当前位置:文档之家› 高考数列专题复习

高考数列专题复习

高考数列专题复习
高考数列专题复习

高中数列专题复习

李小楠编写思维导图

知识解读:数列本身是一种特殊的函数, 是“函数”说明数列里面的问题可以用函数的方法解决,“特殊”说明数列有一套有别于函数自己解决问题的方法——即数列的思想竖式相消,慢慢体会吧亲!下面我们将用知识点的方法对数列进行复习。

1:①数列定义___________________________________________________

②数列分类??

???

递增数列递减数列常数列 (在这里体会数列和函数图像单调性的区别)

③数列递推公式和通相公式的区别(本部分涉及考题较多,在此先学习如何归纳数列的通项公式及找规律问题)

例1:写出下列数列的一个通项公式 ①??????3,5,9,17,33

②1111,0-0,,0-,0357

??????,

,,, ③1,360,15??????,

,1,21

例2.

①将正奇数排列如下表其中第i 行第j 个数表示

ij a ),(**N j N i ∈∈,例如

932=a ,若2009ij a =,则=+j i .

答案 60

②如图,在直角坐标系中,一质点从原点出发,沿图示箭头方向每秒钟移动一个单位,问第2008秒时质点所在的位置坐标是

答案:(-31,7)

小结:此类题目在高考中日趋流行,没有固定的通法通解。一般步骤是先多列几项找一个规律,对于数据较多的可以考察它的周期或者相邻两项之间的关系(递推关系)进而找出通项公式。此类题目大多是意会,少数是言传,附件里有后备例题,慢慢悟吧!悟懂了数学能力就提高一大节。

2:同一数列中n n a s ,的关系____________________________

(本知识存在有两个用处①利用式子统一变量,换成只有n a 或者n s 的式子进行求解②利用此

1 3 5 7

9 11

13 15 17 19

……

式子求数列n a ,n s 的最大最小项) 例1:求下列数列的通项公式 ①2n s =23n n + ②n s =31n +

③2

n (1)s =

(0)4

n n a a +>

例2:已知等差数列{}n a 的通项为*172,n a n n N =-∈,则使得n S 最大的n 的值是?、

3:等差等比知识回顾

亲,上面所列的东西是数列本章需要记忆(常用)的东西,牢记可以提高做提速噢,练习以下热热身

①已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 ( )

A.15

B.30

C.31

D.64

②在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( )

A.33

B.72

C.84

D.189 ③已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a = ( ) A.–4 B.–6 C.–8 D.–10 ④如果数列}{n a 是等差数列,则( ) A.5481a a a a +>+ B.5481a a a a +=+ C.5481a a a a +<+ D.5481a a a a =

4:数列的通项公式(很多高考大题的第一问)

方法1:利用定义(已知等差等比或者能配凑成等差等比)

例1:等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2

5

5a S =.求数列{}n a 的通项公式

方法2:公式法

若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式

??

?≥???????-=????????????????=-2

1

11n S S n S a n n n 求解 例2:(1)已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式

(2) 设n S 是数列{}n a 的前n 项和,11=a ,)2(212

≥??? ?

?-=n S a S n n n .

⑴求{}n a 的通项;

⑵设1

2+=n S b n

n ,求数列{}n b 的前n 项和n T .

方法3:递推公式

类型一:)(1n f a a n n +=+(迭加法或迭代法) 例3:已知数列{}n a 满足2

1

1=a ,n a a n n +=+1,求n a

练习1:已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式;

类型二:n n a n f a )(1=+(累乘法) 例4:已知数列{}n a 满足321=a ,n n a n n

a 1

1+=

+,求n a

练习2:已知数列{}n a 满足:111

(2),21

n n a n n a a n --=≥=+,求求数列{}n a 的通项公式;

类型三:q pa a n n +=+1(待定系数法)构造新数列

例5:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a

知识点巩固:

①数列{a n }满足a 1=1,a n =2

1

a 1-n +1(n ≥2),求数列{a n }的通项公式

②数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式

③已知数列{}n a 满足11=a ,且132n n a a +=+,求n a

④已知数列{}n a 满足321=a ,n n a n n

a 1

1+=

+,求n a

5:证明数列是等差或等比数列

1)证明数列等差

例1、已知n S 为等差数列{}n a 的前n 项和,)(+∈=N n n

S b n

n .求证:数列{}n b 是等差数列.

例2、已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=2

1. 求证:{

n

S 1

}是等差数列;

2)证明数列等比

例1、设{a n }是等差数列,b n =n

a ??

?

??21,求证:数列{b n }是等比数列;

例2、数列{a n }的前n 项和为S n ,数列{b n }中,若a n +S n =n .设c n =a n -1,求证:数列{c n }是等比数列;

例3、已知n S 为数列{}n a 的前n 项和,11=a ,24+=n n a S .

⑴设数列{}n b 中,n n n a a b 21-=+,求证:{}n b 是等比数列;

⑵设数列{}n c 中,n

n n a

c 2

=,求证:{}n c 是等差数列;⑶求数列{}n a 的通项公式及前n 项和.

例4、已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈ ⑴证明:数列{}1n n a a +-是等比数列; ⑵求数列{}n a 的通项公式;

⑶若数列{}n b 满足12111*44...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列.

6:数列求和

方法1:公式法

例1:已知数列12-=n a n ,求n S

方法2:分组求和

例2:已知数列n n n a 2+=,求n S

方法3:错位相减——适用于通项为等差乘以等比类型 例3:已知数列n n n a 2?=,求n S

方法4:裂项相消——常见裂项公式

1

(1)

n n =

+111

n n -

+,

])

2)(1(1

)1(1[21)2)(1(1++-+=+-=

n n n n n n n a n

1(21)(21)n n =-+11122121n n ??

- ?-+??

例4:已知数列)

1(1

+=

n n a n ,求n S

方法5:倒序相加法,

例5、设2

2

1)(x x x f +=,求:

⑵ )4()3()2()()()(1

11f f f f f f +++++;

⑵).2010()2009

()2()()()()(21312009120101f f f f f f f ++++++++ 7:数列中的最值问题

例1、数列{}n a 中,492-=n a n ,当数列{}n a 的前n 项和n S 取得最小值时,=n .

例2、已知n S 为等差数列{}n a 的前n 项和,.16,2541==a a 当n 为何值时,n S 取得最大值;

例3、数列{}n a 中,12832+-=n n a n ,求n a 取最小值时n 的值.

例4、数列{}n a 中,22+-=n n a n ,求数列{}n a 的最大项和最小项.

例5、设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N . (Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式; (Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.

8:高考真题解答

1.在公差为d 的等差数列}{n a 中,已知101

=a ,且3215,22,a a a +成等比数列.

(1)求n a d ,; (2)若0

2.等差数列

{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.

3.(2013年高考江西卷(理))正项数列{a n }的前项和{a n }满足:2

22(1)()0n

n s n n s n n -+--+=

(1)求数列{a n }的通项公式a n ; (2)令22

1(2)n n b n a

+=+,数列{b n }的前n 项和为n T .证明:对于任意的*

n N ∈,都有564n T < 4.已知

{}

n a 是等差数列,其前n 项和为n S ,

{}

n b 是等比数列,且

114444,27,=10a b a b S b =+=-.

(I)求数列{}n a 与{}n b 的通项公式; (II)记1122=++

+n n n T a b a b a b (*n N ∈)证明:*118(,2)n n n T a b n N n ---=∈>.

5.设数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项和为n T ,满足22n n T S n =-,n ∈*N .

(Ⅰ)求1a 的值;

(Ⅱ)求数列{}n a 的通项公式.

6.已知等比数列{}n a 的各项均为正数,且

2

12326231,9a a a a a +==. (I )求数列

{}n a 的通项公式.

(II )设

31323log log log n n b a a a =++

+,求数列1

{}

n b 的前n 项和.

数列高考试题汇编

1.【2014·全国卷Ⅱ(文5)】等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =

(A ) ()1n n + (B )()1n n - (C )

()12

n n + (D)

()12

n n -

2.【2014·全国大纲卷(理10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )

A .6

B .5

C .4

D .3

3.【2014·全国大纲卷(文8)】设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( ) A. 31 B. 32 C. 63 D. 64

4.【2014·北京卷(理5)】设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( )

.A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件

5.【2014·天津卷(文5)】设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若

124,,S S S 成等比数列,则1a =( )

(A )2 (B )-2 (C )

12 (D )12

- 6.【2014·福建卷(理3)】等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( )

.8A .10B .12C .14D

7.【2014·辽宁卷(文9)】设等差数列{}n a 的公差为d ,若数列1{2}n a a

为递减数列,则( ) A .0d > B .0d < C .10a d > D .10a d <

8.【2014·陕西卷(理文4)】根据右边框图,对大于2的整数N , 得出数列的通项公式是( )

.2n Aa n = .2(1)n B a n =-

.2n n C a = 1.2n n D a -=

9.【2014·重庆卷(理2)】对任意等比数列{}n a ,下列说法一定正确的是( )

139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列

10.【2014·重庆卷(文2)】在等差数列{}n a 中,1352,10a a a =+=,则7a =( )

.5A .8B .10C .14D

11.【2014·全国卷Ⅱ(文16)】数列{}n a 满足1+n a =

n a -11

,2a =2,则1

a =_________. 12.【2014·安徽卷(理12)】数列{}a n 是等差数列,若1a 1+,3a 3+,5a 5+构成公比为q 的等比数列,则q =________.

13.【2014·安徽卷(文12)】如图,在等腰直角三角形ABC

A

A 2

中,斜边BC =A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点

2A 作1A C

的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,

则7a =_____ ___.

14.【2014·北京卷(理12)】若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当

n =________时{}n a 的前n 项和最大.

15.【2014·天津卷(理11)】设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________.

16.【2014·江西卷(文13)】在等差数列{}n a 中,17a =,公差为d ,前n 项和为n S ,当且仅当8n =时n S 取最大值,则d 的取值范围_________.

17.【2014·广东卷(理13)】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则

1220ln ln ln a a a +++= 。

18.【2014·广东卷(文13)】等比数列{}n a 的各项均为正数且154a a =,则

2122232425log log log log log a a a a a ++++ = .

高考数列专题练习精选文档

高考数列专题练习精选 文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

1..等比数列}{n a 为递增数列,且,324=a 9 20 53= +a a ,数列2log 3n n a b =(n ∈N ※) (1)求数列}{n b 的前n 项和n S ; (2)122221-++++=n b b b b T n ,求使0>n T 成立的最小值n . 2.已知数列{ n a }、{ n b }满足:112 1 ,1,41n n n n n b a a b b a +=+==-. (1)求1,234,,b b b b ; (2)求数列{ n b }的通项公式; (3)设1223341...n n n S a a a a a a a a +=++++,求实数a 为何值时4n n aS b <恒成立 3.在数列{}n a 中,n S 为其前n 项和,满足2,(,*)n n S ka n n k R n N =∈∈+-. (I )若1k =,求数列{}n a 的通项公式; (II )若数列{21}n a n --为公比不为1的等比数列,且1>k ,求n S . 4.已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n = 2 1 1 n a -(*n ∈N ),求数列{}n b 的前n 项和n T 。 5,已知递增的等比数列{}n a 满足234328,2a a a a ++=+且是24,a a 的等差中项。 (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若n n n S a b ,12log +=是数列{}n n a b 的前n 项和,求.n S 6.已知数列{}n a 中,14a =,12(1)n n a a n +=-+,(1)求证:数列{}2n a n -为等比数列。 (2)设数列{}n a 的前n 项和为n S ,若22n n S a n ≥+,求正整数列n 的最小值。 7.已知数列{}n a 的前n 项和为n S ,若1 1 2,.n n n n n n a S a n b a a +-=+=且 (1)求证:{1}n a -为等比数列;

最全高考复习数列专题及练习答案详解

高考复习数列专题: 数 列(参考答案附后) 第一节 数列的概念与数列的简单表示 一、选择题 1.已知数列{}a n 对任意的p ,q ∈N * 满足a p +q =a p +a q ,且a 2=- 6,那么a 10=( ) A .-165 B .-33 C .-30 D .-21 2.在数列{a n }中,a 1=2,a n +1=a n +ln(1+1 n ),则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 3.若数列{a n }的前n 项积为n 2 ,那么当n ≥2时,{a n }的通项公式为( ) A .a n =2n -1 B .a n =n 2 C .a n = n +12 n 2 D .a n = n 2n -1 2 4.在数列{a n }中,a n +1=a n +2+a n ,a 1=2,a 2=5,则a 6的值是( ) A .-3 B .-11 C .-5 D .19 5.已知数列{a n }中,a n =n -79n -80 (n ∈N *),则在数列{a n }的前50 项中最小项和最大项分别是( ) A .a 1,a 50 B .a 1,a 8 C .a 8,a 9 D .a 9, a 50 二、填空题 6.若数列{}a n 的前n 项和S n =n 2 -10n (n =1,2,3,…),则此数

列的通项公式为________;数列{}na n 中数值最小的项是第__________项. 7.数列35,12,511,37,7 17,…的一个通项公式是 ___________________________. 8.设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =__________. 三、解答题 9.如果数列{}a n 的前n 项和为S n =3 2a n -3,求这个数列的通项 公式. 10.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N + )在函数y =x 2 +1的图象上. (1)求数列{a n }的通项公式; (2)若列数{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2 n +1.

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

高考数列专题练习(精选课件)

高考数列专题练习 数列综合题 1.已知等差数列{}n a 满足:3 7a =,5726a a +=,{}n a 的前n 项 和为n S . ?(Ⅰ)求n a 及n S ; ?(Ⅱ)令b n = 21 1 n a -(*n ∈N ),求数列{}n b 的前n 项和n T 。 2.已知递增的等比数列{}n a 满足234328,2a a a a ++=+且是2 4 ,a a 的 等差中项。 ?(Ⅰ)求数列{}n a 的通项公式; ?(Ⅱ)若n n n S a b ,12log +=是数列{}n n a b 的前n 项和,求.n S 3.等比数列}{n a 为递增数列,且, 3 24=a 9 2053= +a a ,数列 2 log 3n n a b =(n ∈N ※ ) (1)求数列}{n b 的前n 项和n S ; (2)12 22 21-++++=n b b b b T n ,求使0>n T 成立的最小值n . 4.已知数列{ n a }、{ n b }满足:112 1,1,4 1n n n n n b a a b b a +=+== -. (1)求1,2 3 4 ,,b b b b ; (2)求数列{ n b }的通项公式; (3)设1223341...n n n S a a a a a a a a +=++++,求实数a 为何值时4n n aS b <

恒成立 5.在数列{}n a 中,n S 为其前n 项和,满足 2,(,*)n n S ka n n k R n N =∈∈+-。 (I)若1k =,求数列{}n a 的通项公式; (II)若数列{21}n a n --为公比不为1的等比数列,且1>k ,求n S . 6.已知数列{}n a 中,1 4a =,12(1)n n a a n +=-+,(1)求证:数列 {}2n a n -为等比数列。 (2)设数列{}n a 的前n 项和为n S ,若22n n S a n ≥+,求正整数列 n 的最小值。? 7.已知数列{}n a 的前n 项和为n S ,若1 12,.n n n n n n a S a n b a a +-=+=且 ?(1)求证:{1}n a -为等比数列; (2)求数列{}n b 的前n 项和. 8.已知数列{}n a 中,113 a =,当2n ≥时,其前n 项和n S 满足 2 221 n n n S a S = -. (1)求n S 的表达; (2)求数列{}n a 的通项公式; 9.已知数列{}n a 的首项135 a =,1 231+= +n n n a a a ,其中*∈N n . (1)求证:数列11n a ?? -???? 为等比数列; (2)记12111n n S a a a = ++,若100n S <,求最大的正整数n .

高考数列专题总结(全是精华)

数列专题复习(0929) 一、证明等差等比数列 1. 等差数列的证明方法: (1)定义法:1n n a a d +-=(常数) (2)等差中项法:112(2)n n n a a a n +-+=≥ 2.等比数列的证明方法: (1)定义法: 1 n n a q a +=(常数) (2)等比中项法:211(2)n n n a a a n +-=≥ 例1.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75, T n 为数列{n S n }的前n 项和,求T n . 解:设等差数列{a n }的公差为d ,则 S n =na 1+21 n (n -1)d .∴S 7=7,S 15=75,∴???=+=+,7510515,721711d a d a 即???=+=+,57,1311d a d a 解得a 1=-2,d =1.∴n S n =a 1+21(n -1)d =-2+21 (n -1). ∵ 2111=-++n S n S n n ,∴数列{n S n }是等差数列,其首项为-2,公差为2 1 , ∴T n = 41n 2-4 9n . 例2.设数列{a n }的首项a 1=1,前n 项和S n 满足关系式: 3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…) 求证:数列{a n }是等比数列; 解:(1)由a 1=S 1=1,S 2=1+a 2,得a 2=t t a a t t 323,32312+= + 又3tS n -(2t +3)S n -1=3t ① 3tS n -1-(2t +3)S n -2=3t ② ①-②得3ta n -(2t +3)a n -1=0 ∴t t a a n n 33 21+= -,(n =2,3,…) 所以{a n }是一个首项为1,公比为 t t 33 2+的等比数列. 练习:已知a 1=2,点(a n ,a n+1)在函数f (x )=x 2+2x 的图象上,其中=1,2,3,… (1) 证明数列{lg(1+a n )}是等比数列; (2) 设T n =(1+a 1) (1+a 2) …(1+a n ),求T n 及数列{a n }的通项; 答案 .(2) 21 3 n n T -=,21 3 1n n a -=-; 二.通项的求法 (1)利用等差等比的通项公式 (2)累加法:1()n n a a f n +-= 例3.已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 解:由条件知:1 1 1)1(112 1+-=+=+= -+n n n n n n a a n n 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即 )()()()(1342312--+??????+-+-+-n n a a a a a a a a )111()4131()3121()211(n n --+??????+-+-+-=所以n a a n 1 11-=- 211=a ,n n a n 1231121-=-+=∴ (3)构造等差或等比 1n n a pa q +=+或1()n n a pa f n +=+ 例4.已知数列{}n a 满足* 111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式; 解:*121(),n n a a n N +=+∈ 112(1),n n a a +∴+=+ {}1n a ∴+是以112a +=为首项,2为公比的等比数列。 12.n n a ∴+= 即 *21().n n a n N =-∈

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

高考数列专题讲解(含答案)

数列 题型一、数列的综合问题 【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且 S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式; (2)设T n =S n -1S n (n ∈N *),求数列{T n }的最大项的值与最小项的值. 解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3 =14. 又{a n }不是递减数列且a 1=32,所以q =-12. 故等比数列{a n }的通项公式为a n =32×? ?? ??-12n -1 =(-1)n -1·32n . (2)由(1)得S n =1-? ????-12n =?????1+12n ,n 为奇数,1-12n ,n 为偶数, 当n 为奇数时,S n 随n 的增大而减小, 所以1S n -1S n ≥S 2-1S 2 =34-43=-712.

综上,对于n ∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712. 【分析】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口. 【即时应用】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列??????????1a n a n +1的前n 项和,是否存在k ∈N *,使得等式1-2T k =1b k 成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d (d ≠0), ∴?????? ????5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ), 解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9, ∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下: ∵1a n a n +1=1(2n +1)(2n +3)=12? ?? ??12n +1-12n +3, ∴T n =12???? ??? ????13-15+? ????15-17+…+? ????12n +1-12n +3 =12? ?? ??13-12n +3, ∴1-2T k =23+12k +3 (k ∈N *), 易知数列?????? ????12k +3为单调递减数列, ∴23<1-2T k ≤1315,又1b k =13k ∈? ????0,13,

(word完整版)全国高考数列大题专题.doc

高考中的数列—最后一讲 (内部资料勿外传)1.已知数列 {a n} 、 {b n} 、 {c n} 足. ( 1) c n=3n+6, {a n} 是公差 3 的等差数列.当b1 =1 ,求 b2、 b3的; ( 2),.求正整数 k,使得一切 * n∈N,均有 b n≥b;k ( 3),.当b1=1,求数列{b n}的通公式.2. {a } 是公比正数的等比数列 a =2, a =a +4. n 13 2 (Ⅰ)求 {a n} 的通公式; (Ⅱ) {b n } 是首 1,公差 2 的等差数列,求数列 n n n {a +b } 的前 n 和 S . 3.已知公差不0 的等差数列 {a n} 的首 a1a( a∈R)数列的前n 和 S n,且,,成等比数列. 矚 慫润厲钐瘗睞枥庑赖。 (Ⅰ)求数列 {a n} 的通公式及S n; (Ⅱ) A n=+++?+,B n=++?+,当a≥2,比 A n与 B n的大小. 4.已知等差数列 {a } 足 a =0, a +a = 10 n 2 6 8 ( I)求数列 {a n} 的通公式; ( II )求数列 { } 的前 n 和. 5.成等差数列的三个正数的和等于15,并且三个数分加上2、5、 13 后成等比数列{b n} 中的 b3、 b4、 b5. 聞 創沟燴鐺險爱氇谴净。 (I)求数列 {b n} 的通公式; (II )数列 {b n} 的前 n 和 S n,求:数列 {S n+ } 是等比数列. 6.在数 1 和 100 之插入 n 个数,使得 n+2 个数构成增的等比数列,将n+2个数的乘作T n,再令 a n=lgT n,

(完整版)高考数列专题复习

专题数列知识网络

专题训练 一.选择题 1.设数列{}n a的前n项和 2 n S n =,则 8 a的值为 (A) 15 (B) 16 (C) 49 (D)64 2.设等差数列 {} n a 的前n项和为n S,若111 a=-, 46 6 a a +=-,则当 n S取最小值时,n 等于 A.6 B.7 C.8 D.9 3.如果等差数列 {} n a 中,34512 a a a ++=,那么 127 ... a a a +++= (A)14 (B)21 (C)28 (D)35 4.已知等比数列{m a}中,各项都是正数,且1a,32 1 ,2 2 a a 成等差数列,则 910 78 a a a a + = + A.12 + B. 12 - C. 322 +D322 - 5.在等比数列 {} n a 中,11 a=,公比1 q≠ .若12345 m a a a a a a =,则m= (A)9 (B)10 (C)11 (D)12

6.等比数列 {} n a 中,15252||1,8,, a a a a a ==->则 n a = A .1 (2)n -- B .1 (2)n --- C .(2)n - D .(2)n -- 7.设{n a }是由正数组成的等比数列,n S 为其前n 项和,已知24a a =1, 37 S =, 则 5S = (A )152 (B)314 (C)33 4 (D)172 8.设 n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332 S a =-,则公比q = (A )3 (B )4 (C )5 (D )6 9.(文)设{}n a 是等比数列,则“123a a a <<”是数列{}n a 是递增数列的 (A )充分而不必要条件 (B)必要而不充分条件、 (C )充分必要条件 (D )既不充分也不必要条件 (理)设{}n a 是首项大于零的等比数列,则“12 a a <”是“数列{}n a 是递增数列”的 (A )充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 10.已知{ n a }是首项为1的等比数列,n S 是{n a }的前n 项和,且36 9S S =。则数列 n 1a ?? ?? ??的前5项和为 (A )158或5 (B )3116或5 (C )3116 (D )15 8 11.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则5 2S S = (A )11 (B )5 (C )8- (D )11- 12.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是

高考数列大题专题精选

高考数列大题专题 (内部资料勿外 传) 1.已知数列{a n}、{b n}、{c n}满足. (1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 4.已知等差数列{a n}满足a2=0,a6+a8=﹣10

(I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 5.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 6.在数1 和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作T n,再令a n=lgT n ,n≥1. (I)求数列{a n}的通项公式; (Ⅱ)设b n=tana n?tana n+1,求数列{b n}的前n项和S n. 7.设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0. (Ⅰ)若S5=5,求S6及a1; (Ⅱ)求d的取值范围. 8.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n.

高考数列专题总结(全是精华)

数列专题复习(0929) 一、证明等差等比数列 1. 等差数列的证明方法: (1)定义法:1n n a a d +-=(常数) (2)等差中项法:112(2)n n n a a a n +-+=≥ 2.等比数列的证明方法: (1)定义法: 1 n n a q a +=(常数) (2)等比中项法:211(2)n n n a a a n +-=≥ 例1.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75, T n 为数列{ n S n }的前n 项和,求T n . 解:设等差数列{a n }的公差为d ,则 S n =na 1+21 n (n -1)d .∴S 7=7,S 15=75,∴???=+=+,7510515,721711d a d a 即???=+=+,57,131 1d a d a 解得a 1=-2,d =1.∴ n S n =a 1+21(n -1)d =-2+21 (n -1). ∵ 2111=-++n S n S n n ,∴数列{n S n }是等差数列,其首项为-2,公差为21 , ∴T n = 41n 2-4 9 n . 例2.设数列{a n }的首项a 1=1,前n 项和S n 满足关系式: 3tS n -(2t +3)S n -1=3t (t >0,n =2,3,4,…) 求证:数列{a n }是等比数列; 解:(1)由a 1=S 1=1,S 2=1+a 2,得a 2=t t a a t t 323,32312+= + 又3tS n -(2t +3)S n -1=3t ① 3tS n -1-(2t +3)S n -2=3t ② ①-②得3ta n -(2t +3)a n -1=0 ∴ t t a a n n 33 21+= -,(n =2,3,…) 所以{a n }是一个首项为1,公比为t t 33 2+的等比数列. 练习:已知a 1=2,点(a n ,a n+1)在函数f (x )=x 2+2x 的图象上,其中=1,2,3,… (1) 证明数列{lg(1+a n )}是等比数列; (2) 设T n =(1+a 1) (1+a 2) …(1+a n ),求T n 及数列{a n }的通项; 答案 .(2) 2 1 3n n T -=,2 1 31n n a -=-; 二.通项的求法 (1)利用等差等比的通项公式 (2)累加法:1()n n a a f n +-= 例3.已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a 。 解:由条件知:1 1 1)1(112 1+-=+=+= -+n n n n n n a a n n 分别令)1(,,3,2,1-??????=n n ,代入上式得)1(-n 个等式累加之,即 )()()()(1342312--+??????+-+-+-n n a a a a a a a a )111()4131()3121()211(n n --+??????+-+-+-=所以n a a n 1 11-=- 211=a ,n n a n 1231121-=-+=∴ (3)构造等差或等比 1n n a pa q +=+或1()n n a pa f n +=+ 例4.已知数列{}n a 满足*111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式; 解:* 121(),n n a a n N +=+∈ 112(1),n n a a +∴+=+ {}1n a ∴+是以112a +=为首项,2为公比的等比数列。 12.n n a ∴+= 即 *21().n n a n N =-∈ 例5.已知数列{}n a 中,11a =,1111 ()22 n n n a a ++=+,求n a . 解:在1111 ()22 n n n a a ++= +两边乘以12+n 得:112(2)1n n n n a a ++?=?+ 令2n n n b a =?,则11n n b b +-=,解之得:111n b b n n =+-=-,所以1 22 n n n n b n a -= =.

2020年高考数学 大题专项练习 数列 三(15题含答案解析)

2020年高考数学 大题专项练习 数列 三 1.已知数列{a n }满足a n+1=λa n +2n (n ∈N *,λ∈R),且a 1=2. (1)若λ=1,求数列{a n }的通项公式; (2)若λ=2,证明数列{n n a 2 }是等差数列,并求数列{a n }的前n 项和S n . 2.设数列{}的前项和为 .已知=4,=2+1,.(1)求通项公式 ;(2)求数列{}的前项和. 3.已知数列{a n }是等差数列,a 2=6,前n 项和为S n ,数列{b n }是等比数列,b 2=2,a 1b 3=12,S 3+b 1=19. (1)求{a n },{b n }的通项公式; (2)求数列{b n cos(a n π)}的前n 项和T n .

4.设等差数列{a n }的前n 项和为S n ,且a 5+a 13=34,S 3=9. (1)求数列{a n }的通项公式及前n 项和公式; (2)设数列{b n }的通项公式为b n =,问:是否存在正整数t ,使得b 1,b 2,b m (m≥3,m an an +t ∈N)成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由. 5.已知数列满足:,。数列的前n 项和为,且 .⑴求数列、的通项公式;⑵令数列满足,求其前n 项和为 6.已知{a n }是递增数列,其前n 项和为S n ,a 1>1,且10S n =(2a n +1)(a n +2),n ∈N *. (1)求数列{a n }的通项a n ; (2)是否存在m ,n ,k ∈N *,使得2(a m +a n )=a k 成立?若存在,写出一组符合条件的m ,n ,k 的值;若不存在,请说明理由.

高三数列专题练习30道带答案

高三数列专题训练二 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,记,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; 1,公比为3的等比数列,求数列{}n b 的前n 项和n T . 3.设等比数列{}n a 的前n 项和为n S ,,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式; (2)设n n n c a b =?,若对任意*n N ∈,求λ的取值范围. 4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =, 24b a =,313b a =. (Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .

全国卷数列高考题汇总附答案

数列专题 高考真题 (2014·I) 17. (本小题满分12分) 已知数列{}的前项和为,=1, , ,其中为常数. (Ⅰ)证明:; (Ⅱ)是否存在,使得{}为等差数列并说明理由. (2014·II) 17.(本小题满分12分) 已知数列 满足=1, . (Ⅰ)证明是等比数列,并求 的通项公式; (Ⅱ)证明: . (2015·I)(17)(本小题满分12分) 为数列的前项和.已知, (Ⅰ)求的通项公式: (Ⅱ)设 ,求数列 的前项和。 (2015·I I)(4)等比数列 满足 ,135a a a ++ =21,则357a a a ++= ( )

(A )21 (B )42 (C )63 (D )84 (2015·I I)(16)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. (2016·I)(3)已知等差数列 前9项的和为27, ,则 (A )100 (B )99 (C )98 (D )97 (2016·I)(15)设等比数列满足 的最大值为 __________。 (2016·II)(17)(本题满分12分) S n 为等差数列的前项和,且=1 ,=28 记 ,其中表示不超过的最大整数, 如 . (I )求,, ; (II )求数列的前1 000项和. (2016·III)(12)定义“规范01数列” 如下: 共有项,其中项为0,项为1,且对任意, 中0的个数不少于1的个数.若 ,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个 (2016·III)(17)(本小题满分12分) 已知数列的前项和 ,其中 (I )证明是等比数列,并求其通项公式; (II )若 ,求. (2017·I)4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4 D .8 (2017·I)12.几位大学生响应国家的创业号召,开发了一款应用软件。为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列

高考数列专项大题与答案

高考数列专项大题与答 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考数列大题专项 1.(北京卷)设数列{a n }的首项a 1=a ≠41,且 11 为偶数21 为奇数 4n n n a n a a n +???=??+??, 记 211 4n n b a -=- ,n ==l , 2,3,…·. (I )求a 2,a 3; (II )判断数列{b n }是否为等比数列,并证明你的结论; (III )求123lim() n n b b b b →∞ +++ +. 2.(北京卷)数列{a n }的前n 项和为S n ,且a 1=1, 11 3n n a S +=,n =1,2,3,……,求 (I )a 2,a 3,a 4的值及数列{a n }的通项公式; (II )2462n a a a a +++ +的值. 3.(福建卷)已知{n a }是公比为q 的等比数列,且231,,a a a 成等差数列. (Ⅰ)求q 的值; (Ⅱ)设{ n b }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的 大小,并说明理由.

4. (福建卷)已知数列{a n }满足a 1=a , a n+1=1+n a 1 我们知道当a 取不同的值时,得到不同的数列,如 当a =1时,得到无穷数列:. 0,1,21:,21;,35,23,2,1---=得到有穷数列时当a (Ⅰ)求当a 为何值时a 4=0; (Ⅱ)设数列{b n }满足b 1=-1, b n+1=) (11 +∈-N n b n ,求证a 取数列{b n }中的任一个数,都可以得到一个有穷数列{a n }; (Ⅲ)若)4(223 ≥<

2019年高考专题:数列试题及答案

2019年高考专题:数列 1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16 B .8 C .4 D .2 【解析】设正数的等比数列{a n }的公比为q ,则23111142 1111534a a q a q a q a q a q a ?+++=?=+?, 解得11,2 a q =??=?,2 314a a q ∴==,故选C . 2.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若133 14 a S ==,,则S 4=___________. 【解析】设等比数列的公比为q ,由已知22 3111314S a a q a q q q =++=++= ,即2 104 q q ++=. 解得12q =-,所以4 4 1411()(1)521181()2 a q S q -- -= ==---. 3.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = ___________. 【解析】设等差数列{}n a 的公差为d ,根据题意可得 317 125,613a a d a a d =+=??=+=?得11,2a d =??=? 101 109109 101012100.22S a d ??∴=+=?+?= 4.【2019年高考江苏卷】已知数列* {}()n a n ∈N 是等差数列, n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【解析】由题意可得:()()()25811191470 98 9272a a a a d a d a d S a d ?+=++++=? ??=+=?? , 解得:152 a d =-??=?,则8187 840282162S a d ?=+=-+?=.

高考数学数列大题专题训练

高考数学数列大题专题训练 命题:郭治击 审题:钟世美 参考答案 1.解:(Ⅰ)设221,,,+n t t t 构成等比数列,其中100,121==+n t t ,则 2121++????=n n n t t t t T ① 1212t t t t T n n n ???=+?+ ② ①×②并利用)21(,102213+≤≤=?=?+-+n i t t t t n i n i ,得 (Ⅱ)由题意和(Ⅰ)中计算结果,知 另一方面,利用 得 所以 2.解:(Ⅰ)0,1,2,1,0是一具满足条件的E 数列A 5。 (答案不唯一,0,1,0,1,0也是一个满足条件的E 的数列A 5) (Ⅱ)必要性:因为E 数列A 5是递增数列, 所以)1999,,2,1(11 ==-+k a a k k . 所以A 5是首项为12,公差为1的等差数列. 所以a 2000=12+(2000—1)×1=2011. 充分性,由于a 2000—a 1000≤1, a 2000—a 1000≤1 …… a 2—a 1≤1 所以a 2000—a≤19999,即a 2000≤a 1+1999.

又因为a 1=12,a 2000=2011, 所以a 2000=a 1+1999. n n n A k a a 即),1999,,2,1(011 =>=-+是递增数列. 综上,结论得证。 (Ⅲ)令.1),1,,2,1(011±=-=>=-=+A k k k c n k a a c 则 因为2111112 c c a a c a a ++=++= …… 所以13211)3()2()1()(-++-+-+-+=n n c c n c n c n na A S 因为).1,,1(1,1-=-±=n k c c k k 为偶数所以 所以)1()2)(1()1)(1*21n c n c n c -++--+-- 为偶数, 所以要使2 )1(,0)(-=n n A S n 必须使为偶数, 即4整除*)(144),1(N m m n m n n n ∈+==-或亦即. 当 ,1,0,*)(14241414-===∈+=--+k k k n a a a A E N m m n 的项满足数列时14=k a ),,2,1(m k =时,有;0)(,01==n A S a 当n A E N m m n 数列时,*)(14∈+=的项满足,,1,0243314-===---k k k a a a 当)1(,)(3424-∈+=+=m n N m m n m n 时或不能被4整除,此时不存在E 数列A n , 使得.0)(,01 ==n A S a 3.

相关主题
文本预览
相关文档 最新文档