当前位置:文档之家› 植被缓冲带径流渗流水量分配及氮磷污染物去除定量化研究

植被缓冲带径流渗流水量分配及氮磷污染物去除定量化研究

植被缓冲带径流渗流水量分配及氮磷污染物去除定量化研究
植被缓冲带径流渗流水量分配及氮磷污染物去除定量化研究

UNITANK工艺提高氮、磷去除率的研究

吴牛嘴等^jNlTANK工岂提高氮、磷去除率的研究73 整的运行周期由6个阶段组成,主体1一过渡l一沉降1一丰体2一过渡2一沉降2阶段。后3个阶段的污水流向恰好与前3个阶段相反(如图2)、 罔2uNITANK上艺的周期运钉过程 22试验用水及试验污泥 试验地点为南京市锁金村污水处理厂,试验水质为典型的城巾生活t;水,污水水质如表l。试验开始时,驯化污泥取自该厂曝气池的活性污泥。 表l试验水质(曝气沉砂池出水 3结果与讨论 3l主体阶段运行时间试验 本试验没置了3个主体阶段反应时间210min、120min和90nlin,过渡阶段和沉降阶段分别采用30min和60min。水力停留时间恒定为12h,水温在49℃范围内变化,泥龄控制为25—30d,容积负荷范同为0290.52奴CoD/m3-d。 主体阶段的时间对coD和TP处理效果的影响如图3。cOD的去除率随主体段时间的变化不显著,但TP的去除率则与主体段时间设置有一定关系。随着主体段时间的延长,TP的去除旱升高的趋势。, 主体阶段的时间对TP去除率的影响可从微生物活性的角度进行解释,微牛物菌群的活性依赖于其有利的生存研=境。上体阶段时间为210m;n、l2【)min和9()mm时活性污泥处于厌氧状态与好氧状态的时间比例分别为0.64、O50和043。厌氧阶段对于除磷菌的蕈要性是不言而喻的。厌氧时段的缩短将会影响除磷茼的活性,使除磷菌不能充分释磷,进而导致曝气阶段的吸磷能力受到影响,致使除磷率降低¨。此外,uNITANK采用连续进水,能保证厌氧池源源不断地产生挥发‘怍脂肪酸(VFA),满足释磷。因此,适当延长厌氧阶段的时间冉利于活性污泥充分释磷,而小会因内源损耗引起无效释磷。同时,随着反应的进行,搅拌池中的污泥不断被椎流进入曝气池。搅拌池巾残留的污泥越来越少,相对可利用的碳源增多,这更有利于这部分污泥的充分释磷。 手体阶段的时同(mm) 盥3主体段时间试验 总的来说,主体阶段时间对于cOD的降解无很大影响,适当延长主体段时问有利于TP的去除。但3个试验工况下NfE—N去除率都不商。 32过渡阶段运行时间试验 前述试验中,NHi—N去除率较低.分析其可能的原因如下:(1)过渡段曝气时间不足;(2)好氧泥龄低;(3)水温较低。 针对上述原困,本试验调整了过渡阶段的时间,并且延长污泥泥龄至40—50d,试验水温在18—25℃范围内。中间曝气池的DO浓度控制在30—40mg/L范围内,HRT控制在12h,uNITANK反应器的平均MLSs浓度为3500mg/L。试验中考察了过渡段时间为60min、90min、120mln和150一n时的N}“。N和TP去除的情况。主体段和沉降段时间分别设定为90min和60min。 图4足NH?一N和TP的去除率随过渡段时问

面源氮磷流失生态拦截工程

面源氮磷流失生态拦截工程 一、工程目的和意义 农业面源氮磷流失由农田排水和径流、乡村生活污水及农户畜禽养殖尾水等组成,其污水源具有面广、量大、分散、间歇的峰值和高无机沉淀物负荷的特点。采用生态湿地处理技术、生态隔离带技术及农区自然塘池缓冲与截留技术可以减少表土径流及氮磷污染物的流失。特别是生态沟渠塘改造是目前最为经济有效的生态湿地处理工程。 据实地勘察和初步估算,乡村面源氮磷流失的大部分淌入现有用于排水的沟渠塘流经入湖河道汇聚到太湖,许多沟渠塘成了农村固体废弃物的堆积场所,成为农业污染源的重要传播途径,必须尽快加以工程化技术改造,建立新型的沟渠塘生态湿地系统。 二、工程内容和特点 工程主要内容为先清除垃圾、清除淤泥、清除杂草,沟渠塘岸边种植垂柳、草被植物,侧面和底部搭配种植各类氮磷吸附能力强的半旱生植物和水生植物,减缓水速,促进流水携带颗粒物质的沉淀,有利于构建植物对沟壁、水体和沟底中逸出养分的立体式吸收和拦截,从而实现对农业面源污染排出养分的控制。整个植物系统最终达到“拦截污水、拦截泥沙、拦截漂浮物”的目的,不仅具有净化水质、绿化村庄、美化环境的效果,而且具有一定的经济价值。南京土壤所“863”科技计划最新研究成果显示,该系统对农田径流中总氮、总磷的去除效果分别达到48.36%和40.53%。 经工程化改造后,现有排水沟渠塘去污能力进一步提升,成本

大幅度降低。具有排水和湿地系统的双重功效,不仅可以吸附农田、漫溢水中氮、磷营养物质,而且能拦截蔬菜园地径流表层肥沃土壤进入河道,还可作为部分农村生活污水、畜禽养殖场尾水导流截污的排放通道之一。生态拦截工程与农村分散居住农户生活污水生物净化池、入湖河道控制性种养水生植物构成了农村面源氮磷流失的生态拦截和净化吸附的新型农业湿地系统,并且不占用耕地,符合太湖流域平原水网地区农田沟渠的实际,尤其适用于太湖、长荡湖、滆湖入湖河道两侧等周边水功能区域,具有巨大的推广应用潜力。 三、工程设计和管理维护 1、沟渠改造 充分利用现有排水沟渠,对其进行一定的工程改造,建设成生态拦截型沟渠塘系统。对淤积严重,连通度差或杂草丛生的区段,先进行清淤,拓宽沟渠容量。为保证水生植物正常生长,清理时要保留部分原有水生植物和一定量的淤泥。 2、渠体设计 渠体的断面为等腰梯形,沟壁和沟底均为土质,配置多种植物,并设置透水坝、拦截坝和节制闸等辅助性工程设施,使之在具有原有的排水功能基础上,增加对排水中氮、磷养分的拦截、吸附、沉积、转化和吸收利用。生态沟渠建设可以考虑适度增加沟渠的蜿蜒性,延长排水时间。建设密度应能满足排水和生态拦截的需要,分布在农田四周与农田区外的沟渠连接起来,并利用地形地貌将低洼地或者弃养渔塘改造成生态池塘,种植富集氮、磷的水生蔬菜,增加二次或三次净化,进一步提高系统的生态拦截能力。 3、植物配置

如何提高A2O工艺的脱氮除磷效果

如何提高A2/O工艺的脱氮除磷效果 1.A2O池的检测与控制参数的确定 A2O生物除磷脱氮工艺处理污水效果与DO、内回流比r、外回流比R、泥龄SRT、污水温度及PH值等有关。一般厌氧池DO在0.2mg/l以下,缺氧池DO在0.5mg/l以下,而好氧池DO在2.0mg/l以上;污泥混合液的PH值大于7;SRT为8-15天。 然而A2O生物除磷脱氮过程,本质上是一系列生物氧化还原反应的综合,A2O生物池各段混合液中的ORP(氧化还原值)能够综合地反应生物池中各参数的变化。混合液中的DO越高,ORP值也越高;而当存在磷酸根离子和游离的磷时,ORP则随磷酸根离子和游离的浓度升高而降低。一般A-A-O生物除磷脱氮工艺处理过程中,厌氧段的ORP应小于-250mV,缺氧段控制在-100mV左右,好氧段控制在40mV以上。 如厌氧段ORP升高,表明DO值过大,可能与回流比过大带入更多的氧及回流污泥中带入太多的氮有关,还与搅拌强度太大产生空气复氧有关。 如缺氧段ORP升高,表明DO值过大,可能与回流比过大带入更多的氧有关,另外还与搅拌强度太大产生空气复氧有关。 根据以上说明的A2O池中各参数变化对污水除磷脱氮处理工艺的影响,合理选择检测仪表,对污水处理过程中各参数的变化情况进行检测,为污水处理厂的运行控制提供依据。一般A2O工艺中需要检测的数据为: 进水:进水量Q COD COD5 PH T A2O池厌氧段:溶解氧DO 氧化还原值ORP A2O池缺氧段:溶解氧DO 氧化还原值ORP A2O池好氧段:溶解氧DO 氧化还原值MLSS 出水:COD BOD5 根据以上推荐的典型仪表配置与工艺控制特点,我们提出以ORP和DO为主要控制参数,来对曝气系统、内回流系统、外回流系统、剩余污泥排放系统进行控制,以实现良好的除磷脱氮效果,有效地降低污水中的BOD5,同时最大限度地节约能源,使整个系统高效稳定地运行。 2.A2O污水处理工艺过程控制方法 A2O污水处理工艺A2O池传统的控制是:DO值的PID调节(进气量)、MLSS的PID调节(回流比)均为对单一参数的单一对象控制。然而污水处理过程是一个滞后量非常大的过程,影响过程的参数也很多,不可能依据某一具体参数来实现整个过程的控制。污水处理过程中,生物池的曝气系统控制、污流回流系统控制都是极其复杂的控制过程。采用独立的单一的闭环控制很难达到控制要求。随着控制技术的不断发展,同时在污水处理运行过程中不断积累了大量的运行数据,这就为控制过程的查表运算,实现模糊控制带来了可能。 (1) 曝气系统自动化控制 根据季节、进水水质、进水水温、进水水量、好氧池DO、出水COD、BOD5、NH3-N 、TOP、TKN、SS等情况不同,分别确定不同的供气量,即确定空气调节阀的开度和鼓风机的开启台数及其转速。自动对工艺过程控制进行自动修整,实现模糊控制。 A2/O工艺是将厌/好氧除磷系统和缺氧/好氧脱氮系统相结合而成,是生物脱氮除磷的基础工艺,可同时去除水中的BOD、氮和磷。 工艺为:原水与从沉淀池回流的污泥首先进入厌氧池,在此污泥中的聚磷菌利用原污水中的溶解态有机物进行厌氧释磷;然后与好氧末端回流的混合液一起进入缺氧池,在此污

农田氮_磷的流失与水体富营养化(精)

农田氮、磷的流失与水体富营养化① 司友斌王慎强陈怀满② (中国科学院南京土壤研究所南京210008 摘要农田氮、磷的流失,不仅造成化肥的利用率降低,农业生产成本上升,还对水环境造成污染,引起水体富营养化。本文讨论了农田氮磷流失对水体富营养化的贡献、农田氮磷流失途径及影响因素,提出了减少农田氮磷流失、控制水体富营养化的措施。 关键词农田氮素;农田磷素;淋溶作用;水体富营养化 肥料提供了植物生长必需的营养元素,对保持作物高产稳产起了重要的作用,但是由施肥不当或过量施肥带来的环境污染问题也越来越突出,其中农田氮磷流失引起的水体富营养化问题目前已受到人们的普遍关注。 1水体富营养化的表现及形成原因 水体富营养化通常是指湖泊、水库和海湾等封闭性或半封闭性的水体,以及某些滞留(流速<1米/分钟河流水体内的氮、磷和碳等营养元素的富集,导致某些特征性藻类(主要是蓝藻、绿藻等的异常增殖,致使水体透明度下降,溶解氧降低,水生生物随之大批死亡,水味变得腥臭难闻。引起水体富营养化起关键作用的元素是氮和磷。研究表明,对于湖泊、水库等封闭性水域,当水体内无机态总氮含量大于 0.2mg/L,PO3-4-P的浓度达到0.02mg/ L时,就有可能引起藻华(Algae Bloms现象的发生。 据对我国25个湖泊的调查,水体全氮无一例外超过了富营养化指标,全磷只有2个湖泊(大理洱海和新疆博斯腾湖低于0.02mg/L的临界指标,其余92%的湖泊皆超过了这个标准,比国际上一般标准高出10倍或10倍以上(表1。 表1我国25个湖泊中的全N全P浓度(mg/L及所占比例[1]

全N全P <0.2>1.0>2.0>5.0<0.02>0.1>0.2>0.5 湖泊数 %0 21 84 13 52 5 20 2 8 16 64 12 48 6 24

两种藻类对水体氮磷去除效果

第52卷第4期 2006年8月武汉大学学报(理学版) J.Wuhan Univ.(Nat.Sci.Ed.)Vol.52No.4 Aug.2006,487~491 收稿日期:2006202228 通讯联系人 E 2mail :Huzy @https://www.doczj.com/doc/ea2008571.html, 基金项目:国家高技术研究发展计划(863)项目资助(2002AA601021);国家重点基础研究发展规划(973)项目资助(2002CB412309)作者简介:凌晓欢(19822),男,硕士生,现从事藻类水质净化研究. 文章编号:167128836(2006)0420487205 两种藻类对水体氮、磷去除效果 凌晓欢1,2,况琪军1,邱昌恩1,2,胡征宇1 (1.中国科学院水生生物研究所/淡水生态与生物技术国家重点实验室,湖北武汉430072; 2.中国科学院研究生院,北京100049) 摘 要:借助人工装置和露天水池,通过分析实验水体中氮、磷元素浓度的变化,研究了实验室条件下一种绿球藻(Chlorococcum sp.)和露天小型生态系统中寡枝刚毛藻(Cladophora oli goclona K ütz ).对污水中氮磷营养的去除效果.结果显示:绿球藻在高浓度氮和磷的污水中生长良好并维持较高的氮磷去除率,在6天处理期间,人工污水中总溶解性氮、硝酸盐氮、氨氮、总溶解性磷的去除率分别达到46.2%,37.8%,98.4%和79.3%;在对天然湖泊水的处理中,绿球藻对总溶解性磷的去除率在第5天为79.2%.室外条件下,该刚毛藻通过吸收水体中的氮、磷营养维持自身正常生长代谢,从而降低水体的电导率和改善水质.根据本次研究,结果两种被试藻类均可作为污水处理用藻类,其中Chlorococcum sp.适合用于静态水体的修复与改善,Cladop hora oli goclona 适合于流动水体的减负与治理. 关 键 词:绿球藻;刚毛藻;氮;磷;水质;净化中图分类号:X 171 文献标识码:A 0 引 言 应用藻类进行水质净化的研究,自20世纪50年代起,至今已有近60年的历史[1].早期主要是应用微型藻悬浮培养技术进行污水处理,相关技术有藻菌氧化塘、高效藻类塘、活性藻 [2] 等.由于微型藻 悬浮培养技术在实际应用中有诸如过量藻体不易收获、出水中仍有藻类细胞残留等问题,科学家们随之将研究的焦点更多地集中在固着藻类的研究与应用上,如:固定化藻类技术[3]和藻菌生物膜技术.Da Costa [4]的研究结果证明,固定化藻类不但能有效去 除污水中的氮磷营养,对去除镉和锌等重金属离子也效果显著.由于受限于固定藻类用载体的成本较高,以致该项技术仅停留在实验室规模的研究和探索阶段,至今未见大规模实际应用的报道.吴永红等[5]以高分子材料的人工水草作为藻菌生物膜载体,用于改善富营养化水体的水质,同样获得较为理想的水质净化效果.为了进一步挖掘和筛选能有效净化污水且藻细胞易于收获的藻种,拓展藻类在污水处理中的应用范围,本文研究了一种极为耐污的 绿球藻(Chlorococcum sp.)和寡枝刚毛藻 (Cl adop hora oli goclona K ütz )对氮磷的去除效果,对二者各自的应用前景作了简要分析,同时对藻类水质净化的优势进行了探讨. 1 材料和方法 1.1 室内实验藻种与培养条件 绿球藻(Chlorococcum sp.)采自美国亚里桑那州一家污水处理厂,应用微藻分离纯化的方法,用B G11琼脂培养基分离纯化后保种培养.在无菌条 件下,将琼脂培养基上的单个藻落转接到B G11液体培养基中,置L R H 22502G 光照培养箱中培养,培养温度(25±1)℃,光照强度35~40μmol/m -2?s -1,在获得足够生物量后用于污水处理试验. 实验污水分别为人工合成污水和天然富营养化湖泊水.人工合成污水配方为:NaNO 30.425g 、(N H 4)2SO 40.075g 、MgSO 4?7H 2O 0.025g 、Ca (H 2PO 4)20.03g 、Na HCO 30.30g 、FeCl 30.0015g ,用自来水定容至1L.天然富营养化湖泊水采自 武汉东湖茶港湖区,经25号浮游生物网过滤去除明

污水处理脱氮、除磷的经验值汇总

污水处理脱氮、除磷的经验值汇总 1、脱氮除磷水质的要求 1、污水的五日生化需氧量与总凯氏氮之比是影响脱氮效果的重要因素之一。异养性反硝化菌在呼吸时,以有机基质作为电子供体,硝态氮作为电子受体,即反硝化时需消耗有机物。青岛等地污水厂运行实践表明,当污水中五日生化需氧量与总凯氏氮之比大于4时,可达理想脱氮效果;五日生化需氧量与总凯氏氮之比小于4时,脱氮效果不好。五日生化需氧量与总凯氏氮之比过小时,需外加碳源才能达到理想的脱氮效果。外加碳源可采用甲醇,它被分解后产生二氧化碳和水,不会留下任何难以分解的中间产物。由于城市污水水量大,外加甲醇的费用较大,有些污水厂将淀粉厂、制糖厂、酿造厂等排出的高浓度有机废水作为外加碳源,取得了良好效果。当五日生化需氧量与总凯氏氮之比为4或略小于4时,可不设初次沉淀池或缩短污水在初次沉淀池中的停留时间,以增大进生物反应池污水中五日生化需氧量与氮的比值。 2、生物除磷由吸磷和放磷两个过程组成,积磷菌在厌氧放磷时,伴随着溶解性可快速生物降解的有机物在菌体内储存。若放磷时无溶解性可快速生物降解的有机物在菌体内储存,则积磷菌在进入好氧环境中并不吸磷,此类放磷为无效放磷。生物脱氮和除磷都需有机碳,在有机碳不足,尤其是溶解性可快速生物降解的有机碳不足时,反硝化菌与积磷菌争夺碳源,会竞争性地抑制放磷。 污水的五日生化需氧量与总磷之比是影响除磷效果的重要因素

之一。若比值过低,积磷菌在厌氧池放磷时释放的能量不能很好地被用来吸收和贮藏溶解性有机物,影响该类细菌在好氧池的吸磷,从而使出水磷浓度升高。广州地区的一些污水厂,在五日生化需氧量与总磷之比为17及以上时,取得了良好的除磷效果。 3、若五日生化需氧量与总凯氏氮之比小于4,难以完全脱氮而导致系统中存在一定的硝态氮的残余量,这样即使污水中五日生化需氧量与总磷之比大于17,其生物除磷的效果也将受到影响。 4、一般地说,积磷菌、反硝化菌和硝化细菌生长的最佳pH在中性或弱碱性,当pH偏离最佳值时,反应速度逐渐下降,碱度起着缓冲作用。污水厂生产实践表明,为使好氧池的pH维持在中性附近,池中剩余总碱度宜大于70mg/L。每克氨氮氧化成硝态氮需消耗7.14g 碱度,大大消耗了混合液的碱度。反硝化时,还原1g硝态氮成氮气,理论上可回收3.57g碱度,此外,去除1g五日生化需氧量可以产生0.3g碱度。出水剩余总碱度可按下式计算,剩余总碱度=进水总碱度+0.3×五日生化需氧量去除量+3×反硝化脱氮量-7.14×硝化氮量,式中3为美国EPA推荐的还原1g硝态氮可回收3g碱度。当进水碱度较小,硝化消耗碱度后,好氧池剩余碱度小于70mg/L,可增加缺氧池容积,以增加回收碱度量。在要求硝化的氨氮量较多时,可布置成多段缺氧/好氧形式。在该形式下,第一个好氧池仅氧化部分氨氮,消耗部分碱度,经第二个缺氧池回收碱度后再进入第二个好氧池消耗部分碱度,这样可减少对进水碱度的需要量。 2、生物脱氮的经验值

稻田土壤氮素流失机制研究

稻田土壤氮素流失机制研究 摘要:本文通过查阅大量文献,总结了稻田土壤中氮素流失的过程机制和影响因素,并进一步探究了抑制或减缓稻田土壤氮素流失的方法,为稻田氮素流失的相关研究提供基础资料。 关键词:稻田;氮素流失;机制 Study on the mechanism of soil nitrogen losing in paddy field Abstract:Through consulting a large number of documents, this article summarizes the process of soil nitrogen losing mechanism and the influencing factors in the paddy fields, then explore the methods to inhibit or slow the nitrogen losing in the paddy fields; the goal is to providing a basic material for related research. Key words: paddy field; nitrogen losing; mechanism 氮素是动植物生长所需的主要元素。土壤中氮素的丰缺及供给状况直接影响着农作物的生长水平[1]。随着世界人口的日益增加, 对粮食的需求量也越来越大, 该元素在维持农业系统的可持续性和经济活力中扮演着重要的角色。由于其易于以气体形式挥发, 易于淋失和迁移, 因此氮素会大量流失, 进而影响水和空气的质量[2]。 为提高土壤的氮素水平,人们在农业生产中广泛使用大量的氮素化肥。目前中国已成为世界上氮肥年用量最多的国家之一[3],单位面积的施用量也高于世界平均水平。由于施肥方法或农业管理措施不当,导致氮素损失加剧[4],严重影响了氮肥利用率,中国氮肥利用率仅为30% ~50%[5]。研究表明,农田中氮素损失的途径主要包括:氨的挥发、反硝化脱氮、铵的固定、径流冲刷和硝态氮的淋失等。其中,硝态氮的淋失是损失的重要方面[6],淋失量可达5%~41.9%[7]。 水稻是我国南方的主要粮食作物之一, 同时也是消耗氮素较多, 流失

南方水网区农田氮磷流失治理技术

南方水网区农田氮磷流失 治理技术

(一)技术基本情况 农业面源污染是影响水环境、土壤环境和农村生态环境质量的重要因素之一,由于其涉及范围广、随机性大、隐蔽性强、不以溯源、难以监管等原因,治理的难度很大,已经成为我国现代农业和社会可持续发展的瓶颈。据全国第一次污染源普查数据,农业源排放的总氮、总磷占总排放量的57.2%和67.4%,控制农业源氮磷排放是实现水环 境质量根本改善的核心。然而在农业源氮磷排放中,来自农田的氮磷排放又占很大比例。因此,要实现农业面源污染的有效控制,必须首先控制农田面源污染。 南方水网区农田氮磷流失治理集成技术,即源头减量(reduce),农田氮磷投入源头减量技术;过程拦截(retain),农田径流排放的 过程拦截技术;养分再利用(reuse),养分循环利用技术;末端修复(restore),末端的生态修复技术。 (二)技术示范推广情况 农业农村从2013年起,在三峡库区兴山县、太湖流域宜兴市、 巢湖流域巢湖市、洱海流域洱源县开展农业面源综合防治示范区建设。四个示范区核心示范面积达11585亩,其中巢湖流域示范区核心面积2500亩,洱海流域示范区核心面积2320亩,太湖流域示范区核心面积约1500亩,三峡库区示范区核心面积5265亩。通过源头控制、过程拦截、末端处理等工程的建设,实现了示范区畜禽粪便、农村污水处理利用率90%以上,化学需氧量、总氮和总磷排放量分别减少40%、30%和30%以上,有效改善了当地农业生态环境和人居环境。

为推广上述示范区建设取得的可复制可推广的技术模式,2016 年农业农村部会同国家发展改革委,在太湖、淮河、巢湖、洞庭湖、鄱阳湖、洱海、三峡库区及丹江口库区等典型流域整县推进实施农业面源综合治理试点项目,总结一批成功治理范例和适用模式。每个试点项目的示范区覆盖耕地面积2万亩以上,养殖量不小于2万头猪当量,中央补助资金3000万元,总投资约4000万元。 (三)提质增效情况 1.农田氮磷投入源头减量技术。在保证水稻高产的基础上,减少氮肥投入10-20%,提高氮肥农学效率10-20%,减少氮排放20%以上。 2.农田径流排放的过程拦截技术。在保障农田排水的同时,对排水中的氮磷进行高效去除,氮磷的拦截率在40%以上。 3.养分循环利用技术。径流氮磷平均浓度下降70-80%,并通过氮素回用减少稻田氮肥投入20%。 4.末端的生态修复技术。通过高效吸收氮磷植物群落的合理搭配(经济型、景观型)、生态浮床/岛的组合应用、水位落差的设计以及高效脱氮除磷环境材料与微生物的应用等等,形成了农田面源污染治理的最后一道屏障。同时,水生植物定期收获后进行资源化再利用,生产成有机肥回用农田。 (四)技术获奖情况 南方水网区农田氮磷流失治理集成技术被列入农业农村部2018年十项重大引领性农业技术之一。

坡耕地氮磷流失及其控制技术研究进展

土 壤(Soils), 2009, 41 (6): 857~861 坡耕地氮磷流失及其控制技术研究进展① 吴电明1,2, 夏立忠2*, 俞元春1, 李运东2 (1 南京林业大学,南京 210037; 2 中国科学院南京土壤研究所,南京 210008) 摘 要:坡耕地N、P流失是造成农业面源污染的重要原因。文章综述了国内外有关坡耕地N、P流失的过程特征,降雨、土壤、地形、耕作与管理因素对N、P流失的影响等方面工作的研究进展,探讨了不同控制措施,如覆盖、植物篱、保护性耕作、坡改梯等,控制N、P流失的控制机制、效果和可操作性;并进一步对坡耕地N、P流失的研究与控制方面等今后应加强研究的趋势进行了展望。 关键词: 坡耕地;氮磷流失;控制技术 中图分类号: S157.1 坡耕地土壤养分流失是由于降雨作用于表层土壤,引起表层土壤N、P等养分溶解流失,或径流泥沙含有和吸附的颗粒态养分随径流迁移,进入水体的过程。坡耕地养分流失一方面造成了土壤质量退化、土地生产力下降,另一方面养分进入河流、湖泊等水体,引发了水体富营养化等一系列问题[1]。而施肥量的逐年增加,养分利用率低下,更加剧了农业面源污染[2],并直接威胁到居民饮用水安全。因此,开展坡耕地养分流失研究具有重要的现实意义。 早在1905年,英国科学家Warrington[3]就开始注意到土壤中N素淋失的问题,并在此后几十年中一直没有中断对养分流失的研究。但当时偏重土壤侵蚀方面,养分流失没有得到足够重视。直到19世纪50 ~ 70年代,由于肥料投入的增加造成了湖泊污染,养分流失问题才受到关注。近年来,坡耕地养分流失的研究主要集中于人工模拟降雨探讨不同土地利用方式下养分流失的机理,建立基于3S技术支撑的预测模型,通过农业利用方式的调整和工程及管理技术的改进,控制N、P养分流失[4-5]。本文主要针对坡耕地土壤N、P 流失的特征,主要影响因素的作用机制以及控制技术的研究进展进行系统阐述,为下一步深入研究提供技术思路。 1 坡面径流氮磷流失的形态与过程特征 坡面N、P流失是降雨和径流驱动下,坡面土壤侵蚀及土壤N、P随径流迁移的过程。深入揭示降雨产流、径流侵蚀和养分流失过程特征,剖析关键影响因素的作用机制,是探讨坡面N、P流失控制技术的理论基础。 坡耕地土壤养分流失通过两个途径:一是土壤养分溶解于坡耕地表面的径流,随着径流而损失;二是径流携带的泥沙本身含有或吸附的有机无机养分。通过前者损失的养分称为溶解态,后者为颗粒态。黄土高原与长江中上游紫色土坡耕地的试验表明,坡面径流养分流失以颗粒态为主[5-6]。从损失养分在不同粒径分布结构体来看,泥沙中<0.02 mm的微团聚体和<0.002 mm的黏粒是养分流失的主要载体[7]。而径流携带的泥沙对P有富集作用,且不同粒径团聚体对P的富集作用和富集系数也不同[4]。 径流产生不同阶段养分流失有规律性变化。在不同的产流阶段中,以初始阶段N、P流失严重,径流中养分输出浓度最高[8];并且土壤养分流失随时间的变化与泥沙流失的趋势一致,泥沙中速效养分的含量在降雨前期较高,而后逐渐减少,最后平稳。在年际变化中,以每年第一次产流浓度最大。 可见,人们已经认识到坡面径流养分流失的形态、载体分布与流失规律,但对于影响坡面径流养分流失过程的关键因素,尤其是可以人为调控影响要素的作用机理,缺乏深入的研究,不利于坡耕地农业面源污染的有效控制。 ①基金项目:国家自然科学基金项目(30870410)、中国科学院西部行动计划项目(KZCX2-XB2-07-02)和国家林业公益性行业科研专项(200804040)资助。 * 通讯作者 (lzxia@https://www.doczj.com/doc/ea2008571.html,) 作者简介:吴电明 (1985—) , 男, 山东菏泽人, 硕士研究生, 主要从事土壤与农业生态研究。Email: dmwu@https://www.doczj.com/doc/ea2008571.html,

稻田氮磷面源污染现状

稻田氮磷面源污染现状、损失途径研究进展 摘要稻田养分损失是农业生产领域的热点,其对控制面源污染和保护生态环境 有着十分重要的现实意义。本文主要通过对稻田氮磷面源污染现状、损失途径及其影响因子等方面的阐述,提出了减少稻田氮磷损失的对策,并对今后的研究进行了总结。 关键词稻田;氮磷素;损失 氮(N) 、磷(P)是重要的生命元素,生命支持系统不可替代的主成分,也是促进农业持续发展的根本要素。但是,氮磷肥料的投入,在我国局部地区使用过量[1]。据联合国世界粮农组织1995~1997年资料统计[2],中国是世界上最大的氮肥消费国,氮肥用量已占全球氮肥总量的36.9%,其中,占全国24%的氮肥用于水稻生产,目前稻田单季氮肥用量平均为180kg/hm2,比世界平均用量高出75%[3-4]左右。氮、磷肥施入土壤后,被作物吸收利用的分别占其施肥量的30-35%和15-25%[5],大部分氮、磷肥经各种途径损失到环境之中,导致土壤和地下水污染,河流和湖泊水质的富营养化,不仅破坏水生生物的正常生长条件,引起鱼类的死亡,同时也严重危害人类的健康[6]。我国水稻田面积占耕地面积的26.18%,而在南方占到70.19%[7]。在水稻生产中,氮肥的损失多达30-70%[8]。今后的30年,中国的人口还将继续增加,为了满足人口增长及生活水平的提高对农产品的需求,氮、磷肥的施用量还将进一步增加。因此,如何兼顾氮肥施用的农业效益和环境效益,减少稻田中氮、磷肥的损失,降低其对环境的影响是一项重要而紧迫的任务。本文基于水环境角度,对近20年来国内外有关农田氮、磷流失方面研究动向 作一概述,为今后的深入探讨提供借鉴。 1 稻田氮、磷损失的现状 水稻是我国南方的主要粮食作物之一,同时也是消耗氮索较多[9],流失氮索较多的作物。稻田排水中流失的氮磷在河湖汇集,严重污染附近水体,加重周边环境负荷。农田氮素的流失是目前日益严重的非点源污染的源泉之一,水体生态环境的恶化很大程度上归因于农业面源氮等营养型污染物[10-13]。在美国,对非点源污染状况进行了鉴别和测量,发现农业是一个主要的非点状污染源,农田径流是全国64%受到污染河流和57%受到污染湖泊的主要污染源[14-15]。另据调查,在我国以地下水为主要水源的北方地区,几乎所有城市的地下水中硝酸盐的检出水平均有明显的上升趋势[16]。含氮的污水灌溉,过量地施用化肥和不合理的施肥方法,加之不合理灌溉的耦合效应,都能使得农田氮素对地表水和地下水体造成氮

农田径流氮磷生态拦截沟渠构建技术规范db-2008

江苏省苏州质量技术监督局发布 2009-03-01实施 2009-03-01发布 农田径流氮磷生态拦截沟渠构建技术规范 DB3205/T 157-2008 DB3205 苏州市农业地方标准 B 05 前言 本标准在编写结构、内容和格式等方面均符合GB/T 1.1—2000《标准化工作导则第1部分:标准的结构和编写规则》和GB/T 1.2—2002《标准化工作导则第2部分:标准中规范性技术要素内容确定方法》。 本标准由苏州市农林局提出。 本标准起草单位:苏州市绿色食品行业协会、苏州市相城区虞河蔬菜产销合作社。 本标准主要起草人:秦伟、施赞红、吴钰明。

农田径流氮磷生态拦截沟渠构建技术规范 1 范围 本标准规定了农田径流氮磷生态拦截沟渠构建的术语和定义、总则、生态沟渠设计、生态沟渠构建、生态沟渠效果与检测及生态沟渠管理。 本标准适用于农田地表径流生态拦截沟渠的构建。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 50288-1999 灌溉与排水工程设计规范 SL 18-2004 渠道防渗工程技术规范 SL/T 246-1999 灌溉与排水工程技术管理规程 3 术语和定义 下列术语和定义适用于本规程。 3.1 生态拦截

采用生物技术、工程技术等措施对农田径流中的氮、磷等物质进行拦截、吸附、沉积、转化及吸收利用,从而对农田流失的养分进行有效拦截,达到控制养分流失,实现养分再利用,减少水体污染物质的目的。 3.2 生态沟渠 在农田系统中构建成一定的沟渠,在沟渠中配置多种植物,并在沟渠中设置透水坝、拦截坝等辅助性工程设施,对沟渠水体中氮、磷等物质进行拦截、吸附,从而净化水质。这样的沟渠称为生态沟渠。 4 总则 根据“兼顾农田排水和生态拦截功能,因地制宜,循环利用,生态降解”的原则,充分利用原有排水沟渠,对农田排水沟渠进行一定的工程改造,建成生态拦截型沟渠系统,使之在具有原有的排水功能基础上,增加对农田排水中所携带氮磷等养分的吸附、吸收和降解等生态功能。 5 生态沟渠设计 应符合GB 50288-1999和SL 18-2004要求。 5.1 密度、布局 生态沟渠建设密度应能满足农田排水要求和生态拦截需要,一般为每hm2农田100m生态沟渠。一般分布在农田四周与农田区外的河道之间。 5.2 生态沟渠组成 生态拦截型沟渠系统主要由工程部分和生物部分组成,工程部分主要包括渠体及生态拦截坝、节制闸等,生物部分主要包括渠底、渠两侧的植物。

人工湿地水生植物选择对氮磷去除效果的研究进展

人工湿地水生植物对污水中氮磷的去除效果的研究进展Studying progress on effects of Nitrogen and Phosphorus removal by Aquatic Plants in Constructed Wetland 摘要:与传统的二级活性污泥法处理工艺相比,人工湿地具有运行费用低,维护管理方便以及较强的氮磷处理能力等优点。又由于人工湿地中的水生植物对氮磷的处理效果显著,并且不同的水生植物对氮、磷的去除效果相异。因此,本文在综述人工湿地发展及应用现状的基础上,重点阐述了国内外学者对于水生植物筛选及组合在人工湿地中对氮磷的去除作用及效果的研究现状。最后提出了当前人工湿地水生植物研究的展望和提高人工湿地脱氮除磷能力的对策。 Abstract:Compared with the conventional activated sludge technology in secondary treatment ,there exists three advantages of constructed wetlands:low operating costs , easy maintenance and management,as well as the strong processing capacity of nitrogen and phosphorus. The removal rate of N and P by aquatic plants differ far from each other. This paper reviews the development and application status of CW and focuses on the current research situation of the role and effects of aquatic for nitrogen and phosphorus removal in wastewater treatment of constructed wetlands.Finally, the prospects and strategies to improve the NP removal capacity of wetland wetland aquatic plants are proposed. Key words:constructed wetland; aquatic plants ;wastewater treatment;studing progress. 1 介绍 1.1 人工湿地发展现状 自西德1974年首先建造人工湿地以来, 该污水处理工艺已在欧洲得到推广应用, 在美国和加拿大等国也得以迅速发展。我国在“七五期间”开始了人工湿地的研究,首例采用人工湿地处理污水的研究工作始于1988-1990年在北京昌平进行的处理量为 500t/d 生活污水和工业废水的表面流人工湿地。 它的原理是利用湿地中基质、水生植物和微生物之间的相互作用,通过一系列物理的、化学的以及生物的途径净化污水。应用人工湿地处理污水, 其投资和日常运行费用仅为常规二级污水处理场的1/10-1/2和1/5-1/3, 但其出水水质可达到或超过二级污水处理水平, 且适用面广, 除处理城镇生活污水外, 也能广泛应用于农业、畜牧业、食品、矿山等工农业废水的处理。 目前,人工湿地废水处理工艺主要有两种形式:

相关主题
文本预览
相关文档 最新文档