当前位置:文档之家› 复合材料的基本理论

复合材料的基本理论

ustbfhcl@https://www.doczj.com/doc/e21893091.html, 20132013

复合材料性能的来源

●发挥金属、陶瓷、高分子材料的优势;

●充分利用材料的形态;

●构成复合材料的原材料之间发生了协同效应。 包括:界面效应、尺寸效应、量子尺寸效应、乘积效应、系统效应、混杂效应、诱导效应等。

充分利用材料的形态

以废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的1/20-1/5 ,抗拉强度为2800MPa,比普通钢材高得多。而密度不到钢材的1/3。

性能高于构成复合材料的原材料

如何实现原材料之间的协同效用●选择合适的原材料;

●优化制备工艺;

●合理的微观组织结构;

●结合良好的界面。

选择合适的原材料——以纤维

的选择为例

①尽量使纤维在基体中均匀分散;

②弹性模量(刚度)要匹配;

③纤维与基体要有良好的化学相容性,无明显的化学反应或形成固溶体;

④纤维与基体热膨胀系数要匹配;

⑤适量的纤维体积分数;

⑥纤维直径必须在某个临界直径以下。

优化制备工艺——以金属基复

合材料为例

合理的微观组织结构

有机材料与无机材料的叠层

含80% SiC 纤维的Ti 合金

复合材料

结合良好的界面

2. 复合材料的基本理论

2. 复合材料的基本理论

力学性能的复合法则

?增强原理

?弥散增强

?颗粒增强

?长纤维增强

?短纤维增强

几种主要的力学模型

?层板模型

?切变延滞模型

?连续同轴柱体模型

?有限差分与有限元模型

物理性能的复合法则

?加和特性

?传递特性

复合材料的基本理论

材料的微观组织 形状、分散程度 体积分数

几何学特征

原材料的性能

力学性能

物理性能

界面的状态复合材料的

基本理论

复合材料的

整体性能

复合材料理论与组织、性能之间的关系

2.1 力学性能的复合法则

●第二相颗粒强化——弥散分布、成为阻碍位错运动的有效障碍,一种有效的强化方法之一。

●内氧化、粉末冶金

●常采用的弥散相——碳化物、氮化物、氧化物等。

●研究的热点氧化物弥散强化(ODS)合金。

主要机理是位错与第二相微粒

的作用

(1)位错切过强化机制

(a)有序强化----反相畴界

(b)界面强化----产生新界面

(c)共格应变强化----对位错产生“力” (d)层错强化----扩展位错宽度将变化

(e)弹性模量强化----位错应变能发生变化

(2)位错非切过强化机制

(a)低温、高外加应力的位错Orowan拱弯机制(b)高温、低外加应力的位错攀移机制

●①“局部攀移”模型

●②“整体攀移”模型

(3)其它强化机制

●(a) 安塞尔一勒尼尔机理

●(b) 颗粒钉扎晶界( Hall -Petch)机制●(c) 残余应力场强化

1) 弥散增强

?

主要由基体承担载荷?

弥散质点阻碍基体中的位错运动?阻碍能力越大,强化效果越好

条件:

质点是均匀分布的球形

d 为直径

V p 为体积分数

G m 为基体的切变模量

b 为柏氏矢量弥散质点的尺寸越小,体积分数越大,强化效果越好。

()

τy m p p G b d V V =?? ????-231212

颗粒增强

?颗粒的尺寸较大

?基体承担主要的载荷

?颗粒也承担载荷

?约束基体的变形

?G p为颗粒的切变模量

?C为常数

颗粒的尺寸越小,体积分数越大,强化效果越好。

(4)影响弥散强化的因素

(a)弥散相的性质----硬度、化学稳定性(b )弥散相与基体间的作用---不溶解,不反应, 界面能小

(c )基体的性质----

(d )弥散相的形态----弥散相的含量、粒度和粒子间距

(e )制备方法----①机械合金化法②共沉淀法③化学浸润法④溶胶﹣凝胶法⑤内氧化法

(a) 弥散相的性质

●弥散相粒子稳定、不长大。

●弥散相不同会有不同的强化效果。Ni-ThO2的强度很高;

O3就比ZrO2、SiO2好。

铜-Al

2

●一般认为氧化物作弥散相比碳化物、氮化物、硼化物、

硅化物较好;

●高的热力学和化学稳定性,高的熔点,弥散相的生成

自由能负值大,在基体中低的溶解度和低的扩散系数,与基体相近的热膨胀系数。

金属基复合材料综述

金属基复合材料综述 专业: 学号: 姓名: 时间:

金属基复合材料综述 摘要:新材料的研究、发展与应用一直是当代高新技术的重要内容之一。其中复合材料,特别是金属基复合材料在新材料技术领域中占有重要的地位。金属基复合材料对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用,因此倍受人们重视。本文概述了金属基复合材料的发展历史及研究现状,对金属基复合材料的分类、性能、应用、制备方法、等进行了综述,提出了金属基复合材料研究中存在的问题,探讨了金属基复合材料的发展趋势。 关键词:金属基复合材料;分类;性能;应用;制备;发展趋势 Abstract: The research development and application of new composites are one of the important matters in modern high science and technology. This paper summarizes the met al matrix composites and the development history of the present situation and the classific ation of the metal matrix composites, performance, application and preparation methods, w as reviewed, and put forward the metal matrix composites the problems existing in the res earch, discusses the metal matrix composites trend of development. Keywords: Metal matrix composites; Classification; Performance; Application; Preparation; Development trend. 1.引言 复合材料是继天然材料,加工材料和合成材料之后发展起来的新一代材料。按通常的说法,复合材料是指两种或两种以上不同性质的单一材料,通过不同的复合方法所得到的宏观多相材料。随着现代科学技术的迅猛发展,对材料性能的要求日益提高。常希望复合材料即具有良好的综合性能,又具有某些特殊性能。金属基复合材料是近年来迅速发展起来的高性能材料之一,对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用。相信随着科学技术的不断发展,新的制造方法的出现,高性能增强物价格的不断降低,金属基复合材料在各方面将有越来越广阔的应用前景。

树脂基复合材料复习要点

1.功能复合材料主要由功能体和基体组成,或由两种(或两种以上)的功能体组成。 2.材料在复合后所得的复合材料,依据其产生复合效应的特征,可分为线性效应和非线性效应。 3.燃烧过程,大致分为五个不同的阶段:(1)加热阶段;(2)降解阶段;(3)分解阶段;(4)点燃阶段;(5)燃烧阶段。 4.氧指数(OI)愈高,表示燃烧愈难。当OI<22时,为易燃性塑料;当OI在22—27之间时,为自熄性塑料;当OI > 27时,为难燃塑料 5.在美国UL-94防火标准中,塑料阻燃等级由HB,V-2,V-1向V-O逐级递增。 6.阻燃机理有多种:保护膜机理、不燃性气体机理、冷却机理、终止链锁反应机理、协同作用体系。 7.非金属材料的腐蚀类型按腐蚀机理分类①物理腐蚀②化学腐蚀③大气老化④环境应力开裂 8.为了弄清材料的腐蚀机理,进一步对其寿命进行预测,对其进行的实验以试验场所划分,可分为现场试验及实验里试验。 9.摩阻复合材料一般由增强体、摩擦功能调节体与基体等构成,各组分在摩擦材料中的作用是不同的。 10.列举三种常见的水溶性高分子聚合物:聚乙二醇、聚乙吡咯烷酮、聚乙烯。 11.防辐射服是利用服饰内金属纤维构成的环路产生感生电流,有感生电流产生反向电磁场进行屏蔽。 12.吸波材料之所以能够吸收进入材料内部的电磁波主要是由于电磁波在材料内部产生电损耗或磁损耗而使电磁波的电磁性能转化为其他形式的能量散失掉,从而达到减少反射的目的。 13.电损耗介质的吸波机理主要是松弛极化、磁性介质在交变磁场的作用下产生能量损耗的机制有:①磁滞损耗②涡流损耗③剩磁效应④磁共振。 14.密封材料的耐磨性通常以磨损率的倒数来表示。 15.影响玻璃钢透光率的主要因素:玻璃纤维和粘结剂的折射指数;玻璃纤维和粘结剂的光吸收系数;玻璃纤维的直径及其在玻璃钢中的体积含量。 16.阻尼特性可以通过对数衰减率δ与阻尼因子η两种方式来描述。 17.复合材料用于装甲防护主要有两种形式,即单纯的纤维织物和复合材料层合板。 18.防弹复合材料所用的纤维通常为玻璃纤维、尼龙纤维、芳纶和超高分子量聚乙烯纤维,最近开发出具有目前最高强度的聚苯并噁唑(PBO)纤维。 19.理想的树脂基体应具有耐高温、高韧性、高强度、低模量等性能,以及低成本。常用的树脂基体有:( )、( )、低密度聚乙烯、交联聚异戊二烯、聚丙烯等。 20.抗辐射聚合物基体一般在分子主链上具有多重环,如环氧树脂、聚酰亚胺树脂、聚醚砜、聚醚醚酮树脂等均具有良好的耐辐射性。 21.功能复合材料:除力以外而提供其它物理性能的复合材料即具有各种电学性能、磁学性能、光学性能、热学性能、声学性能以及摩擦、阻尼等性能。 22.高分子纳米复合材料:是由各种纳米单元和高分子复合而成的一种新型复合材料,其中纳米单元按化学成分分为金属陶瓷高分子和无机非金属。 23.燃烧氧指数:指试样像蜡烛状持续燃烧时,在氮-氧混合气流中所必须的最低氧含量。

高性能基体树脂 复合材料增韧新途径

高性能基体树脂和复合材料增韧新途径前言:材料复合化是新材料技术的重要发展趋势之一。所谓高性能复合材料,是指具有高比模量、高比强度、优异的耐高温性能及多功能的复合材料。高性能复合材料主要以高性能纤维为增强体的复合材料为主,基体树脂作为高性能复合材料的重要组成部分,其性能及成本对高性能复合材料的设计、制备、性能、加工具有重要意义。 目前通用的高性能树脂基体通常可以分为两大类:热塑性和热固性树脂。高性能热固性树脂是目前使用最广泛的先进复合材料基体,其复合材料具有优异的力学性能,可在恶劣的环境下长期使用。环氧树脂是聚合物基复合材料中应用最广泛的基体树脂之一。EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点。但环氧树脂固化后交联密度高,呈三维网状结构,存在内应力、质脆、耐疲劳性、耐热性、耐冲击性差等不足,以及剥离强度、开裂应变低和耐湿热性差等缺点,加之表面能高,在很大程度上限制了它在某些高技术领域的应用。因此,对环氧树脂的增韧研究一直是人们改性环氧树脂的重要研究课题之一。 一、高性能基体树脂及其复合 1. 高性能基体树脂 材料是先进科技发展的重要物质基础,以高科技含量的航空航天领域为例,新型航空、航天飞行器的诞生往往建立在先进新材料研制的基础上,航空、航天飞行器性能的突破很大程度上受到材料发展水平的制约[1]。高性能树脂基复合材料以其轻质、高比强、高比模、高耐温和极强的材料一性能可设计性而成为发展中的高技术材料之一,其在航空、航天工业中的应用也显示出了独特的优势和潜力,是航空、航天材料技术进步的重要标志。 目前通用的高性能树脂基体通常可以分为两大类:热塑性和热固性树脂。 典型的高性能热塑性树脂包括热塑性聚酰亚胺、聚酰胺、聚醚砜、液晶聚酯、聚醚醚酮等。由于高性能热塑性树脂一般具有高的熔点和熔体黏度,作为复合材料基体使用时成型工艺性差,高温使用时易发生蠕变,极大地限制了其作为复合材料基体树脂的使用[2]。

金属基复合材料的制备方法

金属基复合材料的制备方 法 Newly compiled on November 23, 2020

金属基复合材料的制备技术 摘要:现代科学技术的发展和工业生产对材料的要求日益提高,使普通的单一材料越来越难以满足实际需要。复合材料是多种材料的统计优化,集优点于一身,具有高强度、高模量和轻比重等一系列特点。尤其是金属基复合材料(MMCs)具有较高工作温度和层间剪切强度,且有导电、导热、耐磨损、不吸湿、不放气、尺寸稳定、不老化等一系列的金属特性,是一种优良的结构材料。 Abstract: The development of modern science and technology and industrial production of materials requirements increasing, the ordinary single material is more and more difficult to meet the actual needs. Composite material is a variety of statistical optimization, set merit in a body, has the advantages of high strength, high modulus and light specific gravity and a series of characteristics. Especially the metal matrix composite ( MMCs ) has the high working temperature and interlaminar shear strength, and a conductive, thermal conductivity, wear resistance, moisture, do not bleed, dimensional stability, aging and a series of metal properties, is a kind of structural material. 关键词:复合材料(Composite material)、发展概况(Development situation)、金属基复合材料(Metal base composite materia l)、发展前景(Development prospect) 正文: 一:复合材料简介 复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观的形式复合而成的多相材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。②夹层复合材料。③细粒复合材料。④混杂复合材料。[1] 二:金属基复合材料简介

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

环氧树脂复合材料

环氧树脂复合材料 复合材料是由基体材料和增强材料复合而成的多相体系固体材料。它充分发挥了各组分材料的特点和潜在能力,通过各组分的合理匹配和协同作用,呈现出原来单一材料(均质材料、单相材料)所不具有的优异的新性能,从而达到对材料某些性能的综合要求。复合材料的出现在材料发展史上具有划时代的意义。受到国内外的极大重视。其发展之迅猛在历史上是空前的。已在工业、农业、交通、军事、科学技术和人民生活等各个领域广为应用。尤其是在航空、航天等尖端技领域中已成为不可缺少的重要的结构材料。无怪乎有人认为21世纪将进入“复合材料时代”。 热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及环氧层压塑料;低压成型材料(成型压力<2.5MPa),如环氧玻璃钢和高性能环氧复合材料。玻璃钢和高性能复合材料由于制件尺寸较大(可达几个㎡)、型面通常不是平面,所以不宜用高压成型。否则模具造价太高,压机吨位太大,因而成本太贵。

树脂基复合材料低成本技术

树脂基复合材料低成本技术 摘要:树脂基复合材料因其比强度高、比模量大而广泛的应用于航空航天等领域。然而其高昂的价格仍然是限制树脂基复合材料广泛应用的一大障碍。目前,已经有多国学者针对树脂基复合材料低成本化进行了研究,并取得了部分积极成果。本文主要介绍了几种低成本制造技术,如自动铺放技术、低温成型预浸料技术、电子束固化技术、液体成型技术以及树脂模渗透成型(RFI)技术。 关键词:树脂基复合材料低成本技术 前言 与传统金属材料相比,复合材料具有密度低、比强度和比模量高、可设计性强、抗疲劳性能好、耐腐蚀性能好和结构尺寸稳定性好等优点,在航空航天领域获得了广泛的应用。从20世纪70 年代开始,复合材料就首先在军用飞机上少量使用,到了80 年代已在民用飞机上进行了试用。应用基本是从非承力结构到次承力结构最后到主承力结构,从部位来说是从尾翼到机翼最后到机身。随着技术的不断成熟,复合材料在飞机上的用量越来越多,减重效果也越来越明显[1]。 长期以来,限制复合材料在飞机上扩大应用的原因主要有2个:一是技术成熟度没有金属高;二是复合材料成本太高,复合材料构件的成本远远高于铝合金构件。要想扩大复合材料在航空上的应用,就必须降低复合材料的成本。本文旨在介绍几种复合材料低成本制造技术的发展现状,如自动铺放技术、低温成型预浸料技术、电子束固化技术、液体成型技术以及树脂模渗透成型(RFI)技术。 一、自动铺放技术 用于航空航天器的先进复合材料构件主要采用热压罐成型技术制造。自动铺放是替代预浸料人工铺叠,提高质量和生产效率的重要手段。根据预浸料形态,自动铺放可分为自动铺带[2-3]与自动铺丝[4-5]两类:自动铺带(Tape laying)采用有隔离衬纸单向预浸带(25-300 mm),多轴机械臂(龙门或卧式)完成铺放位置定位,铺带头自动完成预浸带输送剪裁、加热铺叠与辊压,整个过程采用数控技术自动完成(图1a所示);自动铺丝(Fiber placement)采用多束(最多可达32根)预浸纱/分切的预浸窄带(3-25 mm),分别独立输送、切断,由铺丝头将数根预浸纱在压辊下集束成为一条宽度可变的预浸带(宽度通过控制预浸纱根数调整)后铺放

复合材料技术

航空预浸料- 热压罐工艺复合材料技术应用概况 发布时间:2011-11-23 15:34:27 先进复合材料自问世以来,由于其轻质、高强、耐疲劳、耐腐蚀等诸多优势,一直在航空材料领域得到重视。随着近几十年来的发展,尤其是最近10年在大型飞机上井喷式的应用,先进复材料已经证明了其在未来航空领域的重要地位,它在飞机上的用量和应用部位也已经成为衡量飞结构先进性的重要标志之一[1] 如目前代表世界最先进战机的美国F-22 和F-35,其复合材料占机结构重量达到了26%(F-22 机身、机翼、襟翼、垂尾、副翼、口盖、起落架舱门;F-35 机身翼进气道、操纵面、副翼、垂尾),欧洲EF-2000 战机更是达到了35%~40%(机翼、垂尾、方向舵[2] ;民机领域的两大巨头波音和空客,在其最新型的大型客机波音787、A350XWB 机型中,大幅使用复合材料,分别达到50% 和52%[3],在机身主承力结构中,除一些特殊需要外,基本上实现了全复合材料化。 从当前的复合材料应用来看,航空复合材料具备以下几个方面的特点:在材料方面,飞主承力结构应用高韧性复合材料;在工艺方面,呈现出以预浸料- 热压罐工艺为主,积极开发液体成型工艺及其他低成本成型工艺的态势,对复合材料构件的制造综合考虑性能/ 成本因机[4]设计理念的广泛认知,复合材料已逐渐在主承力结构上站稳了脚跟,而且,为了进一步将复合材料的优点充分发挥,飞机结构设计越来越趋向于整体化和大型化。复合材料在主承力结构上的应用技术是体现航空复合材料水平及应用程度的重要标志。目前复合材料主承力构件仍是以预浸料- 热压罐工艺为主。基于此,本文旨在介绍目前与航空预浸料- 热压罐工艺相关的复合材料技术。 主承力结构用预浸料 1 高性能复合材料体系 “计是主导,材料是基础,工艺是关键”[5]复合材料的制造技术与材料的发展息息相关。航空预浸料-热压罐工艺高性能复合材料到目前已经历了3个阶段。 第一阶段的复合材料采用通用T300 级碳纤维和未增韧热固性树脂,具有明显的脆性材料特征,主要用于飞机承力较小的结构件。第二善,应用范围扩大到垂尾、方向舵和平尾等部件。第三阶段的复合材料为高韧性复合材料,其应用扩大到机材料应用于飞机主承力结构,波音公司首先提出了高韧性复合材料预浸料标准BMS8-276,概述了主承力结构复合材料性能目标,并提出采用冲击后压缩强度

金属基复合材料的种类与性能

金属基复合材料的种类与性能 摘要:金属基复合材料科学是一门相对较新的材料科学,仅有40余年的发展历史。金属基复合材料的发展与现代科学技术和高技术产业的发展密切相关,特备是航天、航空、电子、汽车以及先进武器系统的迅速发展对材料提出了日益增高的性能要求,除了要求材料具有一些特殊的性能外,还要具有优良的综合性能,有力地促进了先进复合材料的迅速发展。单一的金属、陶瓷、高分子等工程材料均难以满足这些迅速增长的性能要求。金属基复合材料正是为了满足上述要求而诞生的。 关键词:金属;金属基复合材料;种类;性能特征;用途 1. 金属基复合材料的分类 按增强体类型分 1.1.1颗粒增强复合材料 颗粒增强复合材料是指弥散的增强相以颗粒的形式存在,其颗粒直径和颗粒间距较大,一般大于1μm。 1.1.2层状复合材料 这种复合材料是指在韧性和成型性较好的金属基材料中含有重复排列的高强度、高模量片层状增强物的复合材料。片曾的间距是微观的,所以在正常比例下,材料按其结构组元看,可以认为是各向异性的和均匀的。 层状复合材料的强度和大尺寸增强物的性能比较接近,而与晶须或纤维类小尺寸增强物的性能差别较大。因为增强物薄片在二维方向上的尺寸相当于结构件的大小,因此增强物中的缺陷可以成为长度和构件相同的裂纹的核心。 由于薄片增强的强度不如纤维增强相高,因此层状结构复合材料的强度受到了限制。然而,在增强平面的各个方向上,薄片增强物对强度和模量都有增强,这与纤维单向增强的复合材料相比具有明显的优越性。 1.1.3纤维增强复合材料 金属基复合材料中的一维增强体根据其长度的不同可分为长纤维、短纤维和晶须。长纤维又叫连续纤维,它对金属基体的增强方式可以以单项纤维、二维织物和三维织物存在,前者增强的复合材料表现出明显的各向异性特征,第二种材料在织物平面方向的力学性能与垂直该平面的方向不同,而后者的性能基本是个向同性的。连续纤维增强金属基复合材料是指以高性能的纤维为增强体,金属或他们的合金为基体制成的复合材料。纤维是承受载荷的,纤维的加入不但大大改变了材料的力学性能,而且也提高了耐温性能。 短纤维和晶须是比较随机均匀地分散在金属基体中,因而其性能在宏观上是各向同性的;在特殊条件下,短纤维也可以定向排列,如对材料进行二次加工(挤压)就可达到。 当韧性金属基体用高强度脆性纤维增强时,基体的屈服和塑性流动是复合材料性能的主要特征,但纤维对复合材料弹性模量的增强具有相当大的作用。 按基体类型分 主要有铝基、镁基、锌基、铜基、钛基、镍基、耐热金属基、金属间化合物基等复合材料。目前以铝基、镁基、钛基、镍基复合材料发展较为成熟,已在航天、航空、电子、汽车等工业中应用。在这里主要介绍这几种材料 1.2.1铝基复合材料 这是在金属基复合材料中应用最广的一种。由于铝合金基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利条件。再制造铝基复合材料时通常并不是使用纯铝而是铝合金。这主要是由于铝合金具有更好的综合性能。

陶瓷基复合材料增韧机制的研究现状及展望

陶瓷基复合材料增韧机制的研究现状及展望 现代陶瓷材料具有耐高温、硬度高、耐磨损、耐腐蚀及相对密度轻等许多优良的性能。但它同时也具有致命的弱点,即脆性,这一弱点正是目前陶瓷材料的使用受到很大限制的主要原因。因此,陶瓷材料的强韧化问题便成了研究的一个重点问题。陶瓷不具备像金属那样的塑性变形能力,在断裂过程中除了产生新的断裂表面需要吸收表面能以外,几乎没有其他吸收能量的机制,这就是陶瓷脆性的本质原因。人们经过多年努力,已探索出若干韧化陶瓷的途径包括纤维增韧、晶须增韧、相变增韧、颗粒增韧、纳米复合陶瓷增韧、自增韧陶瓷等。这些增韧方法的实施,使陶瓷材料的韧性得到了较大的提高,使陶瓷材料在高温结构材料领域显示出较强劲的竞争潜力。 一陶瓷基复合材料增韧技术 1、纤维增韧 为了提高复合材料的韧性,必须尽可能提高材料断裂时消耗的能量。任何固体材料在载荷作用下(静态或冲击),吸收能量的方式无非是两种:材料变形和形成新的表面。对于脆性集体和纤维来说,允许变形吸收的断裂能也很少。为了提高这类材料的吸能,只能增加断裂表面,即增加裂纹的扩展路径。 纤维的引入不仅提高了陶瓷材料的韧性,更重要的是使陶瓷材料断裂行为发生了根本性变化,由原来的脆性断裂变成了非脆性断裂。纤维增强陶瓷基复合材料的增韧剂之包括基体预压缩应力、裂纹扩展受阻、纤维拔出、纤维桥联、裂纹偏转、相变增韧等。 能用于增强陶瓷基复合材料的纤维种类较多,包括氧化铝系列(包括莫来石)、碳化硅系列、氮化硅系列、碳纤维等,除了上述系列纤维外,目前正在开发的还有BN、TiC、B 4 C等复相纤维。韩桂芳等用浆疗法结合真空浸渗工艺。制备了二维石英纤 维增强多孔Si 3N 4 ·2SiO 2 基复合材料,增加浸渗次数虽不能有效提高复合材料强度, 但却使裂纹偏转因子变小,断裂模式由韧性断裂向脆性断裂转变,断口形貌由纤维成束拔出变成多级拔出。尹洪峰等利用LPCVI技术制备了三维连续纤维增韧碳化硅基复合材料,实验表明复合材料界面相厚度为119mm时,体积密度为2101~2105g/cm3时,用碳纤维T300增韧后的复合材料的弯曲强度为459MPa,断裂韧性为2010MPa/m1/2,断裂功为25170J/m2.国外学者也研究了纤维增强陶瓷材料,并显著的提高了其断裂韧性。 纤维拔出是纤维复合材料的主要增韧机制,通过纤维拔出过程的摩擦耗能,使复合材料的断裂功增大,纤维拔出过程的耗能取决于纤维拔出长度和脱粘面的滑移阻力,滑移阻力过大,纤维拔出长度较短,增韧效果不好,如果滑移阻力过小,尽管纤维拔出长度较长,但摩擦做功较小,增韧效果也不好,反而强度较低。因此,在构组纤维增韧陶瓷基复合材料时,应该考虑:纤维的强度和模量高于基体,同时要求纤维强度具有一定的Weibull分布;纤维与基体之间具有良好的化学相容性和物理性能匹配;界面结合强度适中,既能保证载荷传递,又能在裂纹扩展中适当解离,又能有较长的纤维拔出,达到理想的增韧效果。 2、晶须增韧 陶瓷晶须是具有一定长径比且缺陷很少的陶瓷小单晶,因而具有很高的强度,是一种非常理想的陶瓷基复合材料的增韧增强体。陶瓷晶须目前常用的有SiC晶须, Si 3N 4 晶须和Al 2 O 3 晶须。基体常用的有ZrO 2 ,Si 3 N 4 ,SiO 2 ,Al 2 O 3 和莫来石等。黄政人等采 用30﹪(体积分数)SiC晶须增强莫来石,在SPS烧结条件下材料强度比热压高10﹪

金属基复合材料

1、复合材料的定义和分类是什么? 定义:是由两种或多种不同类型、不同性质、不同相材料,运用适当的方法,将其组合成具有整体结构、性能优异的一类新型材料体系。 分类:按用途可分为:功能复合材料和结构复合材料。结构复合材料占了绝大多数。 按基体材料类型分类可分为:聚合物基复合材料、金属基复合材料、无机非金属基复合材料(包括陶瓷基复合材料、水泥基复合材料、玻璃基复合材料) 按增强材料形态可分为:纤维增强复合材料(包括连续纤维和不连续纤维)、颗粒增强复合材料、片材增强复合材料、层叠式复合材料。 3、金属基复合材料增强体的特性及分类有哪些? 增强物是金属基复合材料的重要组成部分,具有以下特性:1)能明显提高金属基体某种所需特性:高的比强度、比模量、高导热性、耐热性、耐磨性、低热膨胀性等,以便赋予金属基体某种所需的特性和综合性能;2)具有良好的化学稳定性:在金属基复合材料制备和使用过程中其组织结构和性能不发生明显的变化和退化;3)有良好的浸润性:与金属有良好的浸润性,或通过表面处理能与金属良好浸润,基体良好复合和分布均匀。此外,增强物的成本也是应考虑的一个重要因素。分类:纤维类增强体(如:连续长纤维、短纤维)、颗粒类增强体、晶须类增强体、其它增强体(如:金属丝)。 4、金属基复合材料基体的选择原则有哪些? 1)、金属基复合材料的使用要求;2)、金属基复合材料组成的特点;3)、基体金属与增强物的相容性。 5、金属基复合材料如何设计? 复合材料设计问题要求确定增强体的几何特征(连续纤维、颗粒等)、基体材料、增强材料和增强体的微观结构以及增强体的体积分数。一般来说,复合材料及结构设计大体上可分为如下步骤:1)对环境与负载的要求:机械负载、热应力、潮湿环境 2)选择材料:基体材料、增强材料、几何形状 3)成型方法、工艺、过程优化设计 4)复合材料响应:应力场、温度场等、设计变量优化 5)损伤及破坏分析:强度准则、损伤机理、破坏过程 6、金属基复合材料制造中的关键技术问题有哪些? 1)加工温度高,在高温下易发生不利的化学反应。在加工过程中,为了确保基体的浸润性和流动性,需要采用很高的加工温度(往往接近或高于基体的熔点)。在高温下,基体与增强材料易发生界面反应,有时会发生氧化生成有害的反应产物。这些反应往往会对增强材料造成损害,形成过强结合界面。过强结合界面会使材料产生早期低应力破坏。高温下反应产物通常呈脆性,会成为复合材料整体破坏的裂纹源。因此控制复合材料的加工温度是一项关键技术。 2)增强材料与基体浸润性差是金属基复合材料制造的又一关键技术,绝大多数的金属基复合材料如:碳/铝、碳/镁、碳化硅/铝、氧化铝/铜等,基体对增强材料浸润性差,有时根本不发生润湿现象。 3)按结构设计需求,使增强材料按所需方向均匀地分布于基体中也是金属基复合材料制造中的关键技术之一。增强材料的种类较多,如短纤维、晶须、颗粒等,也有直径较粗的单丝,直径较细的纤维束等。在尺寸形态、理化性能上也有很大差异,使其均匀地、或按设计强度的需要分布比较困难。 7、金属基复合材料的成形加工技术有哪些? 1)铸造成型,按增强材料和金属液体的混合方式不同可分为搅拌铸造成型、正压铸造成型、铸造成型。2)塑性成形,包括铝基复合材料的拉伸塑性、金属基复合材料的高温压缩变形、铝基复合材料的轧制塑性、铝基复合材料的挤压塑性、金属基复合材料的蠕变性能、非连续增强金属基复合材料的超塑性(包括组织超塑性、相变超塑性、其他超塑性)。3)连接,具体又可分为:应用于MMCs 的常规连接技术(包括熔融焊接、固相连接、钎焊、胶粘),新型MMCs 连接技术(包括等离子喷涂法、快速红外连接法(RIJ )),机械切削加工(包括5.4.1 SiCw/Al复合材料的切削加工、(Al3Zr+Al2O3)P/ZL101A原位复合材料的切削加工)。

复合材料学复习

1.复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种 多相固体材料 2.(1)按基体材料的类型分:金属基复合材料,聚合物基复合材料,无机非金 属基复合材料 (2)按增强材料的种类分:玻璃纤维复合材料,碳纤维复合材料,有机纤维复合材料,金属纤维复合材料,陶瓷纤维复合材料 (3)按用途分:结构复合材料,功能复合材料 3.结构复合材料是由基体、增强体和两者之间的界面组成,复合材料的性能则 取决于增强体与基体的比例以及三个组成部分的性能 4. 5.RMC中聚合物基体的主要作用是: a.把纤维粘接在一起; 》 b.分配纤维间的荷载; c.保护纤维不受环境影响。 6.无机凝胶材料主要包括水泥、石膏、菱苦土和水玻璃等 7.复合材料的增强体作用:增加强度、改善性能 8.界面是复合材料的特征 9.复合材料的增强体按其几何形状和尺寸主要有三种形式:颗粒、纤维和晶须。 与之对应的增强机理可分颗粒增强原理、纤维增强原理、短纤维增强原理和颗粒与纤维混杂增强原理。 10.颗粒增强原理分为: (1)弥散增强原理: ) 承力:基体弥散颗粒:阻碍位错 颗粒尺寸越小,体积分数越高,强化效果越好 (2)颗粒增强原理: 承力:基体(主),颗粒(次)大颗粒:阻碍位错;承受载荷

颗粒尺寸越小,体积分数越高,颗粒对复合材的增强效果越好。 11.混合法则:纤维、基体对复合材料平均性能的贡献正比于它们各自的体 积分数 % 对于单向连续纤维增强复合材料弹性模量、抗张强度、泊松比、剪切强度等性能均符合混合法则。 12.平行于纤维方向称为“纵向”,垂直于纤维方向为“横向” 12.复合材料初始变形后的行为: 四个阶段:1)纤维与基体均为线弹性变形;2)纤维继续线弹性变形,基体为非线性变形;3)纤维与基体都是非线性变形;4)随着纤维断裂,复合材料断裂 金属基复合材料的第二阶段占比较大的比例,而脆性纤维复合材料未观察到第三阶段。 13.短纤维一般指长径比小于100的各种增强纤维。 14.复合材料的界面是指一层具有一定厚度(纳米以上)、结构随基体和增强体而异的、与基体有明显差别的新相 复合材料的界面虽然很小,但它是有尺寸的,约几个纳米到几个微米,是一个区域,或一个带、一层,它的厚度呈不均匀分布状态 ; 15. 聚合物基复合材料界面及改性方法: 在聚合物基复合材料的设计中: (1)首先应考虑如何改善增强材料与基体间的浸润性; (2)还要保证有适度的界面结合强度; (3)同时还要减少复合材料成型中形成的残余应力; (4)调节界面内应力和减缓应力集中 浸润不良将会在界面产生空隙,易产生应力集中而使复合材料发生开裂。 在复合材料成型过程中形成的界面残余应力,会使界面传递应力的能力下降,最终导致复合材料的力学性能降低。 — 在增强纤维与基体之间引入一层可产生变形的界面层,在应力作用下吸收导致

陶瓷基复合材料增韧技术的研究进展_何柏林

第19卷第4期2009年8月 粉末冶金工业 POWDER MET ALLURGY INDUST RY Vo l .19No .4A ug .2009 收稿日期:2009-03-23 基金项目:江西省教育厅科研基金项目(编号:赣教技字[2007]426号) 作者简介:何柏林(1962-),男(汉),河南安阳人,教授,硕士生导师,主要从事复合材料表面强化研究。 陶瓷基复合材料增韧技术的研究进展 何柏林,孙 佳 (华东交通大学载运工具与装备省部共建教育部重点实验室,江西南昌 330013) 摘 要:本文综述了陶瓷基复合材料的纤维增韧、晶须增韧、相变增韧、颗粒增韧、纳米复合陶瓷增韧、自增韧陶瓷增韧补强的方法、增韧效果及相关的增韧机理。最后,指出了陶瓷基复合材料增韧技术的研究现状和今后的发展方向。 关键词:陶瓷基复合材料;增韧机理;研究进展中图分类号:TQ174.1 文献标识码:A 文章编号:1006-6543(2009)04-0048-06 PROGRESS IN CERAM IC M AT RIX COM POSITE TOUGH ENING TECH NOLOGY HE Bo -lin ,SUN Jia (K ey L abo ra to ry of Convey ance and Equipment ,M inistry o f Education ,East China Jiaotong U niver sity ,Nanchang ,Jiang xi 330013,China ) Abstract :Several methods of toughening ce ramic co mposite such as fibe r to ug hening ,w hisker toughening ,phase transform ation to ug hening ,pa rticle toughening ,ceramic nano -composites toughening and self -toughening are review ed .The related toughening effects and mechanisms are also discussed .Finally ,the research status and direction are pointed out .Key words :ceramic m atrix composite ;toughening m echanism ;research status 现代陶瓷材料具有耐高温、硬度高、耐磨损、而腐蚀及相对密度轻等许多优良的性能。但它同时也具有致命的弱点,即脆性,这一弱点正是目前陶瓷材料的使用受到很大限制的主要原因。因此,陶瓷材料的强韧化问题便成了研究的一个重点问题。陶瓷不具备像金属那样的塑性变形能力,在断裂过程中除了产生新的断裂表面需要吸收表面能以外,几乎没有其它吸收能量的机制,这就是陶瓷脆性的本质原因。人们经过多年努力,已探索出若干韧化陶瓷的途径,包括纤维增韧、晶须增韧、相变增韧、颗粒增韧、纳米复合陶瓷增韧、自增韧陶瓷等。这些增韧方法的实施,使陶瓷材料的韧性得到了较大的提高,使陶瓷材料在高温结构材料领域显示出强劲的竞争潜力。 1 陶瓷基复合材料增韧技术 1.1 纤维增韧 为了提高复合材料的韧性,必须尽可能提高材料断裂时消耗的能量。任何固体材料在载荷作用下(静态或冲击),吸收能量的方式无非是两种:材料变形和形成新的表面。对于脆性基体和纤维来说,允许的变形很小,因此变形吸收的断裂能也很少。为了提高这类材料的吸能,只能是增加断裂表面,即增加裂纹的扩展路径。 纤维的引入不仅提高了陶瓷材料的韧性,更重要的是使陶瓷材料的断裂行为发生了根本性变化,由原来的脆性断裂变成了非脆性断裂。纤维增强陶

项目名称高分子复合材料增强增韧机理及表征完成单位

项目名称:高分子复合材料增强增韧机理及表征 完成单位:华南理工大学 推荐单位:华南理工大学 项目简介: 增强增韧是当今材料科学研究的热点和重点之一。无机粒子填充是常用的聚合物改性方法。以往有关高分子复合材料增强增韧机理的研究尚不深入,一些关键性的进展未见诸报道,如界面粘合状态与拉伸强度的关系(尤其是非球形无机粒子填充高分子复合体系)、断口形貌与冲击韧性的关系、冲击韧性与界面形态的相关性、以及脆-韧转变的定量描述等。项目完成人就此展开历时10多年的系统研究,取得如下创新性成果。 揭示高分子复合材料增强机理。引入界面粘合状态参数,建立预测球形和非球形无机粒子填充高分子复合材料拉伸模量数学模型。创造性地提出界面粘合角的概念,建立描述拉伸过程中界面脱粘的物理模型,进而导出球形和非球形无机粒子填充高分子复合材料拉伸强度公式。 揭示高分子复合材料增韧机理。考虑无机粒子在树脂基体中存在的积聚现象,构建描述复合材料脆-韧转变的物理模型,进而建立新的临界应力球体积分数的数学模型,可较好地描述复合体系发生脆-韧转变时的逾渗现象。 揭示试样断口形貌与材料冲击韧性之间的相关性。应用分形理论,构建了复合材料断口形貌与冲击韧性的定量关系。填料与基体之间界面层厚度与复合体系的力学性能密切相关。推导出估算无机粒子与树脂基体之间界面层厚度公式。提出了复合材料冲击韧性与其结晶特性相关性的新见解。 阐明无机粒子在树脂基体中分散状态与复合材料增强增韧效果及其他性能之间的相关性。基于热分析原理和分形理论,分别建立了描述无机粒子在树脂基体中分散的物理模型,进而提出评估无机粒子在树脂基体中宏观分散的简便方法。

上述数学模型中所含的参数易于确定,便于高分子复合材料的实验研究及其研发中应用。应用实验测量数据对相关数学模型进行了验证。结果表明,理论计算值与实测值有良好的一致性。 研究成果含130篇学术论文及2部学术专著,其中论文被SCI收录79篇,EI收录11篇。论著受到国内外同行广泛关注,获引用或正面评价1798次。其中,SCI他引1043次,单篇论文最高SCI他引为203次。8篇代表作他引145次,SCI他引114次。成果丰富和发展了高分子基复合材料科学理论,对促进材料加工学科的发展具有积极的意义。成果可用于指导聚合物/无机粒子复合材料设计与制备,以及材料性能及形态的表征。 完成人情况 梁基照,教授,博士生导师。工作单位和完成单位均为华南理工大学。项目完成人。全面深入地考察了聚合物复合材料增强增韧机理及其主要影响因素,并应用扫描电镜观察试样断面形貌以及填料与基体之间的界面形态,提出新见解和定量表征。8篇代表作和2部学术专著均为单独作者,其余论文的单独作者、第一作者或通讯作者。 8篇代表作 1Liang J.Z.Reinforcement and quantitative description of inorganic particulate-filled polymer https://www.doczj.com/doc/e21893091.html,posites Part B.2013,51:224-232. 2Liang J.Z.Predictions of tensile strength of short inorganic fibre reinforced polymer composites.Polymer Testing,2011,30(7):749–752. 3Liang J.Z.Estimation of tensile strength of inorganic plate-like particulate reinforced polymer composites.Polym.Eng.Sci.,2013,53(9):1823-1827. 4Liang J.Z.Predictions of Young's modulus of short inorganic fiber reinforced polymer https://www.doczj.com/doc/e21893091.html,posites Part B.,2012,43:1763-1766. 5Liang J.Z.Quantitative description of interfacial strength in polypropylene/inorganic particle composites.Polymer Composites,2011, 32(5):821-828.. 6Liang JZ.Mechanical properties of PPS/PC/GF/Nano-CaCO3hybrid composites. Polym.Plast.Technol.Eng.2009,48(3):292-296.. 7Liang J.Z.Impact fracture toughness of hollow glass bead-filled polypropylene composites.J.Mater.Sci.,2007,42(3):841-846. 8Liang JZ.Evaluation of dispersion of nano-CaCO3particles in polypropylene matrix based on fractal method,Composites A,2007,38:1502-1506.

树脂的力学性能

力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。

2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表明,横向压缩强度是横向拉伸强度的4~7倍。横向拉伸的破坏模式是基体和界面破坏,也可能伴随有纤维横向拉裂;横向压缩的破坏是因基体破坏所致,大体沿45°斜面剪坏,有时伴随界面破坏和纤维压碎。单向树脂基复合材料的面内剪切破坏是由基体和界面剪切所致,这些强度数值的估算都需依靠实验。 杂乱短纤维增强树脂基复合材料尽管不具备单向树脂基复合材料轴向上的高强度,但在横向拉、压性能方面要比单向树脂基复合材

相关主题
文本预览
相关文档 最新文档