108 1015 m = 3.9×10?7m =390nm ; (3)相速度v=0.65c ,所以折射率n=c v =c 0.65c ≈1.54 1.4写出:(1)在yoz 平面内沿与y 轴成θ角的k ? 方 向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。 解:(1)由E ?=A ? exp(ik ? ?r ? ),可得E ?=A ? exp?[ik (ycosθ+zsinθ)]; (2)同理:发散球面波E ?(r ,t)=A r exp?(ikr )=

液晶的光学特性

液晶的光学特性 测控101贾如1007040119 摘要液晶的电光效应是指它的干涉、散射、衍射、旋光、吸收等受电场调制的光学现象。液晶是当前国内外研究的前沿热点,尤其是液晶材料的合成与应用。液晶材料具有优异的性能和广阔的应用前景。 关键词:液晶的分类光学特性液晶显示器 引言:LCD(Liquid Crystal Display)对于许多的用户而言可能是一个比较新鲜的名词,不过这种技术存在的历史可能远远超过了我们的想象——在1888年,一位奥地利的植物学家F. Renitzer便发现了液晶特殊的物理特性。在85年之后,这一发现才产生了商业价值,1973年日本的夏普公司首次将它运用于制作电子计算器的数字显示。现在,LCD是笔记本电脑和掌上电脑的主要显示设备,在投影机中,它也扮演着非常重要的角色,而且它开始逐渐渗入到桌面显示器市场中。 液晶的特性是很神奇的:液晶层能够使光线发生扭转。液晶层表现的有些类似偏光器,这就意味着它能够过滤掉除了那些从特殊方向射入的光线以外所有的光线。此外,如果液晶层发生了扭转,光线将会随之扭转,以不同的方向从另外一个面中射出。 一、液晶的工作原理 液晶单元的底层是由细小的脊构成的,这些脊的作用是让分子呈平行排列。上表面也是如此,在这两侧之间的分子平行排列,不过当上下两个表面之间呈一定的角度时,液晶为了随着两个不同方向的表面进行排列,就会发生扭曲。结果便是这个扭曲了的螺旋层使通过的光线也发生扭曲。 如果电流通过液晶,所有的分子将会按照电流的方向进行排列,这样就会消除光线的扭转。如果将一个偏振滤光器放置在液晶层的上表面,扭转的光线通过了,而没有发生扭转的光线将被阻碍。因此可以通过电流的通断改变LCD中的液晶排列,使光线在加电时射出,而不加电时被阻断。也有某些设计为了省电的需要,有电流时,光线不能通过,没有电流时,光线通过。 二、液晶的分类及其光学特性 液晶材料主要是脂肪族、芳香族、硬脂酸等有机物。液晶也存在于生物结构中,日常适当浓度的肥皂水溶液就是一种液晶。目前,由有机物合成的液晶材料已有几千种之多。由于生成的环境条件不同,液晶可分为两

初中物理光学训练与答案

中考光学专题复习 一、填空题 1.某同学身高1.7 米,站在竖直放置的平面镜前1.5 米处,他的像高是_____米,他的像到 平面镜的距离是_________米.若此人向平面镜移动 1 米,则他的像到平面镜的距离为 _________米,他的像高为_________米. 2. 当光从透明介质斜射入空气时折射光线将_________,(选填靠近法线或偏离法线)这时折 射角________于入射角. 3. 当光线垂直与水面入射时,入射角大小为________,反射角大小为_________,折射角大 小为_________,光射入水中,光速将________(选填变大或变小或不变) 4.如图1所示,是光在空气和玻璃两种介质中传播的路线,其中___ __是入射光线,_______ 是反射光线,_______是折射光线,反射角的大小为________,折射角的大小为________。 5.人在水面上方看到斜插入水中的筷子变得向___ __(选填上或下)弯折了,这是光从 ________中射向________在界面发生折射的缘故。 6.古诗词中有许多描述光学现象的诗句,如“潭清疑水浅”说的就是光的_______现象;“池 水映明月”说的就是光的________现象. 7.一些透镜的截面如图2所示,在这些透镜中:(1)属于凸透镜的 是________,它们的共同特点是________________(2)属于凹透镜的是_______,它们的共同 特点是__________ ____. 8.凸透镜对光线有__________作用,所以又叫做__________透镜;凹透镜对光线有__________ 作用,所以又叫做__________透镜. 9.小华让凸透镜正对着太阳光,拿一张白纸在它的另一侧前后移动,直到纸上的光斑变得最 小、最亮,这个点叫做凸透镜的__________,用符号__________表示。 10.平面镜、凹透镜、凸透镜是常用的三种光学器件,其中利用光的反射规律的是__________ 镜;利用光的折射规律的是__________镜;能会聚太阳光的是__________镜. 二、选择题 11.如图3所示,把蜡烛逐渐远离平面镜,它在镜中之像将 ( ) A. 变大. B. 变小. C. 不变. D. 变倒立. 12.如图所示是从平面镜中看到的一钟表时针和 分针位置,此时的实际时刻是 ( ) A. 8时20分. B. 4时20分. C. 3时40分. D. 8时40 分, 13.放映幻灯时,幻灯片应放在离镜头 ( ) A. 2倍焦距和焦距之间,正立放置. B. 2倍焦距和焦距之间,倒立放置. C. 大于2倍焦距处,正立放置. D.大于2倍焦距处,倒立放置. 14.下列现象属于光的折射的是 ( ) A .通过潜望镜观察海面上的船只 B .观察楼房在水中的倒影 C .从水中看岸上的物体比实际位置高 D .在路灯下出现了人的影子 15.在湖边看平静湖水中的“鱼”和“云”,看到的是 ( ) A .“鱼”是光的反射形成的虚像,“云”是光的折射形成的虚像 B .“鱼”是光的折射形成的虚像,“云”是光的反射形成的虚像 C .“鱼”和“云”都是光的反射形成的虚像

相关主题
文本预览
相关文档 最新文档