当前位置:文档之家› _学年高中数学2.5第2课时数列求和练习新人教A版必修5

_学年高中数学2.5第2课时数列求和练习新人教A版必修5

_学年高中数学2.5第2课时数列求和练习新人教A版必修5
_学年高中数学2.5第2课时数列求和练习新人教A版必修5

【成才之路】2015-2016学年高中数学 2.5第2课时 数列求和练习

新人A 教版必修5

一、选择题

1.数列112,314,518,71

16,…的前n 项和S n 为( )

A .n 2

+1-12n

B .n 2

+1-12n -1

C .n 2

+2-12n

D .n 2

+2-12

n -1

[答案] A

[解析] 由题设知,数列的通项为a n =2n -1+1

2n ,显然数列的各项为等差数列{2n -1}

和等比数列{12n }相应项的和,从而S n =[1+3+…+(2n -1)]+(12+14+…+12n )=n 2

+1-12

n .

2.已知数列{a n }的通项公式是a n =1

n +n +1

,若前n 项和为10,则项数n 为( )

A .11

B .99

C .120

D .121

[答案] C [解析] 因为a n =

1

n +n +1=n +1-n ,所以S n =a 1+a 2+…+a n =(2-1)+(3

-2)+…+(n +1-n )=n +1-1=10,解得n =120.

3.已知等比数列的前n 项和S n =4n

+a ,则a 的值等于( ) A .-4 B .-1 C .0 D .1

[答案] B

[解析] a 1=S 1=4+a ,

a 2=S 2-S 1=42+a -4-a =12, a 3=S 3-S 2=43+a -42-a =48,

由已知得a 2

2=a 1a 3, ∴144=48(4+a ), ∴a =-1.

4.数列{a n }的通项公式为a n =(-1)

n -1

·(4n -3),则它的前100项之和S 100等于( )

A .200

B .-200

C .400

D .-400

[答案] B

[解析] S 100=1-5+9-13+…+(4×99-3)-(4×100-3)=50×(-4)=-200. 5.数列{a n }的前n 项和为S n ,若a n =1

n n +1

,则S 5等于( )

A .1

B .56

C .16

D .130

[答案] B [解析] a n =

1n n +1 =1n -1

n +1

∴S 5=1-12+12-13+13-14+14-15+15-16=1-16=5

6

.

6.数列{a n }中,已知对任意n ∈N *

,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2

n 等于( )

A .(3n -1)2

B .12(9n

-1) C .9n

-1 D .14

(3n

-1) [答案] B

[解析] ∵a 1+a 2+a 3+…+a n =3n

-1, ∴a 1+a 2+a 3+…+a n -1=3n -1

-1(n ≥2),

两式相减得a n =3n -3n -1

=2·3n -1

又a 1=2满足上式, ∴a n =2·3n -1

. ∴a 2

n =4·3

2n -2=4·9

n -1

∴a 2

1+a 2

2+…+a 2

n =4(1+9+92

+…+9n -1

)

=4 1-9n

1-9=12(9n -1).

二、填空题

7.数列22,422,623, (2)

2n ,…前n 项的和为________.

[答案] 4-

n +2

2

n -1

[解析] 设S n =22+422+623+ (2)

2n

① 12S n =222+423+624+ (2)

2n +1

①-②得

(1-12)S n =22+222+223+224+…+22n -2n 2n +1=2-12n -1-2n 2n +1.

∴S n =4-

n +2

2

n -1

.

8.(2015·广东理,10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.

[答案] 10

[解析] 本题考查等差数列的性质及简单运算,属于容易题.

因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25 即

a 5=5,a 2+a 8=2a 5=10.

三、解答题

9.(2014·全国大纲文,17)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.

[解析] (1)证明:由a n +2=2a n +1-a n +2得

a n +2-a n +1=a n +1-a n +2.

即b n +1=b n +2. 又b 1=a 2-a 1=1.

所以{b n }是首项为1,公差为2的等差数列. (2)由(1)得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.

于是∑k =1

n

(a k +1-a k )=∑k =1

n

(2k -1),

所以a n +1-a 1=n 2,即a n +1=n 2

+a 1.

又a 1=1,所以{a n }的通项公式为a n =n 2

-2n +2.

10.(2015·山东理,18)设数列{a n }的前n 项和为S n ,已知2S n =3n

+3. (1)求{a n }的通项公式;

(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . [解析] (1)因为2S n =3n

+3, 所以2a 1=3+3,故a 1=3,

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

高中数学必修5 数列经典例题集锦

高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=Q . (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ 1 2 1313 3 312n n n a ---+=++++=L , 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{ }n b 的各项为正, 其前n 项和为n T ,且315T =,又112233 ,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

(完整版)放缩法典型例题

放缩法典型例题 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴.3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

高中数学必修五知识点总结及例题学习资料

高中数学必修5知识点 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径, 则有 2sin sin sin a b c R A B C ===. 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;(边化角) ②sin 2a A R =,sin 2b B R =,sin 2c C R =;(角化边) ③::sin :sin :sin a b c A B C =; ④sin sin sin sin sin sin a b c a b c A B C A B C ++=== ++. 3、三角形面积公式:111 sin sin sin 222 C S bc A ab C ac B ?AB ===. 4、余弦定理:在C ?AB 中,有2 2 2 2cos a b c bc A =+-, 2222cos b a c ac B =+-, 2222cos c a b ab C =+-. 5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=. 6、设a 、b 、c 是C ?AB 的角A 、B 、C 的对边, 则:①若222 a b c +=,则90C =;(.C A B C ?? 为直角为直角三角形) ②若2 2 2 a b c +>,则90C <;(.C A B C ??为锐角不一定是锐角三角形) ③若2 2 2 a b c +<,则90C >.(.C A B C ?? 为钝角为钝角三角形) 注:在C ?AB 中,则有 (1)A B C π++=,sin 0,sin 0,sin 0A B C >>>(正弦值都大于0) (2),,.a b c a c b b c a +>+>+>(两边之和大于第三边) (3)sin sin A B A B a b >?>?>(大角对大边,大边对大角) 7、递增数列:从第2项起,每一项都不小于它的前一项的数列.10n n a a +-> 8、递减数列:从第2项起,每一项都不大于它的前一项的数列.10n n a a +-< 9、常数列:各项相等的数列.11,.n n a a S na == 10、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式. 11、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 12、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.11()n n n n a a d a a d -+-=-= 13、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2 a c b += ,则

新人教版高中数学必修5知识点总结(详细)

高中数学必修5知识点总结 第一章 解三角形 1、三角形三角关系:A+B+C=180°;C=180°-(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若 222a b c +<,则90C >. 注:正余弦定理的综合应用:如图所示:隔河看两目标

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

2021年高中数学必修5全册基础知识点复习提纲(全册完整版)

2021年高中数学必修5全册基础知识点复习提纲 (全册完整版) 第一章:解三角形 1、正弦定理: R C c B b A a 2sin sin sin ===. (其中R 为AB C ?外接圆的半径) 2sin ,2sin ,2sin ;a R A b R B c R C ?=== sin ,sin ,sin ;222a b c A B C R R R ?= == ::sin :sin :sin .a b c A B C ?= 用途:⑴已知三角形两角和任一边,求其它元素; ⑵已知三角形两边和其中一边的对角,求其它元素。 2、余弦定理: 222222 2222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ?=+-?=+-??=+-? 222 222222 cos ,2cos ,2cos .2b c a A bc a c b B ac a b c C ab ?+-=?? +-? = ?? ?+-= ?? 用途:⑴已知三角形两边及其夹角,求其它元素; ⑵已知三角形三边,求其它元素。 做题中两个定理经常结合使用. 3、三角形面积公式:

B ac A bc C ab S ABC sin 2 1 sin 21sin 21=== ? 4、三角形内角和定理: 在△ABC 中,有()A B C C A B ππ++=?=-+ 222 C A B π+? =- 222()C A B π?=-+. 5、一个常用结论: 在ABC ?中,sin sin ;a b A B A B >?>?> 若sin 2sin 2,.2 A B A B A B π ==+=则或特别注意,在三角函数中, sin sin A B A B >?>不成立。 第二章:数列 1、数列中n a 与n S 之间的关系: 1 1,(1),(2). n n n S n a S S n -=?=? -≥?注意通项能否合并。 2、等差数列: ⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +), 那么这个数列就叫做等差数列。 ⑵等差中项:若三数a A b 、、成等差数列2 a b A +?= ⑶通项公式:1(1)()n m a a n d a n m d =+-=+- 或(n a pn q p q =+、是常数). ⑷前n 项和公式: ()() 11122 n n n n n a a S na d -+=+ = ⑸常用性质: ①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+; ②下标为等差数列的项() ,,,2m k m k k a a a ++,仍组成等差数列;

高中数学必修5数列知识点总结

数列 1. 等差数列 通项公式:1(1),n a a n d n *=+-∈N 等差中项:如果2 a b A += ,那么A 是a 与b 的等差中项 前n 项和:11()(1)22n n n a a n n S na d +-==+ 若n a 是等差数列,且k l m n +=+,则k l m n a a a a +=+ ? 等差数列的通项求法应该围绕条件结合1,a d ,或是利用特殊项。 ? 等差数列的最值问题求使0(0)n n a a ≥≤成立的最大n 值即可得n S 的最值。 例1.{}n a 是等差数列,538,6a S ==,则9a =_________ 解析:513113248,33362 a a d S a d a d ?=+==+ =+=,解得10,2a d ==,916a = 例2.{}n a 是等差数列,13110,a S S >=,则当n 为多少时,n S 最大? 解析:由311S S =得1213 d a =- ,从而 21111(1)249()(7)2131313n a n n S na a n a -=+?-=--+,又10a >所以1013 a -< 故7n = 2. 等比数列 通项公式:11(0)n n a a q q -=≠ 等比中项:2G ab = 前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =??=--?=≠?--? 若{}n a 是等比数列,且m n p q +=+,则m n p q a a a a ?=? 例.{}n a 是由正数组成的等比数列,2431,7a a S ==,则5S =__________

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

高中数学必修五公式

高中数学必修五公式 第一章 三角函数 一.正弦定理:2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 二.余弦定理: 三.三角形面积公式:111 sin sin sin ,222 ABC S bc A ac B ab C ?= == 第二章 数列 一.等差数列: 1.定义:a n+1-a n =d (常数) 2.通项公式:()d n a a n ?-+=11或()d m n a a m n ?-+= 3.求和公式:()()d n n n n a a a S n n 2 1211-+=+= 4.重要性质(1)a a a a q p n m q p n m +=+?+=+ (2) m,2m,32m m m S S S S S --仍成等差数列 二.等比数列:1.定义: )0(1 ≠=+q q a a n n 2.通项公式:q a a n n 1 1-?=或q a a m n m n -?= 3.求和公式: )(1q ,1==na S n )(1q 11)1(11≠--=--=q q a a q q a S n n n 4.重要性质(1)a a a a q p n m q p n m =?+=+ (2)()m,2m,32q 1m m m m S S S S S --≠-仍成等比数列或为奇数 三.数列求和方法总结: 1.等差等比数列求和可采用求和公式(公式法). 2.非等差等比数列可考虑(分组求和法) ,(错位相减法)等转化为等差或等比数列再求和, 若不能转化为等差或等比数列则采用(拆项相消法)求和. 注意(1):若数列的通项可分成两项之和(或三项之和)则可用(分组求和法)。 (2)若一个等差数列与一个等比数列的对应相乘构成的新数列求和,采用(错位相减法). 过程:乘公比再两式错位相减 (3)若数列的通项可拆成两项之差,通过正负相消后剩有限项再求和的方法为(拆项相消法). 常见的拆项公式:11 1)1(1. 1+-=+n n n n 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-)11(1)(1.2k n n k k n n +-=+)121121(21)12)(12(1.3+--=+-n n n n ] ) 2)(1(1 )1(1[21)2)(1(1. 4++-+=++n n n n n n n ) 1(1 n 1 . 5n n n -+=++

等差数列求和及练习题(整理)

等差数列求和 引例:计算1+2+3+4+……+97+98+99+100 一、有关概念: 像1、2、3、4、5、6、7、8、9、……这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,……,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。这个固定的数就叫做“公差”。 二、有关公式: 和=(首项+末项)×项数÷2 末项=首项+公差×(项数-1) 公差=(末项-首项)÷(项数-1) 项数=(末项-首项)÷公差+1 三、典型例题: 例1、聪明脑筋转转转: 判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。 判断首项末项公差项数 (1)1、2、4、8、16、32. ()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()() 例2、已知等差数列1,8,15,…,78.共12项,和是多少?(博易P27例2)

(看ppt,推出公式) 例3、计算1+3+5+7+……+35+37+39 练习2:计算下列各题 (1)6+10+14+18+22+26+30 (3)1+3+5+7+……+95+97+99 (2)3+15+27+39+51+63 (4)2+4+6+8+……+96+98+100 (3)已知一列数4,6,8,10,…,64,共有31个数,这个数列的和是多少? 例5、有一堆圆木堆成一堆,从上到下,上面一层有10根,每向下一层增加一根,共堆了10层。这堆圆木共有多少根?(博易P27例3)(看ppt) 练习3: 丹丹学英语单词,第一天学了6个单词,以后每一天都比前一天多学会一个,最后一天学会了26个。丹丹在这些天中共学会了多少个单词? 等差数列求和练习题 一、判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项 及公差写出来,如果不是请打“×”。 判断首项末项公差 1. 2、4、6、8、10、12、14、16.()()()() 2. 1、3、6、8、9、11、12、14. ()()()() 3. 5、10、15、20、25、30、35. ()()()() 4. 3、6、8、9、12、16、20、26.()()()() 二、请计算下列各题。 (1)3+6+9+12+15+18+21+24+27+30+33 (2)4+8+12+16+20+24+28+32+36+40 (3)求3、6、9、12、15、18、21、这个数列各项相加的和。 (4)2+4+6+8+……+198+200 ★(5)求出所有三位数的和。 (其他作业:练习册B 1题、4题、6题)

(word完整版)高中数学必修五数列测试题

必修五阶段测试二(第二章 数列) 时间:120分钟 满分:150分 一、选择题(本大题共12小题,每小题5分,共60分) 1.(2017·山西朔州期末)在等比数列{a n }中,公比q =-2,且a 3a 7=4a 4,则a 8等于( ) A .16 B .32 C .-16 D .-32 2.已知数列{a n }的通项公式a n =????? 3n +1(n 为奇数),2n -2(n 为偶数),则a 2·a 3等于( ) A .8 B .20 C .28 D .30 3.已知等差数列{a n }和等比数列{b n }满足a 3=b 3,2b 3-b 2b 4=0,则数列{a n }的前5项和S 5为( ) A .5 B .10 C .20 D .40 4.(2017·山西忻州一中期末)在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( ) A .102 B.9658 C.9178 D .108 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ) A .81 B .120 C .168 D .192 6.等差数列{a n }中,a 10<0, a 11>0, 且a 11>|a 10|, S n 是前n 项的和,则( ) A .S 1, S 2, S 3, …, S 10都小于零,S 11,S 12,S 13,…都大于零 B .S 1,S 2,…,S 19都小于零,S 20,S 21,…都大于零 C .S 1,S 2,…,S 5都大于零,S 6,S 7,…都小于零 D .S 1,S 2,…,S 20都大于零,S 21,S 22,…都小于零 7.(2017·桐城八中月考)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R ),且S 25=100,则a 12+a 14等于( ) A .16 B .8 C .4 D .不确定 8.(2017·莆田六中期末)设{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6和S 7均为S n 的最大值 9.设数列{a n }为等差数列,且a 2=-6,a 8=6,S n 是前n 项和,则( ) A .S 4<S 5 B .S 6<S 5 C .S 4=S 5 D .S 6=S 5 10.(2017·西安庆安中学月考)数列{a n }中,a 1=1,a 2=23,且1a n -1+1a n +1=2a n (n ∈N *,n ≥2),则a 6等于( )

(完整版)数列求和经典题型总结

三、数列求和 数列求和的方法. (1)公式法:①等差数列的前n 项求和公式 n S =__________________=_______________________. ② 等 比 数 列 的 前 n 项 和 求 和 公 式 ? ? ?≠===)1(___________________)1(__________q q S n (2)....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. (3)n n n C a b =?,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错 位相减法”. (4)1 n n n C a b = ?,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. (5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和。适用于形如()()n f a n n 1-=的类型。举例如下: ()()() 5050 12979899100129798991002 22222=++???++++=-+???+-+-= n S 常见的裂项公式: (1) 111)1(1+-=+n n n n ;(2) =+-) 12)(12(1 n n ____________________;(3)1 1++n n =__________________ 题型一 数列求解通项公式 1. 若数列{a n }的前n 项的和1232 +-=n n S n ,则{a n }的通项公式是n a =_________________。 2. 数列}{n a 中,已知对任意的正整数n ,1321-=+???++n n a a a ,则22221n a a a +???++等 于_____________。 3. 数列中,如果数列是等差数列,则________________。 4. 已知数列{a n }中,a 1=1且 3 1 111+=+n n a a ,则=10a ____________。 5. 已知数列{a n }满足)2(1 1≥-= -n a n n a n n ,则n a =_____________.。 6. 已知数列{a n }满足)2(11≥++=-n n a a n n ,则n a =_____________.。 {}n a 352,1,a a ==1 { }1 n a +11a =

高中数学必修5测试题(基础)

朝阳教育暑期辅导中心数学必修5测试题(B 卷) 考试时间:90分钟 满分:100分 出卷人:毛老师 考生姓名: 一、选择题(每小题5分,共50分) 1.在等比数列{n a }中,已知11 = 9 a ,5=9a ,则3=a ( ) A 、1 B 、3 C 、±1 D 、±3 2.在△ABC 中,若=2sin b a B ,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0 015030或 3.在△ABC 中,若SinA :SinB :SinC=5:7:8,则B 大小为( ) A 、30° B 、60° C 、90° D 、120° 4.已知点(3,1)和(- 4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是( ) A. a <-7或 a >24 B. a =7 或 a =24 C. -7的解集是11 (,)23 -,则a b +的值是( )。 A. 10 B. 10- C. 14 D. 14- 8 1 1,两数的等比中项是( ) A .1 B .1- C .1± D . 12 9.设11a b >>>-,则下列不等式中恒成立的是 ( ) A . 11a b < B .11 a b > C .2a b > D .22a b > 10.已知{}n a 是等差数列,且a 2+ a 3+ a 8+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20 D .24 二、填空题(每小题4分,共20分) 11、在△ABC 中,=2,=a c B 150°,则b = 12.等差数列{}n a 中, 259,33,a a ==则{}n a 的公差为______________。 13.等差数列{}n a 中, 26=5,=33,a a 则35a a +=_________。

人教版高中数学必修5数列教案

m n a a d n a a d d n a a d m n a a d n a a d a a m n n n m n n n n --=--=--=-+=-+==-+1 ; )1()()1(1 111变式:推广:通项公式:递推关系:必修5 数列 二、等差数列 知识要点 1.数列的通项n a 与前n 项和n S 的关系 ∑==++++=n i i n n a a a a a S 1321 ?? ?≥-==-2 111n S S n S a n n n 2.递推关系与通项公式 ()1(),(),,n n a dn a d a f n kn b k b =+-==+特征:即:为常数 (),,n a kn b k b =+为常数?数列{}n a 成等差数列. 3.等差中项: 若c b a ,,成等差数列,则b 叫做c a 与的等差中项,且2c a b += ;c b a ,,是等差数列?c a b +=2. 4.前n 项和公式:2)(1n a a S n n += ; 2 )1(1d n n na S n -+= 221(),()22 n n d d S n a n S f n An Bn =+-==+特征:即 2,(,)n S An Bn A B =+为常数?数列{}n a 成等差数列. 5.等差数列{}n a 的基本性质),,,(* ∈N q p n m 其中 ⑴q p n m a a a a q p n m +=++=+,则若,反之不成立; ⑵d m n a a m n )(-=-; ⑶m n m n n a a a +-+=2; ⑷n n n n n S S S S S 232,,--仍成等差数列. 6.判断或证明一个数列是等差数列的方法: ①定义法:()()1n n a a d n N *+-=∈常数 ?{}n a 是等差数列

高中数学必修5试题及详细答案

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共 14小题,每小题4分,共56分.在每小题的4个选项中,只 有一项是符合题目要求的? 1 ?在等差数列3, 7, 11,…中,第5项为()? A. 15 B . 18 C. 19 D. 23 2?数列{a n }中,如果a n = 3n (n = 1, 2, 3,…),那么这个数列是(). A.公差为2的等差数列 C.首项为3的等比数列 B. 公差为3的等差数列 D.首项为1的等比数列 3.等差数列{ sh }中,a 2 + a 6= 8, a 3 + a 4= 3,那么它的公差是() 则c 的值等于() A. 5 B . 13 C. ,13 D. . 37 5. 数列{a n }满足 a 1= 1, a n +1 = 2a n +1( n € N+),那么 a 4的值为() A. 4 B . 8 C. 15 D. 31 6. A ABC 中,如果— = —^ = —,那么△ ABC 是 () . tan A tanB tanC A.直角三角形 B.等边三角形 C. 等腰直角三角形 D.钝角三角形 7. 如果 a > b >0, t > 0,设 M= - , N= 口,那么() . b b t A. M >N B . M k N C. M = N D. M 与N 的大小关系随t 的变化而变化 &如果{a n }为递增数列,则{a n }的通项公式可以为(). 2 A. a n = — 2n + 3 B. a n = — n — 3n +1 1 C. a n = 一 D. a n = 1 + log 2 n 2n A. 4 B . 5 C. 6 D. 7 4.A ABC 中,/ A Z B,Z C 所对的边分别为 a , b, c .若 a = 3, b = 4,Z C = 60° ,

高中数学必修5数列题目精选精编

金太阳教育网 高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312 n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312 n n n a ---+=++++= , 所以证得 312 n n a -= . 例题2. 数列{} n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ } n a 的通项公式; (Ⅱ)等差数列{} n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{} n b 的各项为正,∴0d > ∴2d = ∴2 (1) 3222 n n n T n n n -=+ ?=+ 例题3. 已知数列{ } n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 1 2 8n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ } n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)21 12322 (2) 8n n a a a a n -++++=左边相当于是数列{} 1 2 n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

涵盖所有高中数列求和的方法和典型例题

数列的求和 1.直接法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列的求和公式?????≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定要讨论) 2 . 公 式 法 : 222221 (1)(21) 1236 n k n n n k n =++=++++= ∑L 2 3 3 3 3 3 1 (1)1232n k n n k n =+?? =++++=????∑L 3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常 见 拆 项公式 : 1 11)1(1+-=+n n n n ; 1111 ()(2)22 n n n n =-++ )1 21 121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=? (三)例题分析: 例1.求和:①321ΛΛ个 n n S 111111111++++= ②22222)1()1()1 (n n n x x x x x x S ++++ ++=Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。 解:①)110(9 1 10101011112-= ++++==k k k k a Λ321Λ个 ])101010[(9 1)]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ8110910]9)110(10[ 911--=--=+n n n n ②)21()21()21(224422+++++++++ =n n n x x x x x x S Λ n x x x x x x n n 2)1 11()(242242++++++++=ΛΛ (1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2) 1() 1)(1(21)1(1)1(2 2222222222+-+-=+--+--=+---

相关主题
文本预览
相关文档 最新文档