当前位置:文档之家› 填料塔分离技术新进展

填料塔分离技术新进展

填料塔分离技术新进展
填料塔分离技术新进展

填料塔分离技术新进展

孙东升

(江苏省盐城师范学院,盐城,224002)

摘要对近几年开发成功的新型填料、填料塔塔内件结构特点及工业应用予以综述,介绍了填料及塔内件的标准化工作进展,提出了填料塔今后技术开发方向。

关键词填料塔,新型填料,塔内件,工业应用,标准化

中图分类号T 050;T 051文献标识码A文章编号1000-6613(2002)10-0769-04

填料塔由于具有制造和更换容易、材质范围广、适应能力强、压降及滞液量小、传质效率高等优点,在近二十多年来获得了长足发展。瑞士S ul-Zer公司、美国G litsch公司、德国M ontZ公司、中国原天津大学填料塔新技术公司等国内外知名的大型填料塔开发、制造公司在填料塔大型化方面取得了许多突破,其中有些公司设计的最大塔径超过了!10000mm。另外填料塔在炼油、化工、环保等领域的推广应用也引人注目,在二十多年的时间里,国内外推广应用新型填料塔数以万计。

随着各种新型散装填料、规整填料及新型高效塔内件的成功开发及应用,填料塔与板式塔的竞争将变得更为激烈。有专家预言,蒸馏装置发展趋势是现代填料塔逐步取代传统填料塔,且部分取代大型板式塔[1,2]。

1新型填料的开发及应用

!"!散装填料

散装填料是具有一定几何尺寸的颗粒体,在塔内以散堆方式堆积。近年一些新型高效散装填料的出现以及在一些行业的成功应用,如环保行业从烟气中除去HC l和SO

2

等,说明散装填料将在某些领域得到新的发展[2]。另外,国内外最新的研究工作表明,在液液萃取、液气比很大的吸收和高压精馏的情况下,应用散装填料的操作性能优于规整填料和塔盘[3]。因此在合成氨的气体净化、石油化工和焦化等领域,散装填料得到了广泛的应用。

1.1.1I m p ak填料

I m p ak填料最初由美国Lantacskan公司提出,后经北京化工大学等单位多年研究改进,是近一个世纪填料发展的新成果。构型特点是:!环鞍结合,既有鞍型结构的良好分布性能,又有环型结构高通量的特点;"开放壁面;#扁环结构。对不同

高径比的环型填料对比研究表明:高径比越小,传质效率越高。I m p ak填料单体外形呈扁环,使填料单元立放最稳,有利于加强气液湍动,活化内表面。

I m p ak填料集扁、鞍、环结构于一体,采用多褶壁面,多层筋片,强化了填料的整体性能,体现了现代散装填料构型正趋于成熟。实验对比表明:其负荷能力与!"50mm金属I ntalox鞍环相当;在一般的气液流率下,传质效率比!"50mm金属I ntalox鞍环高出30%以上;传质单元压降很低,适合于精密分离、热敏物系和旧塔节能改造[4]。1.1.2阶梯短环填料

阶梯短环填料(cascade m i niri n g,CM R)是美国G listch公司兼并英国传质公司后大力推广的一种散装填料,与其前身阶梯环相比,高径比从原有的0.5降到0.3。这种看似简单的几何特性却是CM R性能优越的关键。大量实验表明,CM R的性能确实明显优于鲍尔环和筛板塔,且可以用碳钢、不锈钢、非铁合金、塑料和陶瓷制造[3]。因此,CM R的应用很广泛,已在近千座工业塔中得到广泛的应用。

1.1.3超级扁环填料

清华大学根据国外新型填料发展的动向,创新研制了内弯弧型筋片扁环填料(H-1型扁环填料)。其结构特点为:!采用和传统填料不同的内弯弧型筋片结构,使填料内部的流道更为合理,提高了传质效率,同时这种结构可提高填料的强度;"针对液液体系轴向混合严重的特点,采用0.2$ 0.3极低的高径比,使填料在乱堆时也能体现一定程度的有序排列,从而降低了阻力降,有效抑制了两相的非理想流动,有助于进一步提高处理能力和

收稿日期2002-03-12。

作者简介孙东升(1967—),男,讲师,从事机械加工工艺、设备及机电控制等方面的研究。电话013705102630。

?

967

?

2002年第21卷第10期

化工进展

CHEM I CAL I NDU STR AND ENG I NEER I NG PROGRES S

传质效率;!可根据体系和生产要求,采用多种材质加工制造,且有多种规格,因而选用范围宽,操作弹性大[5]。实验研究和工业应用表明,OH~1型扁环填料用于液液萃取和在大液体喷淋密度下,性能超过鲍尔环、I ntaloX等国外引进的新型填料,已在润滑油精制、芳烃抽提、液化气脱硫、合成氨厂脱碳塔和再生塔中得到成功的应用。

为进一步提高扁环填料的性能,又开发了新的挠性梅花扁环填料(OH~2型扁环填料),不仅传质效率高、处理能力大、阻力降小,而且质量轻、成本较低,比OH~1型又有所提高。

近年来,中国还引进和吸收了许多高效、先进的散装填料,如金属矩鞍环(I M TP)、改进型金属鲍尔环(HY~PAK)、金属阶梯环、塑料矩鞍环、共轭环、"型网填料等,也较接近理想填料,比规整填料具有更好的自清理能力,不易堵塞。!"#规整填料

目前规整填料种类多,形状不同,特性各异,但理想的规整填料应具备以下特点:阻力压降小,分离效率高,通量大;操作弹性大,适应性强,放大效应低[6]。近年来,国外开发应用较成功的规整填料有瑞士S ulzer公司的M ella p ak填料、瑞士KUHN I公司的Rom bo p ak填料、德国RA SCH I G 公司的Raschi g~S u p er p ak填料等,中国在规整填料方面也有突破,如天津大学开发的Zu p ak填料,上海化工研究院开发的SM、SW、SC、SB系列新型规整填料,清华大学开发的新型复合填料及分层填料等,都成功地进行了工业应用[1,2]。以下介绍的是几种国内开发应用较成功的规整填料。

1.2.1组片式波纹填料

组片式波纹填料(Zu p ak)填料是原天津大学填料塔新技术公司近年开发出来的获奖专利产品,目前有两大类8种型号。Zu p ak填料和相应型号的M ella p ak填料相比,比表面积增加了10%左右,开孔率增加了30%#40%,分离效率提高约10%,通量提高20%,压力降降低30%左右。开发成功第一次就用在当时中国最大直径的塔上(!8400mm),目前正处于迅速推广阶段。

1.2.2SM、SW、SC、SB系列新型规整填料

上海化工研究院国家高效分离塔填料及装置技术研究推广中心于20世纪70年代开发了SC、SB 丝网波纹填料系列,80年代开发了SM系列孔板波纹填料,90年代开发了SW系列网孔波纹填料并取得专利证书。这些填料已在国内多座塔器中应

用,效果显著。

1.2.3S I NOPAK填料

该填料系南京大学开发的波纹型系列无壁流规整填料,采用了专门的防壁流设计并获得1996年国家专利。分离效率比其他普通波纹规整填料高10%#25%,其综合性能完全达到和优于国外同类填料产品。

1.2.4自分布填料和再分布填料

自分布填料是将特制的规整填料作为液体再分布器使用的,旨在改善液体分布性能的填料。其作用是将多点式或多线式液体分布状态变成多线式或面分布状态,以减少液体分布的端效应。这方面工作美国G litsch公司领先一步。中国在1990年后,由天津大学研制的自分布填料在工程上得到了应用。

相对于填料层两端气液分布的端效应,填料层中部存在着“中效应”。再分布填料就是为了消除“中效应”而专门设计的一种特制填料。换言之,它不仅克服了壁流现象,重要的是它能将环塔壁区的高液流量向塔心缩移,同时又将塔中心部位的高气流量向环塔壁区扩展,因而既是液体再分布器,又是气体再分布器,同时还起传质作用。

自分布填料和再分布填料既适用于规整填料塔,也适用于散装填料塔。

1.2.5新型复合填料

清华大学研究开发的新型复合填料是在规整填料基础上采用交错90 排列的水平波纹(PFG)组合而成。PFG本身是种填料,同时又起到分布器的作用,具有良好的自分布性能,分离效果比规整填料提高15%#20%。每米填料的理论板数比同规格的S ulzer填料高15%左右。

在新型复合填料基础上采用一定厚度的复合填料单元体作为塔板,形成分层填料塔板。其传质效率高,填料用量少(降低填料成本),高效低阻,性能优于一般塔板和填料,特别适用于真空精馏工况条件下的高纯度分离。

2新型塔内件的开发、设计和应用填料塔内件包括气体及液体分布器、液体收集器及再分布器、除雾器、液体出口消旋器、填料压板及床层限制器、填料支撑装置等。一个成功的填料塔设计,除了采用高效填料外,还必须具有结构合理的塔内件与之相匹配,才能发挥填料塔的整体性能。

?

077

?化工进展2002年第21卷

!"#液体分布器的设计及应用

2.1.1带垂直布液板的槽式液体分布器

多级槽式液体分布器在大型填料塔中应用很广,目前多采用带垂直布液板的线分布型结构,按其支承方式可分为3种形式:压圈托槽式;悬槽式;埋藏梁托槽式。其中悬槽式液体分布器因其喷淋孔的水平度不受填料床层变化的影响,目前国内外应用较广;埋藏梁托槽式液体分布器其主要结构特征在于“埋藏梁”,云梯梁就位后,填料、填料压圈、二级槽、一级槽再依次就位,这种结构可保证分布器的水平度一劳永逸。

2.1.2槽盘式及新型槽盘式气液分布器

槽盘式气液分布器是天津大学获国家发明奖的专利技术,由5部分组成,即矩形升气管、V形挡液板、特制导液管、铺板和连接件。它有3种基本结构:全可拆式结构、局部可拆式结构、全焊接式结构。新型槽盘式气液分布器主要特点在于增设了防护屏和自动排污系统,抗堵塞能力更强。从1990年首次用于济南炼油厂!4200mm润滑油减压塔至今,已应用于数百座塔中。

2.1.3L I OD I ST液体分布器系列

该分布器由南京大学开发,分3种型号:①L I OD I ST-1型(填料塔液体线分布器),它克服了液体点分布的缺陷,使填料层液体呈线性液膜均布,有利于消除填料塔的液相端效应,并使分离效率明显提高;②L I OD I ST-1型(填料塔液体面分布器),可使填料塔内液体分布与再分布均匀性逼近极限状态;③L I OD I ST-皿型(槽盒式液体分布与再分布器),这是一种具有抗堵塞功能的液体收集与分布设备,液相中的漂浮、悬浮或沉淀颗粒均可得到收集,防止分布器和填料层堵塞。!"!填料塔进气初始分布器的设计及应用

随着新型填料日益广泛地应用于大直径、浅填料层的精馏塔,塔内气体的均匀分布问题越来越引起研究者的重视。因此,研究气体分布器的性能,了解其中气液运动的规律,探索其合理结构并在此基础上开发性能优良的气体分布器,对大型填料塔的合理设计和优质高产,具有重要意义。

2.2.1双切向环流式进气初始分布器

该种进气初始分布器是清华大学在美国G litsch公司单切向进气分布器基础上研制出的一种面对称类、环流型、导流式进气初始分布器,由锥形进气口、环向导流板、内套筒、环形封板、轴向导流板等部件组成。20世纪90年代初成功地应

用于国内!8200mm润滑油型减压塔中;瑞士SULZER公司1996年也在某炼油厂减压塔中采用了该分布器。

2.2.2带导流器和捕液吸能器的双切向环流式进气初始分布器

天津大学化学工程研究所设计了带导流器和捕液吸能器的双切向环流式进气初始分布器。其特点是改进了导流板的结构,多层倒锥式导流器使气流分布更均匀;捕液吸能器则是由栅板式框架与捕液填料所组成,其作用在于防止下部液体被气流搅起而产生严重液沫夹带。

2.2.3辐射式进气初始分布器

这是由天津大学开发的一种轴对称类、导流型进气初始分布器,是径向式进气初始分布器的最新发展,由进气管、分液器、辐射器、伞形导流器或捕液吸能器组成。辐射器是由气体分配器和多层喇叭口状的导流器组成;伞形导流器是由伞骨、同心导流环和捕液器组成;捕液吸能器则由环形框架和脱气填料组成。1999年在南京化肥厂!10000mm 尿素除尘塔中使用了该分布器。

!"$“无梁填料塔技术”的开发及应用

中石化南化公司氮肥厂开发成功了“具有高效多功能内件的无梁填料塔技术”。应用该技术对140kt/a合成氨装置中的铜洗塔进行技术改造,运转成功。2001年7月6日,该开发项目通过了由江苏省科技厅组织、南京市科技局主持的鉴定。参加鉴定的专家认为,该项目解决了目前传统填料效率低的难题,使原塔生产能力提高15%,吸收液能力提高40%,经济效益和社会效益显著,在中国同行业中具有推广价值。

“具有高效多功能内件的无梁填料塔技术”具有以下特点:①在大直径塔中应用规整填料,使传质比表面积大大增加,提高了传质能力;②将液体再分布、气体再分布、气液传质等功能集于一体,具有更良好的液体分布效果;③采用整体分段安装法,在高压容器内建成无梁填料塔,消除了塔内支撑物对塔效率的负面影响,大幅度提高了塔效率及处理通量;④采用了“超滤”技术,解决了规整填料易堵塞的难题。

3填料塔的应用

$"#常压及真空领域的应用

填料塔应用范围极广,相对于板式塔更适用于以下工况:①传质速率受气膜控制的系统以及要求

?

177

?

第10期孙东升:填料塔分离技术新进展

持液量小、停留时间短、压降小的物系;@有腐蚀性、热敏性、易起泡沫及粘性物料的条件;@难分离物系及产品纯度要求很高的场合;@与高效液体分布器相匹配,还可适用于l l 以上的高操作弹性条件。国内目前新型填料塔的应用已达数千座,最大塔径达l m 。主要应用领域有:d 炼油厂常减压塔,气体分离塔,催化裂化吸收稳定系统、脱硫塔、烷基苯分馏塔等;@乙烯装置汽油分离塔、乙烯/

苯乙烯精馏塔的改造及其他石油化工产品的加工;@化肥行业脱硫、脱碳、再生塔、热水饱和塔、尿素除尘塔等;@天然气分离装置、空气分离装置;@制药、食品、环保、精细化工等行业。3.2

填料塔在高压蒸馏中的应用

填料塔应用最多的是在真空及常压领域,高压领域一般采用板式塔。但常规板式塔通量较小,限制了生产能力的提高。为提高生产能力,填料塔的应用已涉及高压领域。近年来的研究探索,使许多填料塔用于高压蒸馏的问题如气液均匀分布困难、

气体返混、分离效率下降等得到逐步解决[7,8]

要使填料塔在高压蒸馏中具有良好的分离效果,关键在于进一步研究高压对生产能力和效率的影响。高压蒸馏填料塔应采用浅的填料层,并且采用相对更多的高性能的液体和气体分布和再分布装置。此外还应开发适宜于高压蒸馏的组合式填料。随着对高压蒸馏填料塔的流体力学行为的研究不断深化,填料塔将在高压蒸馏领域获得广泛的应用。

4

填料及塔内件的标准化

填料及塔内件的标准化包括填料及塔内件的制

造标准及性能评价标准。由于近年来填料塔在许多行业特别是炼油及化工行业得到大量推广应用,致使塔填料及内件生产厂家与日俱增。但由于缺乏统一的国际标准、国家标准、行业标准、给生产及使用带来诸多问题。因此,标准化是一项具有重要意义的工作。

近年来,中国的高校及设计研究院已建立起一

些测试研究装置,其测试结果具有一定的权威性。全国化工化学工程中心站更是在塔填料性能评价及塔填料、塔内件的标准化方面做了大量工作。其主

要内容有[9]

:(l )散装填料和规整填料流体力学及

传质性能测试;(2)填料标准,规定了填料的适用范围、规格及特性、材质及制造要求、检验及验收、包装及储运;(3)气液分布器标准,给出了全套分布器制造图及选用方法、制造技术要求、安装及检验,并附有分布器特性参数选用表等;(4)填料支撑板标准,给出了全套支撑板制造图及选用方法、制造技术要求、支撑圈和支撑梁结构尺寸、安装及安装用紧固件等。

相信国内标准化的努力工作将给塔填料及塔内件的生产和使用带来方便,并逐步做到有规可寻。

5

填料塔分离技术的发展方向探讨

由于波纹填料的开发成功和一些基础理论研究成果在填料塔工程放大问题上的突破,填料塔大型化带来的放大效应问题得到了一定程度的解决。尤其是2 世纪9 年代,一些大通量、低压降、高效率填料和塔内件的成功开发及应用,使填料塔分离工程技术进入了一个崭新阶段。预测2l 世纪的填料塔分离技术将向行业化、复合化、节能化、大型化方向发展。不同种类的填料组成填料复合塔,或组成填料-塔板复合塔是一种新的开发途径。新型“分布填料”也将在分布器的开发中占据重要地位。

参考文献

l 陈

强,王树楹.[J ].现代化工,l997,l7(ll ):l6~l92李好管.[J ].现代化工,2 ,2 (8):l9~253费维扬,孙兰义.[J ].化工进展,2 ,l9(6):3l ~344叶永恒,何建斌.[J ].化学工程,l997,25(3):27~295陈德宏,费维扬.[J ].化学工程,l997,25(4):l3~l56陈大昌,魏建华,刘乃鸿,等.[J ].中国化工信息,l997,(l9):l 7李红.[J ].化肥设计.2 ,38(4):45~478王树楹,管山.[J ].化学工程,l998,26(5):6~89

王抚华.[J ].化工设计,l997,7(l ):l4~l8

New pro g ress i n se p aration techni C ue of packed C o l u m n

S /HD O H H

(Y anchen g N or m al C o lle g e ,Y anchen g ,224 2)

Abstract T he struct ure characteristics and i ndustrial a pp lication o f som e ne w p acki n g and t he co lu m n -i nner -p arts develo p ed i n recent y ears are su mm arized.fro g ress i n t heir standardization w ork fi nall y is i ntroduced also.

T he orientation o f techni C ue develo p m ent o f p acked co lu m n is p ut f or w ard.K e y words

p acked co l u m n ,ne w p acki n g ,

co l u m n -i nner -p arts ,a pp lication i n i ndustr y ,standardization (编辑

奚志刚)

?

277?化工进展

2 2年第2l 卷

水吸收丙酮填料塔设计(化工课程设计)[1]

兰州交通大学化工原理课程设计 化工原理课程设计 课程名称: ____填料塔设计____ 设计题目: ____水吸收丙酮____ 院系: ___ 化学学院_____ 学生姓名: _____ 荆卓_______ 学号: ____ 200907134____ 专业班级: ____化艺093班____ 指导教师: ______张玉洁______

化工原理课程设计任务书 (一)设计题目:水吸收空气中的丙酮填料塔的工艺设计(二)设计条件 1.生产能力:每小时处理混合气体9000Nm3 /h 2.设备形式:填料塔 3.操作压力:101.3KPa 4.操作温度:298K 5.进塔混合气体中含丙酮4%(体积比) 6.丙酮的回收率为99% 7.每年按330天计,每天按24小时连续生产 8.建厂地址:兰州地区 9.要求每米填料的压降都不大于103Pa。 (三)设计步骤及要求 1.确定设计方案 (1)流程的选择 (2)初选填料的类型 (3)吸收剂的选择 2.查阅物料的物性数据 (1)溶液的密度、粘度、表面张力、氨在水中的扩散系数(2)气相密度、粘度、表面张力、氨在空气中的扩散系数

(3)丙酮在水中溶解的相平衡数据 3.物料衡算 (1)确定塔顶、塔底的气流量和组成 (2)确定泛点气速和塔径 (3)校核D/d>8~10 (4)液体喷淋密度校核:实际的喷淋密度要大于最小的喷淋密度。4.填料层高度计算 5.填料层压降核算 如果不符合上述要求重新进行以上计算 6.填料塔附件的选择 (1)液体分布装置 (2)液体再分布装置 (3)填料支撑装置 (4)气体的入塔分布. (四)参考资料 1、《化工原理课程设计》贾绍义柴诚敬天津科学技术出版 2、《现代填料塔技术》王树盈中国石油出版 3、《化工原理》夏清天津科学技术出版 (五)计算结果列表(见下页)

最新浙江大学化工原理实验---填料塔吸收实验报告分析解析

实验报告 课程名称:过程工程原理实验(乙) 指导老师: 叶向群 成绩:__________________ 实验名称:吸收实验 实验类型:工程实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 填料塔吸收操作及体积吸收系数测定 1 实验目的: 1.1 了解填料吸收塔的构造并熟悉吸收塔的操作; 1.2 观察填料塔的液泛现象,测定泛点空气塔气速; 1.3 测定填料层压降ΔP 与空塔气速u 的关系曲线; 1.4 测定含氨空气—水系统的体积吸收系数K y a 。 2 实验装置: 2.1 本实验的装置流程图如图1: 专业: 姓名: 学号: 日期:2015.12.26 地点:教十2109

2.2物系:水—空气—氨气。惰性气体由漩涡气泵提供,氨气由液氮钢瓶提供,吸收剂水采用自来水,他们的流量分别通过转子流量计。水从塔顶喷淋至调料层与自下而上的含氮空气进行吸收过程,溶液由塔底经过液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 3 基本原理: 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定相同,故转子流量计的读数值必须进行校正。校正方法如下:

3.2 体积吸收系数的测定 3.2.1相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系为: 相平衡常数m与系统总压P和亨利系数E的关系如下: 式中:E—亨利系数,Pa P—系统总压(实验中取塔内平均压力),Pa 亨利系数E与温度T的关系为: lg E= 11.468-1922 / T 式中:T—液相温度(实验中取塔底液相温度),K。 根据实验中所测的塔顶表压及塔顶塔底压差△p,即可求得塔内平均压力P。根据实验中所测的塔底液相温度T,利用式(4)、(5)便可求得相平衡常数m。 3.2.2 体积吸收常数 体积吸收常数是反映填料塔性能的主要参数之一,其值也是设计填料塔的重要依据。本实验属于低浓气体吸收,近似取Y≈y、X≈x。 3.2.3被吸收的氨气量,可由物料衡算 (X1-X2) 式中:V—惰性气体空气的流量,kmol/h;

填料塔计算部分

填料吸收塔设计任务书 一、设计题目 填料吸收塔设计 二、设计任务及操作条件 1、原料气处理量:5000m3/h。 2、原料气组成:98%空气+%的氨气。 3、操作温度:20℃。 4、氢氟酸回收率:98%。 5、操作压强:常压。 6、吸收剂:清水。 7、填料选择:拉西环。 三、设计内容 1.设计方案的确定及流程说明。 2.填料吸收塔的塔径,填料层的高度,填料层的压降的计算。 3.填料吸收塔的附属机构及辅助设备的选型与设计计算。 4.吸收塔的工艺流程图。 5.填料吸收塔的工艺条件图。

目录 第一章设计方案的简介 (4) 第一节塔设备的选型 (4) 第二节填料吸收塔方案的确定 (6) 第三节吸收剂的选择 (6) 第四节操作温度与压力的确定 (7) 第二章填料的类型与选择 (7) 第一节填料的类型 (7) 第二节填料的选择 (9) 第三章填料塔工艺尺寸 (10) 第一节基础物性数据 (10) 第二节物料衡算 (11) 第三节填料塔的工艺尺寸的计算 (12) 第四节填料层压降的计算 (16) 第四章辅助设备的设计与计算 (16) 第一节液体分布器的简要设计 (16) 第二节支承板的选用 (17) 第三节管子、泵及风机的选用 (18) 第五章塔体附件设计 (20) 第一节塔的支座 (20) 第二节其他附件 (20)

第一章设计方案的简介 第一节塔设备的选型 塔设备是化工、石油化工、生物化工制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 1、板式塔 板式塔为逐级接触式气液传质设备,是最常用的气液传质设备之一。传质机理如下所述:塔内液体依靠重力作用,由上层塔板的降液管流到下层塔板的受液盘,然后横向流过塔板,从另一侧的降液管流至下一层塔板。溢流堰的作用是使塔板上保持一定厚度的液层。气体则在压力差的推动下,自下而上穿过各层塔板的气体通道(泡罩、筛孔或浮阀等),分散成小股气流,鼓泡通过各层塔板的液层。在塔板上,气液两相密切接触,进行热量和质量的交换。在板式塔中,气液两相逐级接触,两相的组成沿塔高呈阶梯式变化,在正常操作下,液相为连续相,气相为分散相。 一般而论,板式塔的空塔速度较高,因而生产能力较大,塔板效率稳定,操作弹性大,且造价低,检修、清洗方便,故工业上应用较为广泛。 2、填料塔 填料塔是最常用的气液传质设备之一,它广泛应用于蒸馏、吸收、解吸、汽提、萃取、化学交换、洗涤和热交换等过程。几年来,由于填料塔研究工作已日益深入,填料结构的形式不断更新,填料性能也得到了迅速的提高。金属鞍环,改型鲍尔环及波纹填料等大通量、低压力降、高效率填料的开发,使大型填料塔不断地出现,并已推广到大型汽—液系统操作中,尤其是孔板波纹填料,由于具有较好的综合性能,使其不仅在大规模生产中被采用,且由于其在许多方面优于各种塔盘而越来越得到人们的重视,在某些领域中,有取代板式塔的趋势。近年来,在蒸馏和吸收领域中,最突出的变化是新型填料,特别是规整填料在大直径

结晶分离技术

结晶分离技术新进展 【摘要】:概述了结晶分离理论和模拟优化的发展,综述了冷却剂直接接触冷却结晶、反应结晶、蒸馏2结晶耦合、氧化还原2结晶液膜、萃取结晶、磁处理结晶等结晶分离方法。合理设计结晶器及结晶工艺是实现结晶分离工业化的可靠保证,对降膜结晶装置、Bremband 结晶工艺和板式结晶器进行评价。指出今后需深入进行新型结晶分离装置与工艺、工艺的工业化、结晶过程传热传质机理方面的研究。 关键词:结晶;分离;结晶器;工艺 【摘要】:概述了结晶分离理论和模拟优化的发展 ,综述了冷却剂直接接触冷却结晶、反应结晶、蒸馏结晶耦合、氧化还原结晶液膜、萃取结晶、磁处理结晶等结晶分离方法。合理设计结晶器及结晶工艺是实现结晶分离工业化的可靠保证 ,对降膜结晶装置、Bremband结晶工艺和板式结晶器进行评价。指出今后需深入进行新型结晶分离装置与工艺、工艺的工业化、结晶过程传热传质机理方面的研究。 溶液结晶在物质分离纯化过程中有着重要的作用,随着工业的发展,高效低耗的结晶分离技术在石油、化工、生物技术及环境保护等领域的应用越来越广泛,工业结晶技术及其相关理论的研究亦被推向新的阶段,国内外新型结晶技术及新型结晶器的开发设计工作取得了较大进展。 1 结晶理论的发展 结晶分离过程为一同时进行的多相非均相传热与传质的复杂过程。多年来,众多研究者在结晶热力学、结晶成核、晶体生长动力学、结晶习性、晶体形态及杂质对结晶过程的影响等方面进行了大量基础性研究并提出了描述结晶过程的理论[1 ] ,例如,粒数衡算理论及其相关理论、评价熔融结晶过程以及熔化过程的一些关系式的提出等; Kirwan 和Pigford 基于活化状态模型发展了熔融液中晶体生长的界面动力学绝对速度理论[2 ] ;将计算流体力学的方法与粒数衡算理论相结合,通过模拟的方法揭示沉析动力学和流体力学之间的相互作用等。结晶是一个重要的化工过程,溶质从溶液中结晶出来要经历两个步骤:晶核生成和晶体生长。晶核生成是在过饱和溶液中生成一定数量的晶核;而在晶核的基础上成长为晶体,则为晶体生长。影响整个结晶过程的因素很多,如溶液的过饱和度、杂质的存在、搅拌速度以及各种物理场等。例如声场对结晶动力学的影响,张喜梅等[3 ]就系统地研究了声场对溶液成核、溶液稳定性及晶体生长的影响,并深入探讨了其影响机理,为创造一种靠外力场强化工业结晶过程新单元操作提供了理论依据,将促进溶液结晶理论的发展。在过饱和溶液中附加声场,会产生空化气泡,气泡的

塔的水力学计算手册

塔的水力学计算手册

1.目的与适用范围 (1) 2.塔设备特性 (1) 3.名词术语和定义 (1) 4.浮阀/筛孔板式塔盘的设计 (1) 5.填料塔的设计 (1)

1.目的与适用范围 为提高工艺工程师的设计质量,推广计算机应用而编写本手册。 本手册是针对气液传质塔设备中的普遍性问题而编写。对于某些具体塔设备的数据(比如:某生产流程中针对某塔设备的板效率而采用的计算关联式,或者对于某吸收填料塔的传质单元高度或等板高度而采用的具体计算公式)则未予收入。本设计手册以应用为主,主要是指导性的计算方法和步骤,并配合相应的计算程序,具体公式及理论推阐可参考有关文献。 2.塔设备特性 作为气(汽)、液两相传质用的塔设备,首先必须能使气(汽)、液两相得到充分的接触,以得到较高的传质分离效率。 此外,塔设备还应具有以下一些特点: (1)当气(汽)、液处理量过大(超过设计值)时,仍不致于发生大量的雾 沫挟带或液泛等影响正常操作的现象。 (2)当操作波动(设计值的50%~120%)较大时,仍能维持在较高的传 质效率下稳定操作,并具有长期连续操作所必须具备的可靠性。 (3)塔压力降尽量小。 (4)结构简单、耗材少、制造和安装容易。 (5)耐腐蚀、不易堵塞。 (6)塔内的滞留液量要小。 3.名词术语和定义 3.1 塔径(tower diameter),D T 塔筒体内壁直径,见图3.1-(a)。 3.2 板间距(tray spacing),H T 塔内相邻两层塔盘间的距离,见图3.1-(a)。 3.3 降液管(downcomer),DC 各层塔盘之间专供液相流体通过的组件,单溢流型塔盘为侧降液管,双溢流型塔盘有侧降液管和中央降液管,三或多溢流型塔盘有侧降液管、偏侧降液管、偏中央降液管及中央降液管。 3.4 降液管顶部宽度(DC top width),Wd 弓形降液管面积的弦高。掠堰另有算法,见图3.1-(a),-(b)。 3.5 降液管底间隙(DC clearance),ho 降液管底部边缘至塔盘(或受液盘)之间的距离,见图3.1-(a)。 3.6 溢流堰高度(weir height),hw 降液管顶部边缘高出塔板的距离,见图3.1-(a)。 3.7 总的塔盘横截面积(total tower cross-section area),A T

填料塔吸收实验报告

实验6 填料吸收塔实验报告 第四组成员:王锋,郑义,刘平,吴润杰 一、 实验名称 填料吸收塔实验 二、 实验目的 1、 了解填料吸收塔的构造并实际操作。 2、 了解填料塔的流体力学性能。 3、 学习填料吸收塔传质能力和传质效率的测定方法。 三、实验内容 测定填料层压强降与操作气速的关系曲线,并用ΔP/Z —u 曲线转折点与观察现象相结合的办法,确定填料塔在某液体喷淋量下的液泛气速。 四、实验原理 1.气体通过填料层的压强降 压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气液流量有关,不同喷淋量下填料层的压强降ΔP 与空塔气速u 的关系如下图所示: 图6-1 填料层的ΔP ~u 关系 当无液体喷淋即喷淋量L0=0时,干填料的ΔP ~u 的关系是直线,如图中的直线0。当有一定的喷淋量时,ΔP ~u 的关系变成折线,并存在两个转折点,下转折点称为“载点” ,上转折点称为“泛点”。这两个转折点将ΔP ~u 关系分为三个区段:恒持液量区、载液区与液泛区。

五、实验装置和流程 图6-2 填料吸收塔实验装置流程图 1-风机、2-空气流量调节阀、3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、11-水转子流量计、12-水流量调节阀、13-U型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力 实验流程示意图见图一,空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,?经过氨瓶总阀8进入氨气转子流量计9计量,?氨气通过转子流量计处温度由实验时大气温度代替。其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。?在吸入塔顶尾气之前,予先在吸收瓶14内放入5mL 已知浓度的硫酸作为吸收尾气中氨之用。吸收液的取样可用塔底6取样口进行。填料层压降用∪形管压差计13测定。 六、实验操作方法及步骤 1、测量干填料层(△P/Z)─u关系曲线: 先全开调节阀 2,后启动鼓风机,用阀 2 调节进塔的空气流量,按空气流量从小到大的顺序读取填料层压降△P,转子流量计读数和流量计处空气温度,测量12~15组数据?然后在双对数坐标纸上以空塔气速 u为横坐标,以单位高度的压降△P/Z为纵坐标,标绘干填料层(△P/Z)─u关系曲线。 2、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为30L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为30L/h下(△P/z)─u?关系曲线,确定液泛气速并与观察的液泛气速相比较。 3、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为50L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为50L/h下(△P/z)─u?关系曲线,确定液泛气速

膜分离技术的介绍及应用讲解

题目:膜分离技术读书报告日期2015年11月20日

目录 一、膜的种类特点及分离原理 (1) 二、最新膜分离技术进展 (3) 1. 静电纺丝纳米纤维在膜分离中的应用 (3) 1.1 静电纺丝技术的历史发展 (3) 1.2 静电纺丝纳米纤维制备新型结构复合膜 (3) 1.2.1 在超滤方面 (4) 1.2.2 在纳滤方面 (4) 1.2.3 在渗透方面 (5) 1.2.4 静电纺丝纳米纤维制备空气过滤膜 (5) 2. 多孔陶瓷膜应用技术 (6) 2.1 高渗透选择性陶瓷膜制备技术 (7) 2.1.1 溶胶—凝胶技术 (7) 2.1.2 修饰技术 (7)

一、膜的种类特点及分离原理 膜分离技术(membrane separation technology, MST)是天然或人工合成的高分子薄膜以压力差、浓度差、电位差和温度差等外界能量位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。常用的膜分离方法主要有微滤(micro-filtration, MF)、超滤(ultra-filtration,UF)、纳滤(nano-filtration,NF)、反渗透(reverse-osmosis, RO)和电渗析(eletro-dialysis, ED)等。MST具有节能、高效、简单、造价较低、易于操作等特点、可代替传统的如精馏、蒸发、萃取、结晶等分离,可以说是对传统分离方法的一次革命,被公认为20世纪末至21世纪中期最有发展前景的高新技术之一,也是当代国际上公认的最具效益技术之一。 分离膜的根本原理在于膜具有选择透过性,按照分离过程中的推动力和所用膜的孔径不同,可分为20世纪30年代的MF、20世纪40年代的渗析(Dialysis, D)、20世纪50年代的ED、20世纪60年代的RO、20世纪70年代的UF、20世 纪80年代的气体分离 (gas-separation, GS)、20世纪90 年代的PV和乳化液膜(emulsion liquid membrane, ELM)等。 制备膜元件的材料通常是有 机高分子材料或陶瓷材料,膜材料中的孔隙结构为物质透过分离膜而发生选择性分离提供了前提,膜孔径决定了混合体系中相应粒径大小的物质能否透过分离膜。图1是MF、UF、NF、RO的工作示意图。MF的推动力是膜两端的压力差,主要用来去除物料中的大分子颗粒、细菌和悬浮物等;UF的推动力也是膜两端的压力差,主要用来处理不同相对分子质量或者不同形状的大分子物质,应用较多的领域有蛋白质或多肽溶液浓缩、抗生素发酵液脱色、酶制剂纯化、病毒或多聚糖的浓缩或分离等;NF自身一般会带有一定的电荷,它对二价离子特别是二价阴离子的截留率可达99%,在水净化方面应用较多,同时可以透析被RO膜截留的无机盐;RO是一种非对称膜,利用对溶液施加一定的压力来克服溶剂的渗透压,使溶剂通过反向从溶液

油气分离器的结构工作原理

油气分离器的结构工作原理 一、油气分离器的类型和工作要求 1、分离器的类型 1)重力分离型:常用的为卧式和立式重力分离器; 2)碰撞聚结型:丝网聚结、波纹板聚结分离器; 3)旋流分离型:反向流、轴向流旋流分离器、紧凑型气液分离器;4)旋转膨胀型: 2、对分离器工作质量的要求 1)气液界面大、滞留时间长;油气混合物接近相平衡状态。 2)具有良好的机械分离效果,气中少带液,液中少带气。 二、计量分离器 1、结构: 如图所示 1)水包:分离器隔板下面的容积内装有水,其侧下部焊有小水包,小水包中间焊有 小隔板,小水包中的水与分离器隔板以下的大水包及玻璃管相连通。 2)分离筒: 储存油气混合物并使其分离的密闭圆筒。 3)量油玻璃管: 通过闸门及管线,其上端与分离器顶部相通下部与小水包连通,玻璃管与分离筒构成一个连通器供量油用。 4)加水漏斗与闸门:

给分离器的水包加水用。 5)出气管:进入分离器的油气混合物进行计量时天然气的外出通道。 6)安全阀: 保护分离器,防止压力过高破坏分离器。 7)分离伞:在分离筒的上部,由两层伞状盖子组成。使上升的气体改变流动方向,使其中携带的小液滴粘附在上面,起到二次分离的作用。 8)进油管: 油气混合物的进口 9)散油帽:油气混合物进入分离器后喷洒在散油帽上使油气分开,还可稳定液面。 10)分离器隔板: 在分离器下部油水界面处焊的金属圆板直径与分离筒内径相同,但边缘有缺口,使其上下连通,其面上为油下面为水,中间与出油管线连通。 11)排油管:是分离器中的油排出通道,其焊在分离器隔板中心处,并与分离器隔板以上相通。 12)支架: 用来支撑分离器。 2、工作原理 油气混合物经进油管线进入分离器后,喷洒在挡油帽上(散油帽),扩散后的 油靠重力沿管壁下滑到分离器的下部,经排油管排出。同时,气体因密度小而上升,经分离伞集中向上改变流动方向,将气体中的小油滴粘附在伞壁上,聚集后附壁而下,脱油后的气体经分离器顶部出气管进入管线进行测气。

实验七填料塔吸收实验

实验七填料吸收塔的操作和吸收系数的测定 一、实验目的 1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。 2.熟悉填料塔的流体力学性能。 3.掌握总传质系数K Y a测定方法。 4.了解空塔气速和液体喷淋密度对传质系数的影响。 二、实验内容 1.测定干填料及不同液体喷淋密度下填料的阻力降?P与空塔气速u的关系曲线,并确定液泛气速。 2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数K Y a。 三、基本原理 1.填料塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、θ网环都属于实体填料。填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降?P的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降?P与空塔气速u的关系可用式?P=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为1.8-2.0。在有液体喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守?P∝u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。当气速增加到某一值时,由于上升气流与下降液体间的摩擦阻力增大,开始阻碍液体的顺利下流,以致于填料层内的气液量随气速的增加而增加,此现象称为拦液现象,此点为载点,开始拦液时的空塔气速称为载点气速。进入载液区后,当空塔气速再进一步增大,则填料层内拦液量不断增高,到达某一气速时,气、液间的摩擦力完全阻止液体向下流动,填料层的压力将急剧升高,在?P∝u n关系式中,n的数值可达10左右,此点称为泛点。在不同的喷淋密度下,在双对数坐标中可得到一系列这样的折线。随着喷淋密度的增加,填料层的载点气速和泛点气速下降。 本实验以水和空气为工作介质,在一定喷淋密度下,逐步增大气速,记录填料层的压降与

新型膜分离技术研究进展

新型膜分离技术研究进展 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。 关键词:膜分离;原理;应用;进展 膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。 1膜分离技术的分离原理和特点 1.1纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200-1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技术,是国内外研究的热点。余跃等[1]废水进行了去除COD和脱色的研究。结果表明,纳滤技术可有效地去除印染废水中的色度和COD。 1.2超滤 超滤的截留相对分子质量在1000-100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。徐超等[2]在中试中采用浸没式超滤膜代替传统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果,设备费用降低了。 1.3微滤 微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05-10μm之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。微滤分离的实质是利用膜的“筛分”作用来进行的。即:比膜孔大的颗粒的机械截留、颗粒间相互作用及颗粒与膜表面的吸附、颗粒间的桥架作用这三种方式来实现的。 1.4反渗透 反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因为它和自然渗透的方向相反,故称反渗透。学界对于反渗透分离机理的解释主要流行以下理论:溶解一扩散模型、优先吸附一毛细孔流理论、氢键理论。 自从上个世纪90年代邓宇发明了非加压吸附渗透海水淡化法以来,反渗透用于海水淡化的研究得到了极大发展[3]。在重金属废水处理领域,美国芝加哥API工艺公司采用B一9芳香族聚酞胺中空纤维膜组件处理镀镍漂洗水,废水中Niz+的分离率为92%[4]。 1.5电驱动膜

填料塔的基本特点

填料塔的基本特点 一、填料塔结构 填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。在填料的上方安装填料压板,以限制填料随上升气流的运动。液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。 二、填料的类型及性能评价 填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料; 填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优; 2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低; 3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。 三、填料塔设计基本步骤 1.根据给定的设计条件,合理地选择填料; 2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸; 3.计算填料层的压降; 4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。 四、填料塔设计 1.填料的选择 填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。应尽量选用技术资料齐备,适用性能成熟的新型填料。对性能相近的填料,应根据它的特点进行技术经济评价,使所选用的填料既能满足生产要求,又能使设备的投资和操作费最低。 (1)填料种类的选择 填料的传质效率要高:传质效率即分离效率,一般以每个理论级当量填料层高度表示,即HETP值; 填料的通量要大:在同样的液体负荷下,在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料; 填料层的压降要低:填料层压降越低,塔的动力消耗越低,操作费越小;对热敏性物系尤为重要; 填料抗污堵性能强,拆装、检修方便。 (2)填料规格的选择

结晶分离技术在制药工业中的应用

《结晶分离技术在制药工业中的应用》 学院:化学化工学院 专业:制药工程 班级:121班 姓名:陈子阳 学号:20120934105 日期:2014年12月10日

摘要:结晶分离技术在制药工业中的应用非常广泛,为数众多的原料药及医药中间体的最终分离或提纯都是应用结晶方法进行,并且形成晶态物质的最终产品,所以,结晶过程又是直接影响产品质量的重要环节之一。目前制药工业由于其产量小、间歇操作等特点,其实用的结晶器多数属于比较落后的老设备。 关键词:结晶结晶过程结晶分离结晶器 一、结晶的基本原理 结晶是固体物质以晶体状态从蒸气、溶液或熔融物中析出的过程。结晶是对固体物料进行分 离、纯化的单元操作过程,显然固体物质(溶质) 在溶剂中的溶解度直接影响到结晶过程。而溶液 的过饱和度则是工业结晶工程进行的主要推动力。

能够与固相处于平衡的溶液就称为该固体的饱和溶液,而此时的溶解度则是该溶质的饱和溶解度。我们通过溶解度平衡曲线来表现不同温度下溶质在同一溶剂的溶解度是不同的。若将过饱和溶液继续冷却,那么澄清的溶液中就会开始析出晶核,这种不稳定的状态区称为不稳区。标志溶液过饱和而欲自发地产生晶核的极限浓度曲线称为超溶解度曲线,它与溶解度平衡曲线之间的区域称为结晶的介稳区。 在工业结晶过程中只有尽量控制在介稳区才能避免自发成核以得到平均粒度较大的晶体。溶液的过饱和是发生晶析过程的必要条件。 二、结晶的过程 在结晶的实践中可以观察到推动力越大,结晶

速率愈大的现象,而且在这种情况下往往获得的结晶颗粒数且颗粒细微;相反则会获得较少的颗粒数和较大的晶粒。将析出结晶的细微颗粒连同母液一起放置,结果是颗粒数减少而颗粒增大。因此在结晶析出的过程中存在着晶核的生成和晶体的成长两个并存的过程。 在工业结晶过程中首先要力图避免发生初级成核,以防止由于晶核的过多而造成晶体无法继续成长。结晶时间的延长有利于晶体的成长。同时为了达到较高的纯度,往往需要对晶体进行重结晶操作。 三、结晶分离技术的发展与研究 结晶分离技术近年来发展很快,除了传统的冷却结晶、蒸发结晶、真空结晶等进一步得到发 展与完善外,新型结晶技术如等电点结晶,加压结 晶、萃取结晶等也都在工业上得已应用或正在推

填料塔-文献综述

现代填料塔技术发展现状与展望 摘要 填料塔作为一种传质设备, 具有效率高、压降低、持液量小、构造简单、安装容易、投资少等优点, 广泛用于分离操作。论述了国内外填料塔技术的发展现状, 详细介绍了各种新型散堆填料、规整填料、液体分布器和气体分布器的结构特点、流体力学性能和传质性能, 并比较了各自的优缺点。同时展望了填料塔今后发展趋势和技术开发方向。 关键词填料塔散堆填料规整填料液体分布器气体分布器填料塔具有效率高、压降低、持液量小、构造简单、安装容易、投资少等优点, 是石油、化工、化纤、轻工、制药及原子能等工业中广泛应用的气液接触传质设备之一。过去,由于其存在着放大效应和壁流效应, 使其应用仅仅局限于小塔上。近年来, 人们进行了大量的研究, 取得了突破性进展, 目前应用的规整填料最大直径可达14~20m, 突破了仅限于小塔的传统观念, 并在现代化工生产中得到更为普遍的应用。目前的研究主要集中在填料、液体分布器和气体分布器等方面。本文就是这几个方面的一个综述和展望。 1 新型填料 11散堆填料 散堆填料是具有一定几何尺寸的颗粒体,在塔内以散堆方式堆积。散堆填料及其塔设备 主要用在吸收、解吸、精馏、干燥和萃取等气-液或液-液接触的传质传热过程。近年来一 些新型高效散堆填料的出现以及在一些行业的成功应用, 如环保行业从烟气中除去HCl和 SO2等, 说明散堆填料将在某些领域得到新的发展[ 1 ]。另外, 国内外最新的研究表明, 在液液萃取、液气比很大的吸收和高压精馏情况下, 应用散堆填料的操作性能优于规整填料和塔盘[ 2 ]。因此在合成氨的气体净化、石油化工和焦化等

领域, 散堆填料得到广泛的应用。此外, 反应蒸馏、硫化干燥和超重力分离等领域也在使用散堆填料。 (1) I MPAC填料[ 3 ] I MPAC填料最初由美国Lantc公司提出,它集扁、鞍和环结构于一体。它可以看作由若干个I ntal ox填料连体而成, 采用多褶壁面、多层筋片、消除床内死角和单体互相嵌套等技术, 所以该填料兼有规整填料和散堆填料之特性。其特点如下: ①与一般的散堆填料相比,通量可以提高10% ~30%; ②具有高比表面积, 可达131m2/m3, 与一般的散堆填料相比,单元传质高度低, 可下降5%~35%; ③无翻边结构, 避免了气液滞留; ④多层翅片, 自分布性能优良, 故对气液分布器的要求远不如规整填料严格; ⑤压降小, 可比一般散堆填料下降5%~15%; ⑥单位外形呈扁环, 填料单元立放最稳, 有利于加强气液湍动, 活化内表面; ⑦既具有一般散堆填料拆装方便、维修改造灵活的特性, 又具有规整填料比表面积大、空隙率高、流体分布均匀的优点。 (2) 阶梯短环填料 阶梯短环填料(Cascade Mini Ring, CMR)是美国Glitsch公司兼并英国传质公司后大力推广的一种散堆填料, 与其前身阶梯环相比,其高径比从原来的015降到013。这种看似简单的几何特性却是CMR性能优越的关键。大量试验表明, CMR的性能确实明显优于鲍尔环和筛板塔, 其压降约为拉西环的30% , 传质系数比拉西环大约提高50%。因此, CMR的应用很广泛, 已在近千座工业塔中得到广泛应用。 (3) 超级扁环填料[ 4 ] 清华大学研制的内弯弧型筋片扁环填料(QU - 1型扁环填料) , 其结构特点为: ①采用和传统填料不同的内弯弧型筋片结构, 使填料内部的流道更为合理, 提高了传质效率, 同时这种结构可提高填料的强度; ②针对液体系轴向混合严重的特点, 采用012~013的高径比, 使填料在乱堆时也能体现一定程度的有序排列, 从而降低了阻力, 在有效抑制了两相的非理想流动, 有助于进一步提高处理能力和传质系数; ③可根据体系和生产要求, 采用多种材质加工制造, 且有多种规格, 因而选用范围宽, 操作弹性大。试验研究和工业应用表明,QH - 1型扁环填料具有优异的性能; 用于液液萃取时, 此填料的性能明显优于鲍尔

填料塔吸收综合实验报告

竭诚为您提供优质文档/双击可除填料塔吸收综合实验报告 篇一:实验七填料塔吸收实验 实验七填料吸收塔的操作和吸收系数的测定 一、实验目的 1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。2.熟悉填料塔的流体力学性能。3.掌握总传质系数KYa测定方法。4.了解空塔气速和液体喷淋密度对传质系数的影响。 二、实验内容 1.测定干填料及不同液体喷淋密度下填料的阻力降?p 与空塔气速u的关系曲线,并确定液泛气速。 2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数KYa。 三、基本原理 1.填料塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺

利通过。支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、?网环都属于实体填料。填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降?p的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降?p与空塔气速u的关系可用式?p=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为1.8-2.0。在有液体喷淋(L?0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守?p?u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际 速度增大,因此床层阻力降比无喷淋时的值高。当气速增加

膜分离技术

膜分离技术 膜分离技术是指在分子水平上不同粒径分子的混合物在通过半 透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔。 膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要是陶瓷膜和金属膜,其过滤精度较低,选择性较小。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。 微滤(MF)通常孔径范围在0.1~1微米,大于1微米不能通过。 又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙烯、聚碳酸酯、聚砜、聚酰胺等。无机膜材料有陶瓷和金属等。鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。 对于微滤而言,膜的截留特性是以膜的孔径来表征,通常孔径范围在0.1~1微米,故微滤膜能对大直径的菌体、悬浮固体等进行分离。可作为一般料液的澄清、保安过滤、空气除菌。 超滤(UF),膜两侧需压力差,膜孔径在0.05um至1nm之间,通常截留分子量范围在1000~300000。 是介于微滤和纳滤之间的一种膜过程,膜孔径在0.05um至1nm 之间。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,

超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。 对于超滤而言,膜的截留特性是以对标准有机物的截留分子量来表征,通常截留分子量范围在1000~300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化、除热源。 纳滤(NF),孔径为几纳米,截留分子量在80~1000的范围内。 是介于超滤与反渗透之间的一种膜分离技术,其截留分子量在80~1000的范围内,孔径为几纳米,因此称纳滤。基于纳滤分离技术的优越特性,其在制药、生物化工、食品工业等诸多领域显示出广阔的应用前景。 对于纳滤而言,膜的截留特性是以对标准NaCl、MgSO4、CaCl2溶液的截留率来表征,通常截留率范围在60~90%,相应截留分子量范围在100~1000,故纳滤膜能对小分子有机物等与水、无机盐进行分离,实现脱盐与浓缩的同时进行。 反渗透(RO),以膜两侧静压为推动力,反渗透仅让水透过膜,能截留所有的离子。 是利用反渗透膜只能透过溶剂(通常是水)而截留离子物质或小分子物质的选择透过性,以膜两侧静压为推动力,而实现的对液体混合物分离的膜过程。反渗透是膜分离技术的一个重要组成部分,因具

填料塔的制造与安装

填料塔的制造与安装 shi21yong 总的来说,填料塔的制造与安装应按设计要求进行,不能一概而论。有些设计对制造、安装的某些误差精度要求较高,而另外一些设计对制造、安装的这些误差精度要求可能并不太高,误差稍大,并不影响塔的正常操作。静压孔流式液体分布器受安装水平度的影响,若设计液位只有50mm,对水平度的要求较高,否则会导致液体分布不均,水平度偏差10mm,两点液量相差11%;若设计液位200mm,水平度稍差,对液体分布不会有大的影响,水平度偏差10mm,两点液量相差只有2.5%。 制造与安装精度虽不可一概而论,某些精度也无标准可言,但仍有公认的误差精度可供参考。 1、填料塔的垂直度 由于塔节的对接、塔节与裙座的对接、塔的基础及热变形等因素的作用,塔不可能做到绝对垂直,因此使塔产生了垂直度偏差。 在填料塔填料层内,液体受重力的作用趋于垂直下流,因此若塔有倾斜,液体将优先流向倾斜的下一边塔壁,倾斜的上一边液流小,气体则优先流向倾斜的上一边塔壁,结果导致填料层内的气液分布不均,分离效率下降,许多研究者的实验证明了这一点。多数实验结果认为,每倾斜一度分离效

率下降5%~10%,规整填料由于塔倾斜而引起的效率下降较散装填料要小。规整填料的倾斜度应小于0.2°~0.5°。 填料塔静压液体分布器的水平度要求很高,应在塔安装就位后现场安装,以避免塔垂直度对分布器等水平度的影响。 塔的无规则小摇动,不会使塔效率有大的下降,较垂直塔的效率下降小于10%。塔的无规则摇动会使液体分布器分布性能下降,使液体分布器溢流,使塔的效率大幅度下降,使用管式分布器可避免此类事故发生。 很高的塔,由于风载的影响,塔顶摇动很大宜采用管式液体分布器。2、填料塔的椭圆度 一般认为,填料塔的椭圆度并不影响填料塔的性能,只是影响塔内件及填料的安装。散装填料的安装并不受塔椭圆度的影响。为了便于安装,规整填料塔的塔径误差需予以限制,常规规整填料塔推荐误差见下表。 3、塔填料的制造与安装 填料的开发、制造一般由填料制造厂完成,填料的性能数据也由制造厂提供,其质量也应由制造厂保证,这里不加赘述。 (1) 填料安装前的处理 ①填料的除油 新填料表面有一薄油层,这油层可能是金属填料在加工过程中采用润滑油润滑而形成的; 也可能是为了避免碳钢填料在运输和储存过程中被

第四章塔径泛点气速空塔气速填料高度压降等计算

第四章 填料精馏塔的工艺计算 4.1 低压塔塔径、泛点气速、空塔气速、填料高度及压降计算 由第一章PROII 模拟出的说明书可以得到数据表4.1 塔顶蒸汽量G 2 塔中蒸汽量G 14 塔中蒸汽量G 15 塔底蒸汽量G 27 4368Kg/HR 4383Kg/HR 4445Kg/HR 4886Kg/HR 塔顶液体量L 1 塔中液体量L 13 塔中液体量L 14 塔底液体量L 26 3140Kg/HR 3155Kg/HR 7784Kg/HR 8224Kg/HR 汽相密度ρG2 汽相密度ρG14 汽相密度ρG15 汽相密度ρG27 2.874369Kg/m 3 3.03973Kg/m 3 3.06215Kg/m 3 3.34082Kg/m 3 液相密度ρL1 液想密度ρL13 液相密度ρL14 液相密度ρL26 816.676Kg/m 3 796.028Kg/m 3 793.248Kg/m 3 777.496Kg/m 3 汽相粘度μG2 汽相粘度μG14 汽相粘度μG15 汽相粘度μG27 8.9907E-06Pa ·s 9.1563E-06Pa ·s 9.1528E-06Pa ·s 9.0660E-06Pa ·s 液相粘度μL1 液想粘度μ L13 液相粘度μ L14 液相粘度μ L26 3.1054E-04Pa ·s 2.6658E-04Pa ·s 2.6165E-04Pa ·s 2.2445E-04Pa ·s 根据表4.1求平均值可得下表4.2 表4.2 低压塔 精馏段 提馏段 液体量L Kg/HR 3147.5 8004 液相密度ρ Kg/m 3 806.352 785.372 液相粘度μ Pa ·s 2.8856 E-04 2.4305 E-04 蒸汽量G Kg/HR 4375.5 4665.5 汽相密度ρ Kg/m 3 2.957045 3.201485 4.1.1 塔经的计算 L G G L FP ρρ= 式中:L ——塔内液相流率,Kg/h ; G ——塔内气相流率,Kg/h ; ρG ——塔内气相密度,Kg/m 3; ρL ——塔内液体密度,Kg/m 3。 由表4-2数据代入公式得: 对于精馏段:

相关主题
文本预览
相关文档 最新文档