当前位置:文档之家› 11微生物的分类及其分类方法

11微生物的分类及其分类方法

第三章微生物的分类及其分类方法

本章的核心内容是微生物的分类单元、微生物的命名法则;目前国内外最权威的原核微生物分类系统;用于分离菌株分类鉴定的方法和技术;微生物菌种的保藏。

微生物的分类单元有界、门、纲、目、科、属、种;微生物的命名依林奈氏双名法法则进行;《伯杰氏细菌学鉴定手册》,《伯杰氏系统细菌学手册》是当今进行细菌鉴定的最权威的手册;微生物分离菌株的分类鉴定有经典分类鉴定法、数值分类鉴定法、化学分类鉴定法、遗传学分类鉴定法, DNA中GC mol%分析、DNA-DNA杂交、DNA-rRNA杂交、16Sr RNA(16S rDNA)寡核苷酸的序列分析,微生物系统发育地位分析等不同层次的技术方法。微生物菌种的保藏对于研究和发酵生产都具有不可忽视的意义。保藏方法可依不同条件选择不同方法。

第一节微生物的分类单元和命名

分类是人类认识微生物,进而利用和改造微生物的一种手段,微生物工作者只有在掌握了分类学知识的基础上,才能对纷繁的微生物类群有一清晰的轮廊,了解其亲缘关系与演化关系,为人类开发利用微生物资源提供依据。

微生物分类学 (microbial taxonomy) 是一门按微生物的亲缘关系把它们安排成条理清楚的各种分类单元或分类群 (taxon) 的科学,它的具体任务有三,即分类(classification) 、命名 (nomenclature) 和鉴定 (identification) 。分类指的是根据相似性或亲缘关系,将一个有机体放在一个单元中。命名是按照国际命名法规给有机体一个科学名称。鉴定则是确定一个新的分离物是否归属于已经命名的分类单元的过程。因此,概括来说,微生物分类学是对各个微生物进行鉴定,按分类学准则排列成分类系统,并对已确定的分类单元进行科学命名的科学。

一、微生物的分类单元

微生物的主要分类单位,依次为界 (kingdom) 、门( phylum 或 division )、纲(class) 、目 (order) 、科 (fami1y) 、属 (genus) 、种 (species) 。其中种是最基本的分类单位。具有完全或极多相同特点的有机体构成同种。性质相似、相互有关的各种组成属。相近似的届合并为科。近似的科合并为目。近似的目归纳为纲。综合各纲成为门。由此构成一个完整的分类系统。以下以柠檬浮霉状菌为例加以说明。

11微生物的分类及其分类方法

另外,每个分类单位都有亚级,即在两个主要分类单位之间,可添加“亚门”、“亚纲”、“亚目、”“亚科”等次要分类单位。在种以下还可以分为亚种、变种、型、菌株等。

属是科与种之间的分类单元,通常包含具有某些共同特征和关系密切的种。 Goodfellow 和 O'Donnell(1993) 提出 DNA 的 G+C mol% 差异≤ 10 % ~12 %及 16S rDNA 的序列同源性≥ 95 %的种可归为同一属。

种 (species) 关于微生物“种”的概念,各个分类学家的看法不一,例如伯杰氏(Bergey) 给种的定义是:“凡是与典型培养菌密切相同的其他培养菌统一起来,区分成为细菌的一个种。”因此,它是以某个“标准菌株”为代表的十分类似的菌株的总体。种是以群体形式存在的。种有着不同的定义,在微生物学中较常见有生物学种( biological species ,BS ),进化种 (evolutionary species , ES) 和系统发育种( phylogenetic species ,PS )等不同的物种概念。

1986 年斯坦尔 (Stanier) 给种下了定义:“一个种是由一群具有高度表型相似性的个体组成,并与其他具有相似特征的类群存在明显的差异。”但这个定义仍无量化标准。 1987 年,国际细菌分类委员会颁布, DNA 同源性≥ 70 %,而且其⊿T m ≤ 5 ℃的菌群为一个种,并且其表型特征应与这个定义相一致。 1994 年 Embley 和 Stackebrandt 认为当 16S rDNA 的序列同源性≥ 97 %时可认为是一个种。

亚种 (subspecies)在种内,有些菌株如果在遗传特性上关系密切,而且在表型上存在较小的某些差异,一个种可分为两个或两个以上小的分类单位,称为亚种。它们是细菌分类中具有正式分类地位的最低等级。根据⊿ T m 值在 DNA 杂交中的频率分布,有些证据表明,亚种的概念在系统发育上是有效的,而且能与亚种以下的变种概念相区别。后者仅是依据所选择的“实用”属性而决定,并不被 DNA 组成所证明。

亚种以下的分类等级通常表示能用某些特殊的特征加以区别的菌株类群。例如,在细菌分类中,以生物变型 (biovar) 表示特殊的生化或生理特征,血清变型 (serovar 结构的不同,致病变型 (pathovar) 表示某些寄主的专一致病性,噬菌变型 (phagovar) 表示对噬菌体的特异性反应,形态变型 (morphovar) 表示特殊的形态特征。

菌株或品系 (strain) 这是微生物学中常碰到的一个名词,它主要是指同种微生物不同来源的纯培养物。从自然界分离纯化所得到的纯培养的后代,经过鉴定属于某个种,但由于来自不同的地区、土壤和其他生活环境,它们总会出现一些细微的差异。这些单个分离物的纯培养的后代称为菌株。菌株常以数目、字母、人名或地名表示。那些得到分离纯化而未经鉴定的纯培养的后代则称为分离物。

微生物学中还常常用到“群”这个词,这只是为了科研或鉴定工作方便,首先按其形态或结合少量的生理生化、生态学特征,将近似的种和介于种间的菌株归纳为若干个类群。如为了筛选抗生素工作的方便,中国科学院微生物研究所根据形态和培养特征,把放线菌中的链霉菌属归纳为 12 个类群。

微生物分类各级单元所用的后缀如表 3-1 。

表 3- 1 微生物分类各级单元拉丁学名后缀

11微生物的分类及其分类方法

二、微生物的命名

微生物的命名和其他生物一样,都按国际命名法命名,即采用林奈氏 (Linnaeus) 所创立的“双名法”。每一种微生物的学名都依属与种而命名,由两个拉丁字或希腊字或者拉丁化了的其他文字组成。属名在前,规定用拉丁字名词表示,字首字母要大写,由微生物的构造、形状,或由著名的科学家名字而来,用以描述微生物的主要特征。种名在后,用拉丁字形容词表示,字首字母小写,为微生物的色素、形状、来源、病名或著名的科学家姓名等,用以描述微生物的次要特征。此外,由于自然界的生物种类太多了,大家都在命名,为了更明确,避免误解,故在正式的拉丁名称后面附着命名者的姓。例如。金黄色葡萄球菌的学名为:

Staphylococcus aureus Rosenbach 1884

属名:葡萄球菌种名:金黄色命名人的姓命名年份

又如:Peptostreptococcus foetidus ( Veillon ) Smith

属名:消化链球菌种名:恶臭原命名者改名者

恶臭消化链球菌是由 Veillon 首先发现和定名的,后 Smith 重新定为现名。由此可以看出,种名后括弧内的姓,是表示这个种首先由 Veillon 定的名,在括弧后再附加改定此菌学名人的姓。如果发表新种,则在学名之后加 n . sp( 即 novo species 的缩写,意为新种 ) 。有时只泛指某一属的微生物,而不是指定某一个具体的种,或没有种名,只有属名时,可在属名后加 sp. 或 spp.(species 的缩写, sp. 表示单数, spp. 表示复数 ) ,如

Micrococcus sp. ,表示微球菌属的一个种,Micrococcus spp. 表示微球菌属的一些种。

变种的学名,是在种名后加变种名称,并在变种名称之前加 var 如枯草芽孢杆菌黑色变种应写成Bacillus subtilis var. niger 。属以上的名称必须是阴性复数形容词,与prokaryotae 相一致。

三、微生物系统发育分析

由于现代分子生物学技术的迅速发展,正在形成一套与传统的分类鉴定方法完全不同的

分类鉴定技术与方法,从基因水平上分析各微生物种之间的亲缘关系,即系统发育地位。众

所周知,原核生物细胞中的 16S rDNA 和真核生物细胞中的 18S rDNA 的碱基序列都是十分

保守的,不受微生物所处环境条件的变化、营养物质的丰缺的影响而有所变化,都可以看作

为生物进化的时间标尺,记录着生物进化的真实痕迹。因此,分析原核生物细胞中的 16S rDNA 和真核生物细胞中的 18S rDNA 的碱基序列,比较所分析的微生物与其他微生物种之间 16S rDNA 和 18S rDNA 序列的同源性,可以真实地揭示它们亲缘关系的距离和系统发育地位。在现实研究中,除了选择 16S rDNA 和 18S rDNA 作序列分析进行系统发育比较外,还可利用

间隔序列 (ITS) 、某些发育较为古老而序列又较稳定的特异性酶的基因作序列分析,进行系统发育分析。如在环境微生物研究中,对于谷胱甘肽转移酶( GST )的基因序列分析所获得的系统发育鉴定结果与用其他方法所获得的结果具有十分吻合的一致性。随着研究技术和理

论的日趋成熟,现在有人提出了分子系统学 (molecular systematics) 这一理论概念。

系统学( systematics )是研究生物多样性及其分类和演化关系的科学。分子系统学是检测、描述并揭示生物在分子水平上的多样性及其演化规律的科学。研究内容包括了群体遗

传结构、分类学、系统发育和分子进化等领域。群体遗传结构 (population genetic structure) 是指一个种内总的遗传变异程度及其在群体间的分布模式,是一个种最基础的遗传信息。分

类学 (taxonomy) 是研究物种的界定和序级确定。系统发育关系 (phylogenetic relationship) 和分子进化 (molecular evolution) 是两个密切相关的过程。在利用现代分子生物学技术在分子和基因水平上获得大量的分类单元尤其是种的遗传信息后,来推断和重

建微生物类群的演化历史和演化关系,即建立系统发育树,如第一章中图 1-1 表示细菌、古菌和真核生物的无根系统发育树。根据分离菌株的 16S rDNA 或 18S rDNA 序列与相关微生

物种之间的同源性,将分离获得的菌株放置于系统发育树的确当分支位置,以显示其在系统

发育中的地位和与其他种间

11微生物的分类及其分类方法

的亲缘关系。原核微生物中的

细菌和古菌的系统发育树分

别如图3-1 和3-2 所示。

图 3-1 细菌域的系统发育树

(引自 Madigan et al.,

Brock Biology of

Microorganisms, Tenth

edition, 2003 )

11微生物的分类及其分类方法

图 3-2 古菌域的系统发育树

第二节原核微生物分类系统

一、原核微生物伯杰氏分类系统

细菌、放线菌等原核微生物的分类系统很多,目前较有代表性和最有影响的分类系统是美国的《伯杰氏细菌学鉴定手册》 (Bergey , s Manual of Determinative Bacteriology ,以下简称“手册” ) 。“手册”自 1923 年第一版以采,相继于 1925 , 1930 , 1934 ,1939 , 1948 和 1957 年出版了第二版至第七版,几乎每一版均吸取了许多分类学家的经验,其内容经过不断地扩充和修改。“手册”第七版包括从纲到种、亚种的全面分类大纲和相应的检索表以及各分类单位的描述,将细菌列于植物界原生植物门的第二纲——裂殖菌纲。“手册”第七版的分类方法基本上处于经典分类法阶段,即以形态特征为主结合生理生化特性为分类依据。第八版 (1974 年 ) 没有从纲到种的分类系统,而着重于属、种的描述和比较,它也没有分类大纲,而是根据形态、营养型等分成 19 个部分,把细菌、放线菌、粘细菌、螺旋体、枝原体和立克次氏体等 2 000 多种微生物归于原核生物界细菌门。手册第八版的分类方法也有了改进,除采用经典分类法外,还增加了细胞化学、遗传学和分子生物学等方面的新鉴定方法,对某些属、种应用了数值分类法。

1994 年,《伯杰氏细菌学鉴定手册》第九版出版。该手册根据表型特征把细菌分为四个类别, 35 群。“手册''第九版与过去的版本相比较,具有以下特点:①该书的目的只是为了鉴别那些已被描述和培养的细菌,并不把系统分类和鉴定信息结合起来;②其内容的编排严格按照表型特征,所选择的排列是实用的,为了有利于细菌的鉴定,并不试图提供一个自然分类系统;③手册抽取了《伯杰氏系统细菌学手册》四卷的表型信息,并包括了尽可能多的新的分类单元,其有效发表的截止日期是 1991 年 1 月。

表3-2 细菌的高级分类单位

11微生物的分类及其分类方法

在 1984 ~ 1989 年间,“手册”的出版者出版了《伯杰氏系统细菌学手册》 (Bergey , s Manual of Systematic Bacteriology ,简称“系统分类学手册” ) 。该手册与《伯杰氏细菌学鉴定手册》有很大不同,首先是在各级分类单元中广泛采用细胞化学分析、数值分类方法和核酸技术,尤其是 16S rRNA 寡核苷酸序列分析技术,以阐明细菌的亲缘关系,并对第八版手册的分类作了必要的调整。例如,“系统细菌学手册”根据细胞化学、比较细胞学和 16S rRNA 寡核苷酸序列分析的研究结果,将原核生物界分为四个门。由于这个手册的内容包括了较多的细菌系统分类资料,定名《伯杰氏系统细菌学手册》,反映了细菌分类从人为的分类体系向自然的分类体系所发生的变化。为使发表的材料及时反映新进展,并考虑使用者的方便,该手册分四卷出版。第一卷 (1984 年 ) 内容为一般、医学或工业的革兰氏阴性细菌。第二卷 (1986 年 ) 为放线菌以外的革兰氏阳性细菌。第三卷 (1989 年 ) 为古细菌和其他的革兰氏阴性细菌。第四卷 (1989 年 ) 为放线菌。 2000 年, Bergey , s Manual of Systematic Bacteriology 第二版编辑完成并分成 5 卷陆续出版。在此第二版中,细菌域分为 16 门, 26 组, 27 纲, 62 目, 163 科, 814 属,收集了 4 727 个种。古菌域分为 2 门, 5 组, 8 纲, 11 目, 17 科, 63 属,收集了 208 个种。供收集进原核微生物 4 935 个种。

二、关于变形细菌 ( Proteobacteria ) 纲

运用 DNA/RNA 杂交、 16S rRNA 编目法和 16S rRNA 序列分析方法对革兰氏阴性细菌系统发育研究的结果相当一致。在研究过程中,发现“紫细菌和相关细菌”,尽管在表型和基因型方面很不一样即相当异源,但在系统发育树状图谱上具有连续现象,相互之间的进化关系很为密切。 1988 年, Stackebrandt 等将这类革兰氏阴性细菌命名为“变形细菌”(Proteobacteria ),其下又分为 a- 亚纲、 b- 亚纲, g- 亚纲、 d- 亚纲和 e - 亚纲,见图 3-3 。 a- 亚纲包括一大群形态、生理和营养类型(光能自养型、化能无机营养型和化能有机营养型)等表型特征十分不同的细菌,如土壤杆菌(Agrobacterium )、根瘤菌

( Rhizobium ) 、红假单胞菌 ( Rhodopseudomonas ) 、发酵单胞菌 ( Zymomonas )

11微生物的分类及其分类方法

、副球

菌等 ( Paracoccus ) 、立克次氏体(Rickettsia )等。 b- 亚纲由 Woese 于 1984 年提出,包括的菌群有色杆菌属 ( Chromobacterium ) ,水螺菌属 ( Aquaspirillum ) ,紫色杆菌 ( Janthinobacterium ) ,德克斯氏菌 ( Derxia ) ,丛毛单胞菌 ( Comamonas ) ,嗜木杆菌(Xylophilus )等。 g- 亚纲由 Weose1985 年提出,包括了肠杆菌科(Enterobacteriaceae) ,气单胞菌科 (Aeromonadaceae) ,弧菌科 (Vibrionaceae) ,巴斯德菌科 (Pasteurellaceae) ,假单胞菌 ( Pseudomonas ) ,海洋螺菌 ( Oceanospirillum ) ,黄单胞菌 ( Xanthomonas ) ,溶杆菌 ( Lysobacter ) 等。 d- 亚纲由分解代谢的硫酸盐还原细菌、元素硫还原细菌,蛭弧菌 ( Bdellovibrio ) 和黏细菌目 (Myxococcales) 的 6 个代表。 e - 亚纲仅有弯曲杆菌 ( Campylobacter ) 和螺杆菌 ( Heliobacter )2 属。

11微生物的分类及其分类方法

11微生物的分类及其分类方法

化特征,对环境的反应和忍受性以及生态特性为依据。最后,将所测菌株两两进行比较,并借用电子计算机计算出菌株间的总相似值,列出相似值矩阵 ( 图3-5) 。为便于观察,应将矩阵重新安排,使相似度高的菌株列在一起,然后将矩阵图转换成树状谱 (dendrogram)( 图3-6) ,再结合主观上的判断 ( 如划分类似程度大于 85 %者为同种,大于 65 %者为同属等 ) ,排列出—个个分类群。

11微生物的分类及其分类方法

图 3-5 显示 6 个细菌菌株的遗传相似矩阵图

11微生物的分类及其分类方法

11微生物的分类及其分类方法

11微生物的分类及其分类方法

成的“双链”仅含有局部单链,其杂合率小于 100% 。由此;杂合率越高,表示两个 DNA 之间碱基序列的相似性越高,它们之间的亲缘关系也就越近。如两株大肠埃希氏菌的 DNA 杂合率可高达 100 %,而大肠埃希氏菌与沙门氏菌的 DNA 杂合率较低,约有 70 %。 G+Cmol %的测定和 DNA 杂交实验为细菌种和属的分类研究开辟了新的途径,解决了以表观特征为依据所无法解决的一些疑难问题,但对于许多属以上分类单元间的亲缘关系及细菌的进化问题仍不能解决。

3 、 DNA — rRNA 杂交

目前研究 RNA 碱基序列的方法有两种。一是 DNA 与 rRNA 杂交,二是 16S rRNA 寡核苷酸的序列分析。 DNA 与 rRNA 杂交的基本原理、实验方法同 DNA 杂交一样,不同的是①是DNA 杂交中同位素标记的部分是 DNA ,而 DNA 与 rRNA 杂交中同位素标记的部分是 rRNA 。

② DNA 杂交结果用同源性百分数表示,而 DNA 与 rRNA 杂交结果用 Tm(e) 和 RNA 结合数表示。 Tm(e) 值是 DNA 与 rRNA 杂交物解链一半时所需要的温度。 RNA 结合数是 100 m gDNA 所结合的 rRNA 的 m g 数。根据这个参数可以作出 RNA 相似性图。在 rRNA 相似性图上,关系较近的菌就集中到一起。关系较远的菌在图上占据不同的位置。用 rRNA 同性试验和 16SrRNA 寡核苷酸编目的相似性比较 rRNA 顺反子的实验数据可得到属以上细菌分类单

元的较一致的系统发育概念,并导致了古细菌的建立。

4 、 16S rRNA(16S rDNA) 寡核苷酸的序列分析

首先, 16S rRNA 普遍存在于原核生物(真核生物中其同源分子是 18S rRNA )中。 rRNA 参与生物蛋白质的合成过程,其功能是任何生物都必不可少的,而且在生物进化的漫长历程中保持不变,可看作为生物演变的时间钟。其次,在 16S rRNA 分子中,既含有高度保守的序列区域,又有中度保守和高度变化的序列区域,因而它适用于进化距离不同的各类生物亲缘关系的研究。第三, 16S rRNA 的相对分子量大小适中,约 1 540 个核苷酸,便于序列分析。因此,它可以作为测量各类生物进化和亲缘关系的良好工具。

分离菌株 16S rRNA 基因的分离较为简单。从平板中直接挑取一环分离菌株细胞 , 加入100μL 无菌重蒸 H 2 O 中 , 旋涡混匀后 , 沸水浴 2min, 12 000r min -1 离心 5min, 上清液中即含 16S rRNA 基因,可直接用于 PCR 扩增。分离菌株 16S rRNA 基因的 PCR 扩增和序列测定的一般步骤为: 16S rRNA 基因的 PCR 引物: 5'-AGAGT TTGAT CCTGG CTCAG-3' ;5'-AAGGA GGTGA TCCAG CCGCA-3' 。扩增反应体积 50 m L ,反应条件为 95 ℃预变性 5min ,94 ℃变性 1min , 55 ℃退火 1min , 72 ℃延伸 2min ,共进行 29 个循环, PCR 反应在 PTC-200 型热循环仪上进行。取 5 m L 反应液在 10g L -1 的琼脂糖凝胶上进行电泳检测。 PCR 产物测序可由专门技术公司完成。

测序得到分离菌株 16S rDNA 部分序列,此序列一般以 *.f.seq 形式保存,可以用写字板或 Editsequence 软件打开,将所得序列通过 Blast 程序与 GenBank 中核酸数据进行比对分析 ( http://www.ncbi.nlm.nih.gov/blast ) ,具体步骤如下:点击网站中Nucleotide BLAST 下 Nucleotide-nucleotide BLAST [blastn] 选项,将测序所得序列粘贴在“ search ”网页空白处,或输入测序结果所在文件夹目录,点击核酸比对选项,即

“ blast ”,然后点击“ format ”,计算机自动开始搜索核苷酸数据库中序列并进行序列

比较,根据同源性高低列出相近序列及其所属种或属,以及菌株相关信息,从而初步判断 16S rDNA 鉴定结果。

遗传距离矩阵与系统发育树构建,可采用 DNAStar 软件包中的 MegAlign 程序计算样本间的遗传距离。由 GenBank 中得到相关菌株的序列,与本研究分离菌株所测得序列一起输入Clustalx1.8 程序进行 DNA 同源序列排列,并经人工仔细核查。在此基础上,序列输入Phylip3.6 软件包,以简约法构建系统发育树。使用 Kimura 2-parameter 法,系统树各分枝的置信度经重抽样法( Bootstrap ) 500 次重复检测, DNA 序列变异中的转换和颠换赋于相同的加权值。

下载文档原格式(Word原格式,共12页)
相关文档
  • 微生物的分类知识

  • 微生物分类鉴定的方法

  • 微生物的分类和鉴定

  • 微生物分类鉴定

  • 微生物的形态与分类

相关文档推荐: