当前位置:文档之家› 清河电厂一期1-600MW机组制粉系统热风道风门改造及实施

清河电厂一期1-600MW机组制粉系统热风道风门改造及实施

清河电厂一期1-600MW机组制粉系统热风道风门改造及实施
清河电厂一期1-600MW机组制粉系统热风道风门改造及实施

清河电厂一期1*600MW机组制粉系统热风道风门改造及实施

1项目背景及概述

1.1设备概况

清河发电公司一期1×600 MW超临界燃煤汽轮发电机组(#9机组)采用中速磨煤机冷一次风机正压直吹式制粉系统,共配备7台中速磨煤机,燃烧煤种为褐煤,6台运行,1台备用。采用前后墙对冲燃烧,前墙四层,后墙三层燃烧器,每台磨煤机带一层燃烧器。选用上海重型机器厂有限公司制造的HP1103型碗式中速磨煤机。每台磨煤机入口热风道配备1台由辽宁兴城生产的单插板式气动插板门,在磨煤机起停或停备检修时操作;同时配备1台热风调节门,调节磨入口风量,控制磨出口温度、干燥出力。安装地点:磨煤机入口热风道处。

1.2存在问题

1)热风插板门内外漏风严重。#9机组磨煤机入口采用的是单插板式气动插板门。该插板门门板厚度20 mm,导向槽为20 mm×20 mm方钢,焊接在门体上,材料均为16Mn钢板,机组正常运行时,长时间处于热态(高温环境350℃)环境中,该部位易发生变形,出现卡涩现象,插板门不能顺利开关,影响磨煤机正常投入运行。该气动插板门门板与导向槽间无密封填料,全关闭状态下内漏严重,检修作业时由于插板门漏风,造成磨煤机内部温度高而影响检修工作。同时内漏问题会引起起停磨操作时增加制粉系统爆破的几率,威胁安全生产。门体结合面、门轴等处密封效果差、漏风严重,造成现场环境污染较大;漏风问题也导致周围环境温度高,执行机构热工元件损坏、线路过热接地等故障发生。漏风问题影响一次风压,增加一次风机电耗,直接影响运行经济性。2)热风调节门开关卡涩、漏风严重。#9机组磨煤机入口采用的是电动调节挡板门。该挡板门存在卡涩问题:在全开位置时挡板开度不够,影响风量;在全关位置漏风量较大,影响磨煤机操作;卡涩现象还会造成拉杆弯曲、折断等故障发生;门轴密封处效果差,漏风严重,造成环境污染较大。

#9机组制粉系统热风插板门、热风调节门从设计结构、产品质量、安装工艺等方面存在问题较多。该热风插板风门、热风调门投入使用至今,存在问题较多、故障频发,严重影响制粉系统设备安全稳定运行。为此,对#9机组磨煤机热风插板门、热风调节门改造是尤为必要的。

2可行性方案及特点

改造方案:整体更换热风插板门、热风调节门。

2.1改造前后设备对比

2.2改造主要内容

热风炉送风温度控制系统的设计说明

学号: 课程设计 题目热风炉送风温度控制系统设计 学院自动化学院 专业自动化卓越工程师 班级自动化zy1201班 姓名 指导教师傅剑 2015 年12 月8 日

课程设计任务书 学生:专业班级:自动化zy1201 指导教师:傅剑工作单位:理工大学 题目: 热风炉送风温度控制系统的设计 初始条件:炼钢高炉采用燃式热风炉,燃烧所采用的燃料为高炉煤气和转炉煤 气。两种燃料混合后进入热风炉燃烧室,再与助燃空气一起燃烧,要求向高炉送 风温度达到1350 ℃,则炉顶温度必须达到1400 ℃±10℃。 要求完成的主要任务: 1、了解燃式热风炉工艺设备 2、绘制燃式热风炉温度控制系统方案图 3、确定系统所需检测元件、执行元件、调节仪表技术参数 4、撰写系统调节原理及调节过程说明书 时间安排 11月3日选题、理解课题任务、要求

11月4日方案设计 11月5日-11月8日参数计算撰写说明书 11月9日答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日 目录 前言 (1) 1.热风炉工艺 (2) 1.1主要结构............................................................................. .. (2) 1.2工作方式 (3) 1.2.1 直接式高净化热风炉 (3) 1.2.2 间接式热风炉 (3) 1.3工作原理 (3) 1.4高炉炼铁、转炉炼钢工艺流程 (4) 2.热风炉温度控制方案设计 (7) 2.1熟悉工艺过程,确定控制目标 (7) 2.2选择被控变量 (7) 2.3选择操纵变量 (7)

热风炉燃烧温度控制系统的设计.

工号:JG-0054889 酒钢炼铁保障作业区 论文设计 题目热风炉燃烧温度控制系统设计 厂区炼铁厂 作业区保障作业区 班组维护班 姓名陈现伟 2011 年05 月08 日

论文设计任务书 职工姓名:陈现伟工种:维护电工 题目: 热风炉燃烧温度控制系统的设计 初始条件:炼铁高炉采用内燃式热风炉,燃烧所采用的燃料为高炉煤气和转炉 煤气。两种燃料混合后进入热风炉燃烧室,再与助燃空气一起燃烧,要求向高炉送风温度达到1350℃,则炉顶温度必须达到1400℃±10℃。 要求完成的主要任务: 1、了解内燃式热风炉工艺设备 2、绘制内燃式热风炉温度控制系统方案图 3、确定系统所需检测元件、执行元件、调节仪表技术参数 4、撰写系统调节原理及调节过程说明书 时间安排 4月29-30日选题、理解设计任务,工艺要求。 5月1-3日方案设计 5月4-7日参数计算撰写说明书 5月8日整理修改 主管领导签字:年月日

目录 摘要.............................................................. I 1内燃式热风炉工艺概述. (1) 2热风炉温度串级控制总体方案 (2) 2.1内燃式热风炉送风温度控制方案选择... (2) 2.2内燃式热风炉温度串级控制系统框图 (4) 3系统元器件选择 (4) 3.1温度变送器 (5) 3.2温度传感器 (5) 3.3控制器及调节阀 (6) 3.3.1调节阀的选择 (6) 3.3.2控制器即调节器的选择 (6) 4参数整定及调节过程说明 (7) 4.1参数整定 (7) 4.2调节过程说明 (8) 学习心得及体会 (10) 参考文献 (11)

热风炉工程安全技术措施详细版

文件编号:GD/FS-4332 (解决方案范本系列) 热风炉工程安全技术措施 详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

热风炉工程安全技术措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 一、工程热风炉施工职工安全技术通则 1、进入施工现场要严格服从甲方的安全管理要求。 2、严格遵守《建筑现场安全生产六大纪律》、《建筑安装工人安全技术操作规程》和《施工现场临时用电技术规范》等规范。 3、进入施工现场必须穿戴好劳动保护品,必须带安全帽,穿劳保鞋。 4、2米以上高空作业必须系好安全带,并高挂低用,严禁高空坠物,安全帽必须系好下颌带。 5、施工现场严禁吸烟。 6、起重组装、安装构件,要做到心中有数,明

白用绳大小,构件基本重量,吊车的性能参数。 7、吊装所用的吊耳、钢绳和绳扣要合理选择,大小要与所吊重量匹配。吊装前应检查所用吊具,特别是钢绳。 8、施工时需躲让天车和特种车,起重工必须用口哨指挥天车,哨声及手势应符合规范。 9、特种作业人员必须持有效证件上岗。电工、焊工必须穿绝缘鞋。 氧气瓶、乙炔瓶必须安装好压力表和方回火装置,必须按安全距离摆放,不得小于5米,与明火距离不得小于10米。 10、施工现场使用的临时电源线,必须经审批并由专业电工按标准安全铺设。所使用的配电箱,应采用所需容量的标准化配电箱,并有专人维护与管理,安装或拆卸完毕,配电箱柜门应及时关闭。

热风炉工艺流程图

高炉热风炉技术操作规程 2009-09-21 13:26:12 来源: 作者: 【大中小】浏览:6207次评论:1条 一、热风炉技术操作规程 (一)烧炉和送风制度 1 烧炉制度 (1) 炉顶温度1250℃~1300℃ (2) 烟道温度350℃~380℃ (3) 高炉煤气压力8℃~9℃ 2 烧炉原则: (1) 以煤气流量和烟道残氧仪显示值(应在0.3~0.8%)为参考调节助燃空气,在烧炉初期使炉顶温度尽快达到规定值,以后控制炉顶温度,提高烟道温度,提高热量储备,满足高炉的需要. (2) 烧炉初期应尽量加大煤气量和空气量,实现快速烧炉. (3) 炉顶温度达到规定值时应加大空气量来保持炉顶温不在上升,使炉子中、下部温度上升,扩大蓄热量. (1) 烟道温度达到规定值时,应减小煤气量和空气量,保持烟道温度不在上升,顶温和烟道温度都达到规定值则转入闷炉. (2) 高炉使用风温低,时间在4小时以上时,可采取小烧或者适当增加并联送风时间. (3) 烧炉要注意煤气压力,发现煤气压力低时要和净化室联系提高压力,当煤气压力低于3Kpa时,要停止烧炉. (4) 热风炉顶温度低于700℃时,烧炉要用焦炉煤气引火. 3送风制度: (1)正常情况:四座热风炉同时工作,采用交叉并联送风运行方式,风温使用较低或一座热风炉因故障停用时,可临时采用两烧一送的运行方式,运行方式的改变需工长批准。长期改变运行方式要经工段长批准。 (2) 一个炉子的换炉周期为1.5小时,换炉时间按作业表进行,改变换炉周期应经工段批准,一定要先送风后烧炉. (3) 换炉时,风压波动〈5Kpa,波动超过范围,要立即查清原因(如冲压不当、换炉操作失误等). (4) 在送风或换炉中,风压和风量突然下降,可能鼓风机失常,应及时报告值班工长,风压降到20Kpa时,立即关闭冷风大闸. (二)热风炉换炉操作选择 (1)手动操作(一般在正常情况下不使用). (2)机旁操作箱手动操作(特殊情况下使用). (3)操作室手动(遥控手动),自动失常情况下使用. (4)半自动操作(温度控制或特殊情况). (5)全自动操作(定时换炉). (6)单炉自动操作. (7)自动烧炉与停烧. (8)交叉并联送风. 注:操作制度经过同意可以互换,操作方法可根据需要选择. (三)热风炉换炉操作顺序 1.燃烧转送风

高炉热风炉自动控制系统

高炉热风炉自动控制系统 1.l 概述 1.1.1 研究背景 高炉热风炉是给高炉燃烧提供热风以助燃的设备,是一种储热型热交换器。国内大部分高炉均采用每座高炉带3至4台热风炉并联轮流送风方式,保证任何瞬时都有一座热风炉给高炉送风,而每座热风炉都按:燃烧-休止-送风-休止-燃烧的顺序循环生产。当一座或多座热风炉送风时,另外的热风炉处于燃烧或休止状态。送风中的热风炉温度降低后,处于休止状态的热风炉投入送风,原送风热风炉即停止送风并开始燃烧、蓄热直至温度达到要求后,转入休止状态等待下一次送风。 热风炉是一个非线性的、大滞后系统,影响热风炉的因素有很多,并且各种因素相互牵制,因此导致它的控制过程非常复杂,很难用精确的数学模型描述。用传统的方法建模,使整个控制系统置于模型框架下,缺乏灵活性及应变性,很难胜任对复杂系统的控制。 1.1.2 国内热风炉控制系统现状及存在的问题 目前许多钢厂热风炉控制系统采用由可编程控制器(PLC)与过程控制器(或集散系统)分别完成电气与仪表控制的方法进行控制。例如改造前的广钢3#高炉热风炉采用HONEYWELL S9000过程控制器完成仪表控制,采用西门子S5115U可编程控制器完成换炉控制;莱钢1#750M3高炉热风炉控制系统采用美国MODICON公司的E984-685 PLC完成顺序控制和回路控制;鞍钢10号高炉热风炉采用英国欧陆公司生产的网络6000过程自动化(DCS)控制系统完成热风炉燃烧控制,通过接口与MODICON(PLC)通讯,由PLC完成热风炉自动换炉、送风控制;宝钢1#高炉热风炉电控系统采用日本安川CP-3500H PLC,仪表控制系统采用日本横河CENTUM-CS集散控制系统,上位机采用HP-9000,电气的PLC和仪表的现场控制站间以V-NET 网连接,上位机间通过以太网连接,V-NET网和以太网间通过ACG(通信接口)连接。 这类热风炉存在的问题主要有两方面: (1)基础自动化控制系统设计不合理 大都采取用可编程序控制器和过程控制器(或集散系统)分别完成的方法进行控制。这种方法的缺点是为了将各部分连接成一个统一的系统,必须投入相当大的工程费用、时间和专门知识将不同类型的软件和用户接口予以配置、编程、调试和测试。这使得整个控制系统变得复杂、维护困难。 (2)热风炉燃烧控制问题 传统的高炉热风炉燃烧自动化系统采用数学模型计算所需的加热煤气流量和助燃空气流量,并计算出空燃比。热风炉流量设定数学模型的基本原理是使燃烧时热风炉格子砖的蓄热量能够满足热风温度和流量的要求,以获得最佳经济效益。由于热风炉的燃烧过程是一个连续的动态变化过程,控制的主要困难是不能及时得到控制作用的反馈信息,等到控制效果能通过输出测量体现时,此时的控制作用强度往往已过头了。因此,欲实现燃烧过程的实时控制,所需的数学模型相当复杂。此外,对于燃烧高炉煤气和焦炉煤气的具有三眼燃烧器的热风炉来说,由于高炉煤气和焦炉煤气分别送入,因此需分别进行高炉煤气和焦炉煤气流量控制,且需进行高炉煤气和焦炉煤气流量比例控制,这使得系统回路更多、更复杂,同时还需设置煤气成分分析仪,这种仪器不仅昂贵,而且还需要良好的维护。一座高炉通常都带有4个(或3

分析电厂燃料管理系统研究与应用体会 胡红伟

分析电厂燃料管理系统研究与应用体会胡红伟 发表时间:2018-05-14T10:03:33.197Z 来源:《电力设备》2017年第35期作者:胡红伟 [导读] 摘要:随着我国市场经济不断发展,社会生产对电力需求也越来越高,然而随着国家供给侧改革的持续发力,电力体制改革也进入了关键时期。 (周口隆达发电有限公司河南周口 466000) 摘要:随着我国市场经济不断发展,社会生产对电力需求也越来越高,然而随着国家供给侧改革的持续发力,电力体制改革也进入了关键时期。对于当下火电厂来说,高额的燃料成本已经成为电厂运营的最重要成本,为了能够更好的管控电厂成本,就必须要加强燃料管理工作。基于此,本文重点对电厂燃料管理系统作出研究,探究加强电厂燃料管理系统的应用体会。 关键词:电厂;燃料管理;管理系统;应用 引言 电厂燃料管理是生产运营中管理中的重要内容,燃料是电厂能源生产的重要保障,只有对其进行有效管理,才能促进电力的输送质量。我国很多电厂采用的燃料管理模式还保留在传统的基础上,在市场环境飞速发展的形式下,其中的问题与弊端逐渐显露出来。为了更好的适应市场需求,加深对供应商与市场环境的了解,现代化的燃料管理是必不可少的。随着科技水平的发展,信息化技术已应用到各个领域,特别是在信息管理方面效果显著。为了提高电力企业的经营效率,应建立稳定的市场资源信息管理系统,积极采取信息化管理模式。 1电厂燃料管理系统的设计研究 1.1燃料管理系统构架设计 燃料管理框架决定了整个管理系统的功能,通常情况下,燃料管理框架能够分为5个层面:第一,硬件平台(基础),主要包含服务器、随机分配设备、沿路的扫描信息设备、附属设施同厂内机采和计量系统互通的网络设施等;第二,软件平台,主要包含操作系统、管理系统、数据防护系统;第三,应用数据平台,主要实现软件与硬件结合的各种功能;第四,数据存储平台,主要是对各项数据进行存储、分类;第五,业务功能平台,这个也是重中之重,主要是实现各类管理功能,由电厂指定的管理员下发权限,每个班组和管理人员都有相对独立的操作和审批功能,而所有使用者要根据自己电厂的实际情况,设置相关的报表数据功能,统计分析功能等来更好的服务工作。 1.2电厂燃料管理系统功能设计 电厂燃料应用流程通常是运煤车抵达电厂,现场人员和供应商人员进行交接,而后将供应商派发的车辆逐一进行登记后,把矿别和车辆信息输入到电厂燃料管理系统配发的信息识别卡中,这时司机就可以持有信息卡入厂,通过入厂前的燃料管理系统设备,规划司机入厂路线,对入厂车辆进行随机分配汽车机采,随机分配计量区域,并对来煤信息进行一次编码,而后开展入厂煤验收、计量、接卸工作。 2电厂燃料管理系统的应用体会 电厂燃料管理系统的应用体会由于融入燃料管理系统能够有效提高燃料管理质量和效率,能够满足电厂日常燃料管理的需求,具备良好的稳定性。从实际应用情况来说,通过应用燃料管理系统不仅能够降低人力投入,同时也能够实现系统化的操作流程,对电厂未来发展有着重要意义。笔者认为,构建电厂燃料管理系统带来的主要影响包括:第一,应用燃料管理系统能够让燃料采购、审批、安全库存等环节变得更加高效、便捷,避免因为人为因素造成的失误问题,从而大大提高了燃料管理效率与质量。第二,此系统能够提供煤炭质量检测报告(自动生成),这样即可对煤炭交付与结算提供相应的依据,这对如何选择燃料供应商有着重要意义。同时,通过分析煤炭样品的质量,能够避免质量纠纷问题,大大提高了煤炭采购的安全性。第三,燃料管理系统的涉及范围非常广泛,通过对燃料进行周密的规划,例如每个电厂的煤场库存,就可以通过燃料管理系统,每天录入昨天的煤质和堆放的位置,从而对煤场区域进行科学的管理,通过煤种区分、热值区分、硫/灰份精准的达到烧旧存新,减少煤场的日常损耗。第四,燃料指标是现场管理最直观的管理依据,现在很多火电厂已经通过入厂/入炉煤的基础数据录入,进行自动比对,其中重点就是双方热值差、水分差、场损,通过这些指标,可以有效管控电厂成本,在比对过程中可以及时发现问题,进行整改,提高效率。第五,燃料的监审监督一直都是火电厂老生常谈的问题,通过燃料管理系统可以对入厂煤管理进行三级编码,这样入厂煤采样人员只负责运行系统,而系统机采完全按照供应商的信息,进行随机分配采样机,随机布点采样,随机分配计量区域,当采样桶集满的时候,送样人员不知道是哪个供应商的样,只是按照一次编码进行交接,在交接后制样人员人生通过扫描一次编码自动生成二次编码,在后期完成化验煤样的时候进行三次编码,通过一级级的编码,当化验结果最终出来的时候,只有负责人和解码人员可以看到供应商的煤质数据,规避徇私舞弊的可能性。第六,燃料的监督抽查和厂内管理互查同样可以通过燃料系统进行,这样不仅省时省力,而且比对结果直接上传,信息记录都可长时间保存。第七,通过燃料系统对不同粒径的存样进行时间规划,当存样到达保管期限,自动提醒专责人应废弃煤样,然后通过燃料管理系统进行级级审批,记录保存清晰,人员操作简单。由此可见,应用燃料管理系统,能够全面提高燃料管理工作质量,并且能够通过网络技术实现信息共享功能,让工作人员有更多的时间将精力放在质量检验上,这样即可在保障煤炭质量基础上,不断的降低电厂日常运行成本。同时,该管理平台创新了电厂燃料管理方法,有效降低了人工劳力的投入量,这对规范燃料管理工作有着重要意义,实现了燃料管理系统建设目标,包括:第一,加强对燃料采购规划、运输控制、质量控制、验收、存储管理、监督监审等都可通过系统自动统计管理和控制,能够有效降低电厂日常运行成本;第二,让燃料管理相关数据进行整合,并通过管理平台进行统一管理,实现相关信息及时分享功能,这样即可及时发现问题、及时解决问题,为提高火电厂的燃料管理水平提供了坚实的基础。 3提高燃料管理水平的科学措施 3.1不断完善燃料管理体制,使其内容健全,运行可控 (1)要淘汰以防范企业员工为重点的重技术轻人性的陈旧化燃料管理手段,从上到下全面创新燃料管理体系,融合多种信息化、自动化化、智能化技术,实现集智能设备于一体的智能化运行模式,强化燃料管理规章制度建设,出台入炉煤采制化管理制度,实施数字化煤场建设,引入燃料智能化管控技术,形成集生产、经营、监控等功能于一体的全面管理模式,切实促进火电厂现代燃料管理水平提升。(2)要从企业管理制度入手,让主管领导深刻地认识到团队协作的意义,各部门积极化解矛盾,通力合作,使建立起来的包括采购责任制

发电厂机组八级热力系统和制粉系统设计书

发电厂机组八级热力系统和制粉系统设计书 第一章绪论 火力发电厂简称火电厂,是利用煤炭、石油、天然气作为燃料生产电能的工厂。其能量转换过程是:燃料的化学能转换为,热能通过汽轮机等设备转换为,在发电机的帮助下机械能转换为电能。 最早的火力发电是1875年在巴黎北火车站的火电厂实现的。随着发电机、汽轮机制造技术的完善,输变电技术的改进,特别是电力系统的出现以及社会电气化对电能的需求,20世纪30年代以后,火力发电进入大发展的时期。火力发电机组的容量由200兆瓦级提高到300~600兆瓦级(50年代中期),到1973年,最大的火电机组达1300兆瓦。大机组、大电厂使火力发电的热效率大为提高,每千瓦的建设投资和发电成本及工人数量也不断降低。如今大机组已然成为一个必然的趋势。 就能量转换的形式而言,火力发电机组的作用是将燃料(煤、石油、天然气)的化学能经燃烧释放出热能,再进一步将热能转变为电能。其发电方式有汽轮机发电、燃气轮机发电及内燃机发电三种,具体到实现方式有燃煤锅炉,燃气锅炉,蒸汽燃气联合循环锅炉,硫化床锅炉等。其中汽轮机发电所占比例最大,燃气轮机发电近年来有所发展,内燃机发电比例最小主要以小型家用为主。汽轮机发电的理论基础是蒸汽的朗肯循环,按朗肯循环理论,蒸汽的初参数(即蒸汽的压力与温度)愈高,循环效率就愈高,其实这也是发展大机组的主要动力。就当今火电技术来说,能进一步提高超临界机组的效率,主要从以下两方面入手: 提高初参数,采用超超临界 从电厂循环方式来分析,朗肯循环效率取决于循环工质的吸热温度和发热温度,平均吸热温度越低,放热温度越高,循环效率也越高。就这点来讲,如果要提高循环效率,就应该降低吸热温度,提高放热温度,循环工质的吸热温度是取决于外界环境和压力的,我们能做的也就是提高工质的放热温度,也就是提高新蒸汽的温度。所以超超临界机组应运而生了。 汽轮机制造技术已很成熟,但仍有进一步提高其效率的空间,主要有以下两种途径:

热风炉工艺流程图

2009-09-21 13:26:12 来源: 作者: 【大中小】浏览:6207次评论:1条 一、热风炉技术操作规程 (一)烧炉和送风制度 1 烧炉制度 (1) 炉顶温度1250℃~1300℃ (2) 烟道温度350℃~380℃ (3) 高炉煤气压力8℃~9℃ 2 烧炉原则: (1) 以煤气流量和烟道残氧仪显示值(应在~%)为参考调节助燃空气,在烧炉初期使炉顶温度尽快达到规定值,以后控制炉顶温度,提高烟道温度,提高热量储备,满足高炉的需要. (2) 烧炉初期应尽量加大煤气量和空气量,实现快速烧炉. (3) 炉顶温度达到规定值时应加大空气量来保持炉顶温不在上升,使炉子中、下部温度上升,扩大蓄热量. (1) 烟道温度达到规定值时,应减小煤气量和空气量,保持烟道温度不在上升,顶温和烟道温度都达到规定值则转入闷炉. (2) 高炉使用风温低,时间在4小时以上时,可采取小烧或者适当增加并联送风时间. (3) 烧炉要注意煤气压力,发现煤气压力低时要和净化室联系提高压力,当煤气压力低于3Kpa时,要停止烧炉. (4) 热风炉顶温度低于700℃时,烧炉要用焦炉煤气引火. 3送风制度: (1)正常情况:四座热风炉同时工作,采用交叉并联送风运行方式,风温使用较低或一座热风炉因故障停用时,可临时采用两烧一送的运行方式,运行方式的改变需工长批准。长期改变运行方式要经工段长批准。 (2) 一个炉子的换炉周期为小时,换炉时间按作业表进行,改变换炉周期应经工段批准,一定要先送风后烧炉.

(3) 换炉时,风压波动〈5Kpa,波动超过范围,要立即查清原因(如冲压不当、换炉操作失误等). (4) 在送风或换炉中,风压和风量突然下降,可能鼓风机失常,应及时报告值班工长,风压降到20Kpa时,立即关闭冷风大闸. (二)热风炉换炉操作选择 (1)手动操作(一般在正常情况下不使用). (2)机旁操作箱手动操作(特殊情况下使用). (3)操作室手动(遥控手动),自动失常情况下使用. (4)半自动操作(温度控制或特殊情况). (5)全自动操作(定时换炉). (6)单炉自动操作. (7)自动烧炉与停烧. (8)交叉并联送风. 注:操作制度经过同意可以互换,操作方法可根据需要选择. (三)热风炉换炉操作顺序 1.燃烧转送风 (1)关煤气调节阀. (2)关煤气阀. (3)关助燃空气调节阀. (4)关燃烧阀. (5)关助燃阀. (6)开支管放散阀及蒸汽阀. (7)关烟道阀(2个). (8)通知值班工长,同意后. (9)开冷风旁通阀(充压)待炉内压力充满后. (10)开热风阀,开冷风阀. (11)关冷风旁通阀.

热风炉精细化烧炉控制技术

技术秘密全文 一、技术秘密名称:热风炉精细化烧炉控制技术 二、股份公司原有技术及存在的问题 现有大中型高炉的热风炉一般为四座热风炉,采用两烧两送方式工作,烧炉采用DCS(即Distributed control system,直译为分散控制系统)进行控制的,对煤气和空气采取双闭环比值控制的方式进行配比燃烧,由操作工根据拱顶温度的变化情况及废气残氧量不定时地修改空燃比。为了满足高炉对高风温的需要。一般采用尽量提供足够的焦炉煤气或热值较高的转炉煤气,采用废气含氧量加双闭环比值控制和过量氧气系数的办法来满足自动控制和高风温的需要。 在热风炉作业中要保护设备而须管理格子砖温度分布,此外还因使能耗最小而需在燃烧时对煤气流量作最优设定。前者除了保护拱顶使不超上限温度外,由于硅变形点为1350℃以下,为防止达到此温度时硅砖膨胀而破裂,还须在送风末期管理这一温度。现有技术的热风炉煤气等流量自动设定主要是按热平衡和检测数据来计算送风终了时的蓄热量,但没有足够精确度的残热推断和温度分布的数学模型,为此还需手动设定。 但上述方法不足在于: 使用方法(1)无法用最经济简单方法提供尽可能高温度的热风。而最经济科学的方法是,尽可能多的使用高炉煤气,并且在保证高风温情况下尽可能减少焦炉或转炉煤气的使用量。 使用方法(2)由于其使用废气烟道中装有的残氧量测量仪对残氧量进行闭环跟踪调节,由于其控制输入参数为已发生,因此调节反映较慢,不利于节

约能源,同时此也不能满足最佳空燃比所要求的精度。 三、国内外解决同类问题的技术方案 目前国内高炉热风炉的烧炉控制方式因建炉时间和体积的不同以及不同钢铁企业之间,其控制水平千差万别,但目前均无法真正实现烧炉的自动控制,主要有以下几种控制方式: A、采用分立仪表控制的,多见于一些比较老的中小高炉(100-1000m3)上,这部分热风炉燃烧控制都是手工调节,燃烧效果的好坏取决于热风炉操作工的“勤心”、“细心”、“精心”。根本谈不上自动控制。 B、采用PLC或DCS进行控制的,多见于后期新建或大修后改造过,有些企业对煤气和空气的配比燃烧采取双闭环比值控制的方式,或分别采用单回路自动控制,由操作工根据拱顶温度的变化情况不定时地修改空燃比,以提高拱顶温度。但是煤气热晗值的变化是比较频繁的,尽管有经验丰富且勤快的操作工经常操作,也难于保证给出的空燃比是最佳的,何况要保持其长期性。加上调节阀频繁动作,容易损坏。因此热风炉的烧炉控制根本无法达到最优。虽然部分热风炉采用新的工艺技术,使热风炉送出的风温较高,多在1050-1250℃之间,甚至更高,但是还是无法使热风炉的烧炉真正实现自动控制,并使得空燃比随时处于最佳值。 C、国内部分高炉操作水平很高的企业,对热风炉自动烧炉和对风温要求自然也很高,因此想尽办法提高风温并实现自动烧炉,除热风炉采用新的工艺技术外,在烧炉控制上除采取上述双闭环比值控制外,还增加煤气热值仪和废气分析仪,这样从理论上可以实现自动烧炉。但是煤气热值仪和废气分析仪滞后大、控制精度低、稳定性差、维护量极大,在自动烧炉和风温的提

热风炉系列测温系统

YT-RFL系列热风炉拱顶测温系统 一、系统引言 目前,我国热风炉拱顶温度大多采用热电偶测量。由于热电偶的使用环境(高温,高压)和结构的限制,在温度波动大、振动及安装方式等诸多因素的影响下,造成热电偶寿命短、维护费用高等缺点。 亚泰公司开发出一种专用于热风炉拱顶温度测量的红外测温系统。它可以长期稳定可靠的工作,从而克服热电偶测温的种种缺陷。用户使用结果证明该系统测温精确、经济实用。 二、系统特点 基本免维护运行成本极低 连续自动测温抗十二级大风 不需要循环水无需净化吹扫风 220V交流供电 三、系统用途

四、系统技术参数 1、测温范围:350~2000℃ 2、测量精度:±(0.30%测量值+1℃);测量值单位为K 3、重复精度:±(0.10%测量值+1℃);测量值单位为K 4、响应时间:1mS或10mS可选 5、光学分辨率:300:1 6、信号处理:峰值,谷值保持和平均值 7、输出方式:同时模拟和数字输出,双向RS485通讯 8、环境等级:NEMA-4 五、应用实例 右图是安装在某钢铁公司炼铁厂热风 炉的热电偶和红外测温仪的实时测温比较。 红外测温仪比热电偶测量的数据略高, 主要是因为红外测温仪测的是格子砖的温 度,热电偶测量的是炉顶内热空气的温度。 用户认为红外测温仪测量的数据准确,工作 状态稳定,且运行期间基本免维护。从烘炉 开始运行五年多来,整体温度趋势都很正 常,用户对该系统的成功应用表示满意和肯 定,现在主要是采用红外测温仪的温度数据对热风炉进行优化控制。QQ:71380115 bbc@https://www.doczj.com/doc/eb958904.html, 希望我们的系统能为贵公司提高产品质量、创造更大的价值!

某钢钢铁热风炉炉壳施工方案

某钢环保搬迁炼铁项目3#2500 m3高炉热风炉本体专项施工方案 建设单位:部 监理单位: 总包单位: 施工单位: 批准: 审核: 编制: 2010年11月

目录 一、编制依据 (3) 二、工程概况 (4) 三、工程质量目标 (4) 四、组织机构 (4) 五、施工组织部署 (5) 六、施工准备及各项资源需用量计划 (7) 6.1 技术准备 (7) 6.2 现场施工准备 (7) 6.3劳动力准备 (8) 6.4 机具准备 (8) 6.5 材料准备 (10) 七、施工方案 (10) 7.1 炉底制安 (10) 7.1 炉壳制作 (17) 7.3安装 (23) 八、质量保证措施 (29) 九、安全保证措施 (31) 十. 施工环保措施 (33) 十一.网络计划 (33)

一、编制依据 1.1工程名称 *钢集团环保搬迁炼铁项目3#2500m3高炉热风炉系统工程。 1.2编制目的、宗旨 本施工方案是为*钢集团环保搬迁炼铁项目3#2500m3高炉热风炉系统工程施工而编制。 指导思想是:编制时为业主着想,施工时对业主负责,竣工时让业主满意,同时在经济合理,技术可靠的前提下,保安全、保质、保量、保工期完成此工程。 1.3编制依据 本施工方案编制时依据*钢集团环保搬迁炼铁项目3#2500m3高炉热风炉本体施工图及我公司GB/T19001-2000—ISO9001:2000质量管理体系、GB/T28001—2001职业健康安全管理体系、GB/T24001-2004—ISO14001:2004环境管理体系标准。并结合以往施工同类工程特点、经验材料,我公司施工能力、技术装备状况制定的。 1.4本工程采用规范标准 《钢结构工程施工及验收规范》 GB50205-2001 《现场设备、工业管道焊接工程施工及验收规范》GB50236-98 《工业金属管道工程施工及验收规范》GB50235-97 《工业设备及管道绝热工程施工及验收规范》GBJ126-89 《机械设备安装工程施工及验收通用规范》GB50231-98 《工业金属管道工程质量检验评定标准》GB50184-93

火电厂燃料管理系统的研究与应用

火电厂燃料质量分析管理系统的研究与应用 杨瀚钦 0、前言 随着我国《节能法》的颁布与实施,越来越多的企业开始重视能源管理工作,而能源审计是企业能源管理的一个重要环节。企业能源审计这一概念源于财会审计,1982年开始引入我国,随着经济的不断发展,现代审计活动已经远远超出了传统的审计范围,扩大到对企业的管理和经营决策进行评价,并提出指导性意见。企业能源审计是对企业能源利用状况进行全面的监督、考核的过程,分析企业的用能水平,查找企业的节能潜力,明确企业节能方向,为改进能源管理,实施节能技术改进,提高能源的利用率提供科学的依据。 火电厂是一次能源消耗的大户,据统计,火电厂全年煤耗量占全国能源总产量的20%左右。因此,对电厂进行能源审计是电力行业节能工作的重点。企业节能主要体现在直接节能和间接节能两种方法上。近年来,人们往往把注意力放在直接节能上,而忽视了间接节能。据事实证明,间接节能的潜力是很大的,是提高企业能源利用率不可忽视的手段之一。企业能源审计就是一种间接节能方案,是近年来新兴的一种科学有效的能源管理方法,是审计工作在能源管理方面的延伸和渗透。燃料花费是火电厂的一大开销,对他的管理是保证火电厂生产的重要环节,是资金占用大户,约占总花费的70%左右。同时,传统的燃料管理模式已难以适应当前电力体制的改革要求,火力发电企业要想降低企业的生产和经营运行成本,必须在燃料管理模式上进行突破和创新。传统的燃料质量分析管理模式主要靠人工填写数据,手工计算,人工提交的方法来对燃料的质量进行检查并提交。这不利于上级人员对燃料的采样、制样、分析以及分析结果的管理。无法做到满足企业生产标准化管理的管理方式。 1、系统实现 为了实现燃料抽样、制样、分析过程中的标准化生产,我们设计了对燃料的样品分析过程进行标准化管理的智能化系统。该系统旨在将各种样品分析仪器和智能电脑结合起来,对样品的分析过程进行控制。同时自动计算各项参数使用公式计算之后上传到服务器。

热风炉操作说明书

山东寿光巨能特钢12503 M高炉热风炉操作说明书 莱芜钢铁集团电子有限公司 2011.04

1、系统概述 热风炉控制室设有PLC一套,PLC采用西门子S7-400系列CPU 和ET200M远程站及图尔克现场总线远程站,上位机与PLC间通过以太网进行通讯,CPU与远程站通过PROFIBUS DP进行通讯,完成对三座热风炉的所有参数检测、控制及事故诊断。 2、工艺介绍 本控制系统主要完成本系统上各种开关、模拟量的检测与控制;利用热风炉烟气,设置热风炉助燃空气和高炉煤气双预热系统,以节省能源。并设助燃风机两台,以及各种切断阀和调节阀,以实现热风炉焖炉及燃烧、送风的控制要求。本控制系统设有微机两台及各阀现场操作箱,正常状况下三座热风炉的操作都通过微机实现,微机操作有单机和联锁两种操作模式,现场操作箱主要用于现场调试。微机操作和操作箱操作受联锁关系限制。 热风炉的工作状态有燃烧、焖炉、送风三种状态,状态的转换靠控制各阀门的动作,热风炉各阀门按照:燃烧→焖炉→送风→焖炉循环的工作过程,自动或手动进行换炉切换工作。其受控阀门及三种状态对应的阀门状态如下图所示:受控阀门内容及状态表(K=开,G=关)

3、监控功能 根据生产实际情况和操作需要,在监控站制作多幅监控画面,全部采用中文界面,具有极强的可操作性。具体的监控画面包括:热风炉主工艺画面、助燃风机监控画面、煤气空气调节画面、历史趋势画面。 在画面上可显示热风炉各部分的温度、压力、流量分布状况,采集的数据,历史趋势、报警闪烁画面,完成各阀门、设备的开启及操作,完成煤气、助燃空气的调节阀的操作及调节,各系统的自动调节与软手动调节、硬手动调节的无扰自动切换,各调节阀的操作及调节和保持各数据的动态显示。 主要画面及其功能如下: 热风炉主工艺画面:可显示热风炉的整个工艺生产流程及相关的主要参数值,报警闪烁,切入其他画面的功能按钮,热风炉的单机/联锁切换,单机模式下实现对每个阀的单独开关控制,联锁模式下实现焖炉、燃烧、送风三个状态的自动转换。 分画面:各调节系统的画面,包括参数设定的功能键、控制流程图、报警纪录,相关信息;历史趋势,相关的PID参数设定等等。切

热风炉技术方案样本

山西安龙重工有限公司 热风炉系统设备 技 术 方 案 湖北神雾热能技术有限公司 .12.02 一、前言 该项目是遵循山西安龙重工有限公司所提技术要求设计, 所采用的技术核心主要是当前国内外先进的燃气半预混双旋流燃烧

技术等。 二、设计基础 1、原始参数及现场条件 1).处理原料 待定 2).处理能力: 待定 2 热风炉工况参数 1).最大热负荷: ×104Kcal/h 2).热风炉出口热风温度: 50~300℃ 3).热风炉出口热风流量: 187000 Nm3/h(在300℃工况下) 4).燃料参数 煤气(具体种类待定): 热值约1000 Kcal/Nm3 压力: 6~8 kPa 5).液化气或其它高热值燃气( 启炉和长明火燃料) 热值: 0 kcal/Nm3 压力: 10kPa 6).煤气吹扫气参数 氮气: 压力: ~0.2 MPa 三、方案内容 1、性能参数

2、耐火材料选型参数 低水泥高铝浇注料: 用于炉膛耐火内衬 容重~2.3kg/m3 烧后抗压强度110℃×24h ≥15MPa 1000℃×3h ≥25MPa 烧后线变化率1000℃×2h 0~-0.2% 耐火度>1700℃ 3、热风炉设备特点综述 热风炉是根据终端设备对温度的要求, 输出适合温度和一定流量热烟气的设备, 在满足此基本要求的基础之上, 我们重点考虑了如下方面: a)热风炉在运行过程中对炉内温度实现检测, 满足

终端设备所需要风温及风量。燃烧器调节范围大, 火焰长度、扩散角均能和炉子合理匹配, 且配有 自动点火和火检, 保证安全稳定运行; b)炉子采用合理的钢结构来支撑本体; 选用性能良 好的耐火材料砌筑, 采用二次风冷却的方式, 确 保炉体表面温度符合技术要求; c)合理配置炉子检修口、观察孔, 结构设计做到开 启灵活, 关闭严密, 减少炉气外溢和冷风吸入的 现象; d)配备完善的热工控制系统设备, 自动化程度高。确 保严格的空燃比和合理的炉压等控制, 使热损失 减少到最小; e)满足低耗、节能的工艺要求; f)在环保方面, 烟气中有害成分游离碳和NO X经过强 化燃料与空气混合, 避免游离碳的生成; 同时降 低燃烧过剩空气系数和火焰温度是减少NO X的有效 技术措施。实现减少NO X的生成量。 4、热风炉系统及主要技术说明 4.1、热风炉结构与组成 热风炉主要由热风炉本体、燃烧器、燃烧及控制系统等组成,

热风炉

热风炉是现代大型高炉主体的一个重要组成部分,其作用是把从鼓风机来的冷风加热到工艺要求的温度形成热风,然后从高炉风口鼓入,帮助焦炭燃烧。所以热风炉的热风温度大小或稳定与否都对于整个高炉炼铁有着很大的影响。所以我们要做一套设计,控制热风炉的温度,保证生产的正常进行。本次课程设计正是针对于转炉炼钢生产中热风炉的单炉送风系统,利用单闭环系统进行负反馈控制,使得热风炉的热风温度能够达到转炉炼钢生产的工艺要求。国内大部分高炉均采用每座高炉带3至4台热风炉并联轮流送风方式,保证任何瞬时都有一座热风炉给高炉送风,而每座热风炉都按:燃烧-休止-送风-休止-燃烧的顺序循环生产。当一座或多座热风炉送风时,另外的热风炉处于燃烧或休止状态。送风中的热风炉温度降低后,处于休止状态的热风炉投入送风,原送风热风炉即停止送风并开始燃烧、蓄热直至温度达到要求后,转入休止状态等待下一次送风。 钨-铼)。③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。满足热风炉工艺要求的热电偶型号有B型和S型,B型测温范围是0℃--1700℃,S型测温范围是0℃--1450℃,所以从经济适用方面选择S型铂铑10-铂热电偶。具体参数见表2-1。表2-1 标准化热电偶技术数据热电偶名称分度号热电极标示E(100,0)(mV)测温范围(℃)对分度表允许误差极性识别长期短期等级使用温度(℃)允差铂铑10-铂S 正亮白较硬0.646 0~1300 1600 III ≤600 ±1.5℃负亮白柔软>600 ±0.25%t 用铂电阻作为电桥的一个桥臂电阻,将导线一根接到电桥的电源端,其余两根分别接到铂电阻所在的桥臂及与其相邻的桥臂上,当桥路平衡时,导线电阻的变化对测量结果没有任何影响,这样就消除了导线线路电阻带来的测量误差。采用三线制会大大减小导线电阻带来的附加误差,工业上一般都采用三线制接法。温度测量选用的温度变送单元已包含在PLC功能模块中,不需另行选择。 2.6执行器的选择控制过程中常用的执行器有电动和气动两种,他们均由执行机构和调节阀组成。根据安全生产原则,当热风温度不够时,进入高炉燃烧不充分,高炉温度降低,铁水凝固,导致生产被迫停产,严重会出现生产事故,所以选择气关式调节阀,调节器输出的模拟信号为4-20mA,当电信号为4 mA时,调节阀处于全开状态;当电信号为20 mA 时,调节阀处于全关状态。根据管路特性、生产规模及工艺要求,宜选用百分比流量特性的调节阀,而具体的调节阀尺寸则要根据被控介质流量大小及调节阀流通能力来选择。由于本次设计选用的是热风炉,选择温度控制器作为执行机构,选用对应的MJYD-JL-20型单相交流模块。PLC控制器输出的数字量经过D/A转换成温度控10 制器可识别的模拟电压信号后,根据不同的电流值,MJYD-JL-20型单相交流模块输出相应的电压值从而控制煤气调节阀的开度,达到调节温度的目的。 2.7调节器的选择根据构成控制系统为负反馈原则,选择调节器作用方式。由于调节阀为气关式,故Kv为“-”,当煤气调节阀开度增加时,热风炉温度上升,故被控对象的Ko为“+”;测温仪表的Km为“+”,根据闭环内只有奇数个副作用的原则调节器的Kp应为“+”,故调节器选用负作用方式。工业中常用的控制器有工业控制计算机、单片机和可编程控制器等。与其它几种控制器相比较,可编程控制器是综合了计算机技术、自动化技术与继电器逻辑控制概念而开发的一代新型工业控制器,是专为工业环境应用而设计的。它可以取代传统的继电器完成开关量的控制,比如,将行程开关、按钮开关、无触点开关或敏感元器件作为输入信号,输出信号可控制电动阀门、开关、电磁阀和步进电机等执行机构。它采用可编程的存储器,在其内部存储,执行逻辑运算,顺序控制、定时计数和算术运算等操作的指令,通过数字式、模拟式的输入和输出控制各种类型的机械和生产过程实现自动化。工业控制采用PLC,显示了突出的优越性,因它可对用户提出的生产控制要求和意见,能方便地在现场进行程序修改和调试,使系统的灵活性大大增强。内部的软继电器使系统在控

高炉热风炉的控制

高炉热风炉的控制

1. 概述 钢铁行业的激烈竞争,也是技术进步的竞争。高炉炼铁是钢铁生产的重要工序,高炉炼铁自动化水平的高低是钢铁生产技术进步的关键环节之一。 炉生产过程是,炉料(铁矿石,燃料,熔剂)从高炉顶部加入,向下运动。热风从高炉下部鼓入,燃烧燃料,产生高温还原气体,向上运动。炉料经过一系列物理化学过程:加热、还原、熔化、造渣、渗碳、脱硫,最后生成液态生铁。 高炉系统组成: 1)高炉本体系统 2)上料系统 3)装料系统 4)送风系统 5)煤气回收及净化系统 6)循环水系统 7)除尘系统 8)动力系统 9)自动化系统 高炉三电一体化自动控制系统架构:

组成:控制站和操作站二级系统 控制内容: 仪表、电气传动、计算机控制自动化 包括数据采集及显示和记录、顺序控制、连续控制、监控操作、人机对话和数据通信 2.热风炉系统 (1) 热风炉系统温度检测 (2) 热风炉煤气、空气流量、压力检测 (3) 热风炉燃烧控制 (4) 热风炉燃烧送风换炉控制 (5) 煤气稳压控制 (6) 换热器入口烟气量控制 (7) 空气主管压力控制 热风炉燃烧用燃料为高炉煤气,采用过剩空气法进行燃烧控制,在规定的燃烧时间内,保持最佳燃烧状态燃烧;在保证热风炉蓄热量的同时,尽量提高热效率并保护热风炉设备。 热风炉燃烧分三个阶段:加热初期、拱顶温度管理期和废气温度管理期。

⑴加热初期: 设定高炉煤气流量和空燃比,燃烧至拱顶温度达到拱顶管理温度后,转入拱顶温度管理期。在加热初期内,高炉煤气流量和助燃空气流量均为定值进行燃烧。 ⑵拱顶温度管理期: 保持高炉煤气流量不变,以拱顶温度控制空燃比,增大助燃空气流量,将拱顶温度保持在拱顶目标温度附近,燃烧至废气温度达到废气管理温度后,转入废气温度管理期。在拱顶温度管理期内,高炉煤气流量为定值进行燃烧,助燃空气流量进行变化以控制拱顶温度。 ⑶废气温度管理期: 依据废气温度逐渐减小煤气流量,同时以拱顶温度调节控制助燃空气流量,将拱顶温度保持在拱顶目标温度附近,至废气温度达到废气目标温度后,如果热风炉燃烧制选择为“废气温度到”,则燃烧过程结束;如果选择为“燃烧时间到”,则调节煤气流量减小到仅供热风炉保持热状态的需要,直到燃烧时间到时燃烧过程结束。 热风炉是烧炉、送风交替进行的,其循环周期根据高炉生产和送风制度确定。例如,配备三台热风炉时可选择二烧一送模式,或半并联交叉送风的模式。二烧一送的模式,其循环周期表如下:

火电厂燃料智能化管理系统建设的探讨

火电厂燃料智能化管理系统建设的探讨 发表时间:2017-11-24T10:25:48.177Z 来源:《电力设备》2017年第19期作者:李林林1 刘海龙2 [导读] 摘要:燃煤发电厂中燃料成本占发电成本占发电成本较高比重,近年来随着煤炭价格不断上涨,火力发电厂中燃料成本占发电成本 75%左右。 (华润电力(宁武)有限公司山西忻州 034100) 摘要:燃煤发电厂中燃料成本占发电成本占发电成本较高比重,近年来随着煤炭价格不断上涨,火力发电厂中燃料成本占发电成本75%左右。火电厂燃料管理在整个火电企业运行过程中扮演者十分重要的角色。火电厂燃料智能化管理系的应用,可为火力发电厂燃料系统提供从计划、采购、合同、调运、计量、接卸、采样、验收、存储、掺配、结算到统计分析等全流程精细化管理服务,实现燃料管理的数字化、信息化。 关键词:燃料智能化管理信息化数字化 1 火电厂燃料管理系统的现状分析 大多数火电厂燃料管理方式粗放,技术手段落后,无法准确及时掌握煤场贮煤情况;燃料入厂、称重、采样、制样、化验等环节生产设备的自动化程度较低,均为人工进行手动操作或半自动运行予以完成,未实现燃料自动化管理;入炉煤的计量、采样、制样等设备各自为政,数据孤立,没有进行有效的整合;燃料管理流程繁杂,各流程信息大多孤岛运行,未实现信息共享。 2 燃料智能化管理系统建设目标及可行性 燃料智能化管理系统建设目标是提高入场煤质量与数量,降低生产成本,建立更科学的智能化燃料管理理念。 燃料智能化管理系统就是运用现代信息技术和科技手段,针对燃料验收过程中所涉及的煤场、车辆、设备、人等要素,以精细化管理思想为指导,应用物联网、自动控制等技术,把现场各环节联成一个可靠、高效、自动的智能系统,实现对各环节所涉及的设备、人、车辆的定位、识别、管理,从而达到对电厂入厂煤质量与数量的有效监管。 3 燃料智能化管理系统总体方案介绍 3.1燃料智能化管理能够促进燃料管理过程实现“四个转变” 3.2 燃料智能化管理系统分为设备互联层、数据隔离层、生产管控层和业务应用层四个部分 设备互联层:与电厂设备做接口,实现燃料管理节点和设备网络化,并通智能化技术将燃料信息有机联结起来,提升燃料管理效能。 数据隔离层:将燃料相关设备与燃料智能化管理系统进行通讯,达到对现场设备工况、管理情况信息实时采集和现场设备的部分功能干预。 生产管控层:燃料智能化管理的核心应用层,实现对燃料全过程进行集中管控,通过数据与视频叠加对现场进行监控,改传统的被动通知为主动掌握。 业务应用层:将燃料管理产生的大量数据信息保存起来,通过高效手段对数据进行查询,用数据挖掘的技术实现数字内容的智能分析处理。 4 燃料智能化管理系统实施及应用 燃料智能化集中管控系统是集设备管控、视频监控和数据分析与展示于一体,以实现燃料管理智能化为目的的集成系统。 4.1汽车出入厂管理系统 汽车入厂后通过无人值守控制装置采用的RFID无线射频技术,自动扫描车卡信息,利用后台数据库获得煤矿信息,并配合外围设备控制车辆是否可以进厂,通过信号灯,挡车器,语音提示系统提示车辆是否可以进厂,提示汽车进入自动称重系统、自动采用系统。 4.2自动称重系统 车辆入厂完成后,将会进入称重环节,读卡器扫到车卡信息后,LED显示屏显示车牌号并落前档杆;当车辆挡住定位器后,称重程序开始获取稳定后的磅表重量数据,获取数据成功后,车辆完成卸煤后进行回皮,自动打印磅单。 4.3智能采样系统 燃料智能管控系统根据车辆来煤信息自动随机生成采样点,超声波技术精准确定采样区域,通过采样头实现分层全断面采样,极大的提高了采样代表性。汽车采样机与全自动制样系统采制一体式布局,汽车采样机的原煤样经过初级破碎缩分后进入底开门式集样器内暂存,当前批次所有车辆来煤采样完毕后,集样器底部仓门自动打开,煤样直接可以进入全自动制样系统,整个采样、制样过程实现了煤样不落地,现了全自动无人干预采样。 4.4全自动制样系统 全自动制样系统是实现燃料智能化管理系统关键设备,必须选用业绩成熟厂家产品。智能制样系统具有自动称重、输送、破碎、缩分、干燥、粉碎、封装、写码、除尘、弃料回收等功能,可以自动制备出6mm全水样、3mm存查样、0.2mm分析样,并将煤样用塑料煤样瓶自动密封包装、编写编码标识。 4.5智能存取样系统 由全自动存样柜及智能传输系统组成。全自动存样柜由内部的存储仓、机械手、控制主机以及外部的手动存取操作台、自动进样口、自动出样口、自动弃样口、观察窗、应急门等组成。气动传输系统是将样品通过传输管道使用气动控制系统输至全自动存样柜设备。该气

相关主题
文本预览
相关文档 最新文档