当前位置:文档之家› 双钢板内填混凝土剪力墙滞回性能试验研究

双钢板内填混凝土剪力墙滞回性能试验研究

三类钢板剪力墙结构试验研究

建筑结构学报 Jour nal of Bu ildi ng Structures 第32卷第1期2011年1月 V ol 32N o 1Jan 2011002 文章编号:1000 6869(2011)01 0017 13 三类钢板剪力墙结构试验研究 郭彦林,周 明,董全利,王小安 (清华大学土木工程系,北京100084) 摘要:防屈曲钢板剪力墙已被试验证明是优秀的抗侧耗能构件,但墙板嵌入受弯框架时,二者之间的相互作用尚需进一步研究。为此进行了两层单跨钢框架内嵌防屈曲钢板剪力墙的试验研究,作为比较同时进行了两层单跨钢框架内嵌非加劲钢板剪力墙与两层单跨钢框架内嵌组合钢板剪力墙结构的试验研究。在试验的基础上,对试件进行有限元分析,比较了三类钢板剪力墙之间的性能差异。研究表明,防屈曲钢板剪力墙能够消除无加劲钢板剪力墙在水平荷载下产生的巨大屈曲噪声,具有较大的初始刚度与承载力,拥有良好的延性与滞回耗能性能,而且由于其屈服先于屈曲发生,对周边框架产生的附加弯矩很小;组合钢板剪力墙的性能与防屈曲钢板剪力墙相似,但由于后期外包的混凝土发生脱离,内嵌钢板剪力墙会产生拉力带,不仅对框架产生不利影响,而且自身承载力、刚度与耗能能力均有不同程度的退化。 关键词:钢板剪力墙;非加劲;防屈曲;组合;拟静力试验;拉力场;滞回耗能;抗侧性能 中图分类号:TU311 文献标志码:A Experimental study on three types of steel plate shearwalls under cyclic loadi ng GUO Yan lin,ZHOU M i ng,DONG Quanl,i WANG X i aoan (Depart ment of C i vilEngi neeri ng,TsinghuaUn i versity,Beiji ng100084,Ch i na) Abstract:Buckli ng restra i ned steel plate shear wa ll(BR SPS W)has been pr oven to be an effective co m ponent for resisti ng lateral force and dissipati ng seis m ic energy.Ho w ever,perfor mances ofm o m ent resisti ng fra m e struct ures w ith steel plate shear walls,especially the i nteracti ons bet w een the w alls a nd the fra mes re ma i n to be i nvestigated.A n experm i ental study on a fra m e struct ure w ith BR SPS W under cyclic loadi ng w as carried out,and as a contrast t wo m ore e xperm i ents on fra m e str uctures w ith non st iffened a nd co mposite SPS W were c onducte d.A fi nite ele m e nt analysis on the three SPS W specm i ens w as m ade,and t he differences bet w een the three k i nds of SPS W s w ere discussed.It is sho wn that fra m e str ucturesw ith BR SPS W have litt l e buckli ng noise under lateral force,and possess better stiffness,larger ultm i ate l oadi ng capacity,better duct ility and m ore stable hysteresi s ener gy perfor m ance than fra m e structuresw ith non stiffene d SPS W.W ith its yieldi ng happens before buc kling,the unfavorable effect on the adjacent colu m ns i nduced by BR SPS W is substantially lo w er than non st iffened SPS W.Co mposite SPS W s have sm i ilar perfor mances w ith BR SPS W s,but after the covered concrete splits fro m the infill steel plate,te nsion f i eld which bri ngs additional m o m ents to the fra me colu mns appears in the steel plate,and ultm i ate l oad,st iff ness a nd energy dissi pating ability o f the w all all dege nerate sm i ulta neousl y. K ey wor ds:steel plate shear wal;l non stiffene d;buc k ling restrained;co mposite;pseudo static test;tensi on fiel d; hysteretic energy dissi pat i ng;lateral force resisting 基金项目:国家自然科学基金项目(50778101),北京市自然科学基金项目(8092018)。 作者简介:郭彦林(1958 ),陕西富平人,工学博士,教授。E ma i:l gy@l tsi nghu a edu cn 收稿日期:2009年7月

钢管混凝土剪力墙抗震性能研究综述

龙源期刊网 https://www.doczj.com/doc/ef916458.html, 钢管混凝土剪力墙抗震性能研究综述 作者:齐红甲 来源:《中国科技纵横》2013年第03期 【摘要】本文对钢管混凝土边框剪力墙的抗震性能进行了研究,阐述了国内外对该类型剪力墙的研究方法和研究成果,并提出当前钢管混凝土剪力墙研究中存在的一些问题。 【关键词】钢管混凝土剪力墙抗震刚度延性 随着国民经济的高速增长,我国高层建筑和超高层建筑也越来越多,其结构形式也越来越复杂。研制抗震性能好的剪力墙是高层建筑抗震设计的关键技术。 1 综述背景 为克服钢筋混凝土剪力墙在工作中的缺点,提高其抗震能力,国内外学者针对钢筋混凝土剪力墙进行了许多研究。其中,开缝剪力墙主要包括:同济大学吕西林提出的填充氯丁橡胶带的带缝剪力墙[1];东南大学李爱群提出的采用摩阻式控制装置的带缝剪力墙[2];清华大学叶列平提出的双功能带缝剪力墙[3]。研究资料表明带缝剪力墙在一定程度上影响了墙的整体性 和受力性能。 1905年日本建造了第一个采用型钢混凝土柱的结构,1950年后,日本主要研究了型钢混凝土(SRC)梁的抗弯性能、SRC柱的偏压性能、SRC梁和柱的剪切性能、SRC梁柱节点抗 剪性能及钢管与混凝土的黏结性能等[4]。我国从20世纪50年代开始应用SRC结构,近年来日渐增多[5][6]。90年代初清华大学对SRC剪力墙进行了抗弯性能试验研究[7],随后国内外进行了许多研究[8],研究表明:采用钢-混凝土组合剪力墙能够控制剪力墙中裂缝的发展,形成较完备的耗能机制,起到了良好的二道设防作用,使结构的抗震能力明显提高。 2 国内外研究现状 文献[9]对不同混凝土强度等级,不同轴压比,不同剪跨比,不同强弱抗剪连接键等设计 参数的矩形钢管混凝土边框组合剪力墙的抗震性能进行了研究。研究表明:组合剪力墙及筒体可有效地将混凝土剪力墙侧向刚度和承载力大的优势与钢管混凝土柱抗震延性好的优势组合,钢管混凝土边框柱与混凝土剪力墙之间的抗剪连接键能可靠工作,工程应用效果良好。 文献[10]研究了钢管混凝土边框剪力墙抗震性能,对不同轴压比、不同强弱抗剪连接键的矩形钢管混凝土边框剪力墙进行了低周反复荷载下的抗震性能试验研究。研究表明这种剪力墙可有效地组合混凝土剪力墙与钢管混凝土边框柱的优势,抗震效果良好。 文献[11]对矩形钢管混凝土柱带框剪力墙用SAP2000软件做了有限元的弹性分析。该研究认为《矩形钢管混凝土结构技术规程》(CECS159)[12]中将作用于带框混凝土剪力墙的整体

非均匀受压下的箍筋约束混凝土本构模型_冯德成

第43卷第1期2015年1月同济大学学报(自然科学版) JOURNAL OF TONGJ I UNIVERSITY(NATURAL SCIENCE)Vol.43  No.1 J an.2015文章编号:0253-374X(2015)01-0001-07 DOI:10.11908/j .issn.0253-374x.2015.01.001收稿日期:2014-03- 04基金项目:国家自然科学基金重大国际合作项目(51261120374);国家自然科学基金集成项目(91315301 )第一作者:冯德成(1987—),男,博士生,主要研究方向为结构非线性分析.E-mail:aufdc@163.com通讯作者:李 杰(1957—) ,男,教授,博士生导师,工学博士,主要研究方向为混凝土随机损伤力学、随机动力系统分析与生命线工程抗灾.E-mail:lijie@tongj i.edu.cn非均匀受压下的箍筋约束混凝土本构模型 冯德成1,万增勇1,李 杰1,2 (1.同济大学土木工程学院,上海200092;2.同济大学土木工程防灾国家重点实验室,上海200092 )摘要:以Mander提出的箍筋约束混凝土模型为基础,考虑构件非均匀受压下截面应变梯度对箍筋约束效应的影响,引入偏心率系数反映非均匀受压下偏心率对箍筋有效约束力的影响,建立了一类新的箍筋约束混凝土模型.将这一模型与柔度法纤维梁柱单元相结合,实现了在计算过程中动态更新构件不同位置、 不同受力状态下的截面偏心率以及相应的约束混凝土应力-应变关系. 对钢筋混凝土柱的分析结果表明建立的模型物理意义明确、计算精度较高. 关键词:箍筋约束混凝土;非均匀受压;偏心率;柔度法梁柱单元 中图分类号:TU528.1  文献标志码:A Hoop Reinforcement Confined ConcreteConstitutive Model for Non-uniformlyCompression FENG Decheng1 ,WAN Zengyong1 ,LI J ie1,2 (1.College of Civil Engineering,Tongji University,Shanghai200092,China;2.State Key Laboratory  of Disaster Reduction in CivilEngineering ,Tongji University,Shanghai 200092,China)Abstract:Based on the confined concrete model proposed byMander,to consider the effect of the sectional strain gradienton the confinement effect under non-uniformly compression,anew confined concrete model is developed in this paper byintroducing the eccentricity ratio factor to reflect the influenceof the eccentricity on the confining force.Meanwhile,bycombining the model with the fiber force-based beam-columnelement,it can adjust the eccentricity ratio and thecorresponding stress-strain relationship of the section atdifferent locations and different loading states duringcalculation.The analysis of reinforced concrete columnsillustrates that the model has a clear physical meaning andshown to be  effective.Key words:hoop  reinforcement confined concrete;non-uniformly compression;eccentricity ratio;force-based beam-column  element 有关约束混凝土的研究已有近百年的历史. 一般认为,这一历史最早可以追溯到1903年 Considere[1]发现利用螺旋箍筋能有效提高轴心受压 柱的承载力.1928年,Richart[2] 首次定量地研究了 液体围压对混凝土圆柱体轴压性能的影响, 并提出了相应的约束混凝土抗压强度以及峰值应变的计算 公式;1955年,Chan[3] 在试验的基础上提出了箍筋 约束混凝土的应力-应变关系模型,并认为,箍筋的 约束作用仅仅体现在对峰值应变的提高方面,而对强度影响甚微.此后的发展,多沿着试验研究—理论解释的基本路线,试图根据试验结果提出相应的约束混凝土的应力-应变关系模型.1971年,Kent和 Park[4] 总结了前人的研究结果, 提出了一个上升段为二次抛物线、下降段为直线且斜率由体积配箍率、 混凝土强度和箍筋间距等因素决定的应力-应变关系模型. 该模型是这一时期的集大成之作,应用最为广泛,其表达形式也多为后来的研究者所采纳. 20世纪7 0年代之前的研究也具明显的时代局限性.由于当时的结构设计思想主要停留在承载能力设计阶段, 因此,对于材料本构关系下降段的关注不多;并且,由于试验设备的限制,难以准确测定混凝土应力-应变曲线的下降段.这些因素使得基于试 验提出的本构关系模型的下降段十分粗糙[5] . 尽管如此, 这一时期对于箍筋约束效应的认识以及其基本影响因素的辨识仍然为后来的研究提供了框架和基础. 1982年,Scott等[6] 在Kent- Park模型的基础上考虑了应变率的影响;同年,Sheikh和Uzumeri[7] 发 现了矩形截面中的约束“ 拱效应”,并提出了有效约

超高层建筑钢板剪力墙施工技术

超高层建筑钢板剪力墙施工技术 发表时间:2018-11-14T11:13:43.270Z 来源:《建筑学研究前沿》2018年第16期作者:王軍航 [导读] 所以施工人员应该根据具体情况而定。本文对超高层建筑钢板剪力墙施工技术进行分析。 中国建筑第二工程局有限公司北京 100000 摘要:钢板剪力墙的施工重点就是在现场对其进行焊接处理,其焊接形式主要有三种,第一种是螺栓栓接;第二种是现场焊接;第三种就是将两者有效的结合起来,但是无论采用哪种焊接方式,对其建筑构件的精度都有一定的要求,但是不同超高层建筑其精度要求不同,所以施工人员应该根据具体情况而定。本文对超高层建筑钢板剪力墙施工技术进行分析。 关键词:超高层;建筑钢板;剪力墙;施工技术 在超高层建筑中,钢板剪力墙结构应用非常广泛,加强剪力墙结构的施工质量控制是整个建筑重要任务之一。做好剪力墙的施工质量控制,一方面,设计时要针对工程的实际,充分考虑建筑具体的构造处理;另一方面,施工时要认真按照规范进行施工,严格控制每个环节的质量。从而建造出高水准、高质量的剪力墙结构工程。 1钢板剪力墙结构概述 对于高层建筑来说,钢板剪力墙结构是不可缺少的组成部分,因为它是核心筒的骨架。超高层建筑的整个建筑结构主要由三部分组成,第一部分是核心筒剪力墙结构;第二部分是筒外巨柱;第三部分就是钢板剪力墙结构。从中我们了解钢板剪力墙结构对超高层建筑施工的重要性。但是使用钢板剪力墙需要解决一个重要的问题,那就是运输,因为钢板剪力墙一般情况下都比较薄,而且宽度相对来说又很大,而且因为是超高层建筑,所以高度也很高。这是因为如此,没有办法进行整体的运输,只能分段运输,将其运至施工现场再进行连接处理,其连接方式主要三种,第一种是螺栓栓接;第二种是现场焊接;第三种就是将前两种方法结合在一起使用。 2工程概况与钢板剪力墙优势 某工程的结构高度为532米,整体的结构采用矩形框架与核心筒的形式。从剪力墙来看,地下的八层到地上五十层都是采用钢板剪力墙结构,五十一层到一百层采用钢骨剪力墙,一百零一层到一百零五层用钢板剪力墙结构。在该建筑中,核心筒钢板剪力墙在五十层以下都是内置单层的钢板,钢板的厚度均不超过6厘米。中间区域是的核心筒钢板剪力墙用的是热轧钢进行支撑,顶部的剪力墙用8毫米的单层钢板支撑。相比于传统的混凝土,钢板剪力墙性能较好,应用后极大推动了建筑行业的发展。从本工程而言,应用钢板剪力墙的优势主要体现在以下几点上: 第一,增加建筑的有效面积。钢板剪力墙的刚度较大,因此满足设计要求的钢板剪力墙结构厚度较薄,应用在建筑中有利于增加建筑的有效面积;第二,减轻结构负荷。钢板剪力墙的自重相比混凝土结构较轻,所以结构承受的自身负荷较小,有利于建筑结构的稳定;第三,延展性较强。钢板剪力墙的延展性较强,在抗震方面有着极为显著的优势,承受载荷的能力较强,应对载荷突变的性能也较好。 3工程施工中存在的困难及特点 在此工程施工过程中,工程钢板剪力墙的面积非常大,对于施工工艺的要求非常高。而钢板与钢筋之间的接口非常多,两者间的连接点相对也较为复杂,深化存在一定的困难。相应的,工程中钢板墙单片的数量也非常多,实际施工过程中的安装工作进行的相对非常缓慢。钢板墙焊接工艺对于钢板墙焊接变形及残余应力的影响非常大。在实际的工程施工过程中,就需要对控制焊接变形措施进行有效的制定,并从多方面进行综合的考虑。例如,在实际的建筑工程施工过程中对钢板墙中的型钢珠、钢梁、钢板的安装顺序进行了有效的控制,并对钢板与钢板之间所进行的焊接方式及焊接顺序进行了一定的选择控制,同时还对焊接工艺及连接钢板之间的设置进行了相应的控制。想要实现对钢板变形进行有效的监测,就需要对数据结果进行有效的监测记录,通过所记录的数据总结出焊接变形的原因,调整焊接工艺,这样才能够有效实现对钢板墙施工质量的要求。 4超高层建筑钢板剪力墙施工技术 4.1钢板墙测量 钢板墙测量方法与频率将直接影响到钢板墙的施工质量,尤其钢板墙单片数量多、面积大、侧向刚度小、拼接焊缝多。在安装焊接过程中易产生弯曲与变形,所以必须进行测量预控与复测。建立平面控制轴网。按照内、外控制轴网相结合的方法进行钢板墙的坐标测量。先进行角部钢柱测量校正、加固;后进行钢板墙的测量,每节钢板墙须按基点进行复查与引测,每次1个回须进行闭合检查。采用全站仪、铅锤仪、三角钢尺控制钢板墙侧向垂直度的测量。 4.2钢板剪力墙的连接 在钢板剪力墙安装之前要进行质量的检验,检验内容主要包括尺寸规格、垂直度、平面度和预留孔位等,在每项都验收合格后才可以安装。钢板剪力墙在安装的时候需要需要用吊装设备辅助,首先将其放置在钢骨柱之间,然后用高强度螺栓暂时把钢板和钢骨柱连接在一起。需要注意的是,这时的螺栓还不能拧紧,只是初步的确定钢板剪力墙的位置。之后需要根据设计的需求,细微调整钢板剪力墙的横竖位置,保证后续的焊接缝隙。调整完之后用全站仪检测,确定满足要求后再将螺栓拧紧。 4.3钢板墙焊接技术 对于钢板墙焊接施工来说,钢板墙施工过程中两条竖向焊缝所采用的焊接方法是运用单面坡口带衬板进行焊接,而此方法同样适用于一条横向缝的焊接工作。这样不仅能够有效的对焊接时间进行缩短,同时还能够实现对反面清根工作的简化,有效的提高工程施工效率。对于钢骨柱对接接口焊缝来说,其主要的焊接施工需要同时、同向、对称进行。对于钢板墙的焊接来说,首先要对一侧的焊缝进行焊接,等到冷却收缩完成之后再进行另外一侧的焊接工作。在此过程中,需要进行多人、对称的焊接工艺,这样做主要的目的是为了能够保证钢板墙的均匀不变形。钢板墙变形主要出现在焊接过程中,因此在实际的焊接施工过程中,需要对层间温度进行控制,保证温度能够在120~150℃,所运用的焊接方式主要为多层焊接,焊接的层数要保证在3~9层,相邻层塔之间的搭接要在5cm左右。这样就能够保证在进行焊接工作时对焊缝起到预热作用,保证焊接质量达到预期目标。 4.4钢板墙变形监测技术 对于钢板墙的变形监测来说,其主要运用到的仪器为全站仪,同时还配备有贴片进行跟踪性的监测。对于监测的部位来说,要按照均

止水钢板施工方案

一、止水钢板制作、安装 1.1、施工准备 1.1.1 材料准备 3mm 厚成型钢板,单块长度 3000mm,宽度300mm,材质 Q235B,使用前加工成图纸要求形状,钢板表面无油污、锈斑。E43 焊条,直径Φ2.0(使用前应烘干)、Φ12 固定筋、电焊机。 1.1.2 机具准备 电焊机,焊帽、焊锤。 1.1.3 劳动力安排 焊工2 名(必须持证上岗)、普工1名。 1.2 操作工艺 1.2.1 工艺流程 止水钢板定位→固定→接头焊接→剪力墙拉筋及定位钢筋焊接→检查验收。 1.2.2 止水钢板设置位置 基础水平施工缝止水钢板具体设置位置:在设备基础底板顶标高上400mm 为止水钢板中心标高。所有止水钢板应放置在剪力墙中间,并沿剪力墙周圈设置。沿竖向设置和每道水平止水钢板交圈焊接严密。 1.2.3 止水钢板固定 止水钢板位置确定好后,用墙体拉钩筋临时上下夹紧固定,然后进行钢板接缝焊接。 1.2.4 止水钢板接缝焊接 止水钢板搭接长度为50mm。钢板焊接应分两遍成活,接缝处应留 2mm 焊缝,第一遍施焊时,首先在中间、两端点焊固定,然后从中间向上施焊直到上端,然后再从下端向中间施焊,第一遍完成后立即将药皮用焊锤敲掉,检查有无砂眼、漏焊处,如有应进行补焊。第二遍应从下端开始施焊。 1.2.5止水钢板定位筋设置 沿止水钢板方向,在其两侧采用Φ12钢筋焊接;一端焊接在止水钢板上,

另一端焊接在剪力墙的水平、竖向主筋上对其进行定位;定位钢筋的间距为 300mm,两侧对称设置。 1.2.6剪力墙拉筋加设 由于剪力墙拉筋间距较小,中间总有一道拉筋穿过止水钢板,止水钢板接缝焊好后,在穿过止水钢板的拉筋处将拉筋切断,然后焊接在止水钢板上,并在其拉筋切断位置处加设一道拉筋,作为拉筋的补强钢筋。 1.2.7 检查验收:止水钢板焊好后,应进行自检,检查有无沙眼、断焊、漏焊或焊缝不饱满之处,不符合要求的进行返工处理。定位钢筋是否焊接牢固;附加拉筋是否加设,如若未设置或焊接不牢,将对其重新焊接或加设。检查合格后,报监理工程师检查验收。 二、质量标准 1、止水钢板:焊缝必须饱满,无夹渣,焊缝高度满足要求;焊缝无沙眼,无烧伤、咬边现象;接缝处钢板无变形、翘曲现象,止水钢板位置、标高正确。 2、材料进场后对止水钢板的外观质量进行检查,断面不符合要求的进行退换或截掉不用。 三、成品保护措施 1、在进行钢筋绑扎及模板安装时不得对止水钢板进行触碰或移动。 2、在模板合模前再一次对止水钢板的位置和外观进行检查,发现问题及 时处理。 四、职业健康、安全、文明施工注意事项 1、作业人员必须持证上岗,进入现场必须戴好安全帽。 2、电焊机必须双线到位,一次线长不得大于 15m ,二次线不得大于 5m ,不得借用钢筋做地线,电焊机接线必须有专职电工接线。 3、施焊时应戴好焊帽、防护手套。 4、每天下班前,应把所用机具、工具回收入库,将工作面内的杂物清理干净,作到活完料净。

混凝土结构原理.矩形箍筋约束混凝土

4.2 矩形箍筋约束混凝土 1.约束作用机理 (1)受力破坏过程 小配箍率时(3.0≤t λ)的破坏过程及特征 ● 应力接近素混凝土单轴抗压强度前,应力——应变曲线和素混凝土的应 力——应变曲线基本相同。其中c c f 4.0<σ时,应力——应变关系为直线,c c f 4.0≥σ后,应力——应变曲线开始微凸。 ● 应力接近单轴抗压强度时(()6101700~1500,-?≈→p c c f εσ),箍筋应 变较小(()610600~400-?≈st ε),约束效果不明显,混凝土抗压强度提高不多。 ● 混凝土纵向应力达到峰值(p pc c εεε>=)时,箍筋应力有所增长但仍未 屈服(()6101200~900-?≈st ε);混凝土应力较单轴抗压强度有所提高(c cc c f f >=σ),但增长不大。 ● 混凝土纵向应变在峰值应变前后(()pc c εε11.1~85.0=),试件出现沿纵 筋外缘的竖向裂缝,约束混凝土进入软化段。 ● 混凝土应变超过峰值应变后(pc c εε>),随着混凝土纵向压应变的增加, 裂缝不断出现、发展、贯通,混凝土膨胀急剧发展(泊松比增大),箍筋开始屈服,混凝土的应变达到()6104500~3000-?=c ε。此时箍筋的约束效应最大,混凝土尚未达到三轴抗压强度。 ● 接近破坏时,保护层混凝土开始剥落,钢筋全部外露。箍筋全部屈服甚 至个别拉断,约束区混凝土的破坏大多为斜剪破坏,由于箍筋未被全部拉断,混凝土存在残余抗压强度。此时混凝土的纵向压应变远远高于素混凝土的极限压应变,达到()6106000~4000-?=c ε。 较高配箍率时(85.0~36.0=t λ)的破坏过程及特征 ● 上升段应力——应变曲线的斜率(约束混凝土的弹性模量)可能小于素 混凝土的弹性模量,原因是箍筋较多,保护层混凝土密实度难以保证、且箍筋内外混凝土的整体性不好。 ● 混凝土纵向裂缝出现后,混凝土的膨胀加大,箍筋对混凝土的约束效应 出现且很大。 ● 约束混凝土的应力——应变曲线没有明显的峰值。 ● 混凝土出现第一条纵向裂缝和箍筋开始屈服时的纵向应变值接近小配

钢板混凝土剪力墙

钢板混凝土剪力墙 本发明是一种剪力墙,特别涉及钢桁架-钢板-混凝土组合剪力墙及其制作方法。在剪力墙的边框梁中设置型钢梁构成型钢-混凝土组合梁,剪力墙两端设置型钢混凝土柱,剪力墙中钢板上固结型钢斜支撑,型钢斜支撑在钢板平面内可呈人字形、八字形或X形布置。在钢板两侧配置横向和纵向分布钢筋组成的钢筋网,最后浇筑混凝土,组合成为钢板两侧外包钢筋混凝土墙。本发明的剪力墙不但很好地克服钢筋混凝土剪力墙自重大、角部混凝土易开裂、易碎等缺点,而且比现有剪力墙的初始刚度大、承载能力高,并且降低了刚度衰减速度,减弱了底部剪切滑移破坏程度,提高了整体抗震耗能性能。 1、钢桁架一钢板一混凝土组合剪力墙,包括上下边框梁、与边框 梁固结的边框柱和布置在边框梁和边框柱之间的钢板;所述边框梁为由型钢梁和浇注在型钢梁的混凝土构成型钢一混凝土组合梁; 其特征在于:所述边框柱为由型钢和浇注在型钢外的混凝土构成的型钢混凝土柱,型钢混凝土柱的型钢与钢板及边框梁中的型钢梁连,在钢板平面上斜向固结型钢斜支撑, 2、 3、 4、型钢斜支撑的上端与上边框梁固连,下端与下边框梁和边框柱 同时连接;在钢板的两侧分别布置钢筋网,所述的钢筋网包括沿水平方向布置的横向钢筋和沿竖直方向布置的纵向钢筋,在钢筋网上浇筑混凝土构成钢板混凝土组合结构。

5、根据权利要求1所述的钢桁架一钢板一混凝土组合剪力墙,其 特征在于:所述的型钢斜支撑在钢板平面内呈人字形或八字形布置,其上端伸入上边框梁中与型钢梁固结,下端伸入下边框梁与型钢混凝土柱的节点中,同时与下边框梁中的型钢梁和型钢混凝土柱中的型钢固连。 6、根据权利要求1所述的钢桁架一钢板一混凝土组合剪力墙,其 特征在于:所述的型钢斜支撑在钢板平面内呈X形布置,其上端伸入上边框梁与型钢混凝土柱的节点中,同时与上边框梁中的型钢梁及型钢混凝土柱中的型钢固连;下端伸入下边框梁与型钢混凝土柱的节点中,同时与下边框梁中的型钢梁和型钢混凝土柱中的型钢固连。 7、如权利要求1所述的钢桁架一钢板一混凝土组合剪力墙的制 作方法,其特征在于,该方法是按以下顺序进行的:1)配置型钢混凝土柱中的型钢;2)配置钢板,并在钢板上预留孔洞或切割槽; 3)配置型钢斜支撑,将型钢斜支撑斜向布置在钢板平面内并与钢板 固连;再将钢板、型钢斜支撑与型钢混凝土柱中的型钢固连;4)配置上下边框梁中的型钢梁,将型钢梁与钢板、型钢斜支撑及型钢混凝土柱中的型钢进行刚性连接,构成钢桁架一钢板组合结构; 5. 5)在型钢梁及型钢混凝土柱中的型钢外配置钢筋,并在钢筋外 绑扎箍筋,组成钢筋网;箍筋穿过钢板上预留的孔洞或切割槽; 6. 6)在钢板的两侧配置钢筋网,所述钢筋网由沿水平方向布置的 横向钢筋和沿竖直方向布置的纵向钢筋组成;7. 7)在型钢

钢框架带缝钢板剪力墙抗震性能

徐松芝等:钢框架带缝钢板剪力墙抗震性能分析 欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁欁 参考文献 [1]葛耀英主编.分段施工控制与分析[M].北京:人民交通出版社,2003. [2]顾安邦,张永水编著.桥梁施工监测与控制[M].北京:机械工业出版社,2005. [3]戴良军.大跨径PC梁桥悬浇挂蓝施工误差分类分析[J].筑路机械与施工机械化,1999,16(83):33-36. [4]林智敏.大跨径预应力混凝土连续刚构桥施工控制研究[D].成都:西南交通大学,2005. [5]向中富.桥梁施工控制技术[M].北京:人民交通出版社,2001:41-116. [6]于长官.现代控制理论[M].黑龙江:哈尔滨工业大学出版社,1988.[7]Au F T K,Wang J J,Liu G D.Control of reinforced concrete arch bridges[J].Journal of Bridge Engineering ASCE,2003,8(1):39 -45. [8]张治成,叶贵如,陈衡治,徐兴.大跨度桥梁施工控制结构分析计算方法[J].浙江大学学报(工学版),2004,38(2):210.[9]张永水.大跨度预应力混凝土连续钢构桥施工误差调整的Kalman滤波法[J].重庆交通工程学院学报,2000,19(3):13.[10]朱伯芳.有限元法原理与应用[M].北京:中国水利水电出版社,1998:349-351. [收稿日期]2012-06-05 [作者简介]王艳(1976-),女,江苏赣榆人,工程师,从事 公路工程试验检测、桥梁检测等工作。 钢框架带缝钢板剪力墙抗震性能分析 徐松芝,袁朝庆,卢召红 (东北石油大学土木建筑工程学院,黑龙江大庆163318) 【摘要】使用ANSYS有限元软件对钢框架带缝钢板剪力墙结构单元在不同地震波、不同地震加速度作用下的抗震性能进行了有限元对比分析。结果表明,对于同一种地震波,钢框架-带缝钢板剪力墙结构随着地震波加速度的增大,顶点位移增大,基底剪力增大;滞回性能良好。表明钢框架带缝钢板剪力墙结构单元具有良好的抗震性能。 【关键词】钢框架带缝钢板剪力墙;滞回性能;抗震性能 【中图分类号】TU398.2【文献标识码】B【文章编号】1001-6864(2012)11-0081-02 THE ANALYSIS ON SEISMIC PROPERTY OF STEEL FRAME-STEEL PLATE SHEAR WALL WITH SLITS XU Song-zhi,YUAN Chao-qing,LU Zhao-hong (School of Civil Engi.,Northeast Petroleum Univ.,Heilongjiang Daqing163318,China) Abstract:The finite element analysis on single steel frame-steel plate wall with slits on the different seismic waves,different earthquake acceleration are conducted by ANSYS.The results showed that the vertex displacement and base shear increases with the earthquake acceleration increasing on the same terms of seismic wave steel frame-steel plate shear wall with slits has a good hysteretic property.The steel frame-steel plate shear wall with slits has good seismic performance. Key words:frame-steel shear wall with slits;hysteretic behavior;seismic property 1有限元计算模型 本文研究地震作用下钢框架带缝钢板剪力墙的抗震性能。一方面考虑到我国钢结构设计规范[1]要求,另一个方面考虑到建筑抗震设计规范[2]的要求,作者用有限元软件设计了一单层钢框架带缝钢板剪力墙结构,尺寸见图1。在设计剪力墙与钢框架固结,梁柱固结。钢框架带缝钢板剪力墙整个结构下端固结,上端可滑动,左右两边为自由端[3]。框架柱截面为175mm?175mm?7?10mm。框架梁和柱均采用Q345,梁H200?150?5.5?8mm型钢、柱H175?175?7?10mm型钢。假定钢材均为理想弹塑性材料,屈服阶段时服从VonMises屈服准则和相关流动准则。以下用J表示带缝钢板剪力墙,K表示钢框架,KJ表示钢框架带缝钢板剪力墙。 18

什么是剪力墙 钢板剪力墙施工方案有哪些

什么是剪力墙钢板剪力墙施工方案有哪些 导读:本文介绍在房屋装修,装修流程的一些知识事项,如果觉得很不错,欢迎点评和分享。 小编说了很多关于剪力墙的知识,但是貌似大家好像对于什么是剪力墙都不是很了解,所以今天小编就来为大家讲讲剪力墙的概念知识,大家可以先和小编来学学,然后再进一步的去了解和掌握钢板剪力墙施工方案的情况,这样下来基本上我们对钢板剪力墙施工方案就比较了解了。那么什么是剪力墙呢,钢板剪力墙施工方案有哪些呢?小编觉得我们有必要先来了解一下具体情况。 什么是剪力墙: 剪力墙(shear ?wall)又称抗风墙、抗震墙或构造墙。房子或构筑物中首要接受风荷载或地震效果导致的水平荷载和竖向荷载(重力)的墙体,防止构造剪切(受剪)损坏。又称抗震墙,通常用钢筋混凝土做成。 它分平面剪力墙和筒体剪力墙。平面剪力墙用于钢筋混凝土框架构造、升板构造、无梁楼盖体系中。为增加构造的刚度、强度及抗坍毁才能,在某些部位可现浇或预制 ?安装钢筋混凝土剪力墙。现浇剪力墙与周边梁、柱一起浇筑,整体性好。筒体剪力墙用于高层建筑、高耸构造和悬吊构造中 ?,由电梯间、楼梯间、设备及辅佐用房的间隔墙围成,筒

壁均为现浇钢筋混凝土墙体,其刚度和强度较平面剪力墙可接受较大的水平荷载。 墙依据受力特色能够分为承重墙和剪力墙,前者以接受竖向荷载为主,如砌体墙;后者以接受水平荷载为主。在抗震设防区,水平荷载首要由水平地震效果发生,因此剪力墙有时也称为抗震墙。 剪力墙按构造资料能够分为钢板剪力墙、钢筋混凝土剪力墙和配筋砌块剪力墙。其间以钢筋混凝土剪力墙较为常用。 钢板剪力墙施工方案有哪些: 1、面板 现浇构件模板面板选用2440mm×1220mm×18mm漆面胶合板,有商品质量合格证。 2、档抖 模板档料选用45×90mm松方木,请求原料优秀,无曲折、节结、迂腐景象。 3、支持 墙模板外楞、梁板承重支持架、柱箍等支持资料选用φ48×3.5脚手架钢管合作可锻铸铁扣件,钢管和扣件应有商品出厂合格证或质量检验合格证。 4、垫板 梁板承重架立杆底部垫木,素土层上选用50×200木板,砼构造板上选用200×200×45木块,请求原料优秀,无迂腐

12层钢框架_钢板剪力墙结构住宅的抗震设计

本科毕业设计学院船舶与建筑工程

摘要 本次毕业设计是十二层钢框架-钢板剪力墙结构住宅的抗震设计,主要进行的是结构设计部分。结构设计简而言之就是用结构语言来表达工程师所要表达的东西。结构语言就是结构师从建筑及其它专业图纸中所提炼简化出来的结构元素,包括基础、墙、柱、梁、板、楼梯、大样细部图等等。然后用这些结构元素来构成建筑物或构筑物的结构体系,包括竖向和水平的承重及抗力体系,再把各种情况产生的荷载以最简洁的方式传递至基础。 结构设计的阶段大体可以分为三个阶段: 一结构方案阶段:根据建筑的重要性,建筑所在地的抗震设防烈度,工程地质勘查报告,建筑场地的类别及建筑的高度和层数来确定建筑的结构形式,本工程采用的是框架结构; 二结构计算阶段:包括荷载计算、内力计算和构件计算; 三施工图设计阶段:根据上述计算结果,来最终确定构件布置和构件配筋以及根据规范的要求来确定结构构件的构造措施。 关键词:钢框架;钢板剪力墙;抗震设计;荷载计算;节点验算

Abstract The graduation design is a wonderful travel training center, the major part is the structure design. Structure design is simply using structure language to express the engineer must express things. Structure language is structure from building and other professional drawings of the structure of refining simplified out elements, including basic, walls, column, beam, plate, stair, DaYang detail figure, etc. Then use these structural elements to form a building or structure system, including the structure of vertical and horizontal bearing and resistance system, again with all the load produced the most concise style to deliver to the foundation. Structural design stage can be divided into three stages: First,structure scheme stage: according to the importance of building construction, location of the seismic fortification intensity, engineering geology exploration report, the building site of the category and the height of the building and layer to determine the building structure form, this project USES is the framework structure; Second,structure calculation stages: including the load calculation, internal force calculation and component calculation; Third,working drawing design phase: according to the calculation results, to

mander约束混凝土本构模型

1 横向配筋的作用 混凝土结构中的配筋有两种:直接钢筋和间接钢筋。直接配筋即沿构件轴力或主应力方向设置的纵向钢筋,直接承担拉力或者压力,钢筋的应力与轴力方向一致;间接配筋又称横向配筋,沿与压应力与最大主压应力垂直的方向设置,通过约束混凝土的横向变形,提高轴向抗压承载力。 横向配筋有多种,比如螺旋(圆形)箍筋、矩形箍筋、钢管、焊接网片等。其主要作用是约束其内部混凝土的横向变形,使之处于三轴受压应力状态,从而提高了其强度和变形能力。 下面就箍筋对混凝土的约束作用做以简单分析。 箍筋的作用有许多种, ?抗剪。除了直接承受剪力外,还间接限制了斜裂缝的开展宽度,增强了腹部混凝土的骨料咬合力;还约束了纵筋对混凝土保护层的撕脱,增大了 钢筋的销栓力;同时,纵筋与腹筋形成的骨架使内部混凝土受到约束, 这也有利于抗剪; ?通过减小纵筋的自由长度,防止纵筋受力后压屈,充分发挥其抗压强度,同时也起到固定纵筋位置的作用; ?对于密排箍筋,通过约束核心区混凝土,提高了混凝土的抗压强度及延性(极限变形能力); ?长期荷载作用下,可以承受因混凝土收缩和环境湿度变化等产生的横向应力,以防止或减少纵向裂缝; 其中,通过约束核心区混凝土,提高受压混凝土的抗压强度及延性,对于地震区的混凝土结构尤为重要。适当地增加箍筋和改进构造形式成为提高结构抗震性能的最简单、经济和有效的措施之一。 2 影响箍筋约束作用的因素 箍筋对约束混凝土的增强作用,除了受被约束混凝土自身强度的影响外,主要取决于它能够施加在核心区混凝土表面的约束力的大小。约束力越大,对混凝土的增强就越多。约束力主要受以下几个因素影响: ?体积配箍率。体积配箍率隐含反应了四个因素:箍筋强度、直径、间距及(计算配箍方向的)核心区宽度(对于螺旋或圆形配箍的圆形截面,指 核心区直径)。箍筋的强度和直径直接决定了箍筋所能提供的约束力的 大小,箍筋间距及核心区宽度则影响约束力在相邻箍筋间的分布。对于 矩形截面,通常两个方向上的尺寸和配箍形式不一样,因此提供的约束 力也不一样,所以应分别计算两个方向的配箍率。

300厚超薄钢板剪力墙施工技术

300厚超薄钢板剪力墙施工技术 姚建兵北京建工集团有限责任公司总承包部 【摘要】当前,钢板-混凝土组合剪力墙结构在超高层建筑中应用越来越广泛,特别是在核心筒部位,有时为满足抗震设防和风荷载要求,需要设置钢板-混凝土剪力墙以满足受力要求。深圳太子广场工程结构总高度205.84m,共41层,其中首层至15层为框架核心筒结构,16层以上为核心筒-支托桁架结构。其中16~25层支托桁架上部核心筒外侧1/2结构采用型钢混凝土结构,另1/2结构采用钢结构,26~41层核心筒外侧均采用钢结构。在核心筒位置设置了300mm厚超薄钢板-混凝土组合剪力墙,从钢结构专业组合钢板剪力墙工厂加工与土建专业的配合、现场钢板剪力墙的安装、土建模板的支搭、为保证混凝土浇筑采取的技术措施和养护方法阐述了钢板剪力墙施工关键技术;最后阐述了钢板剪力墙施工的质量控制要点。 【关键词】超高层建筑钢板-混凝土组合剪力墙吊装裂缝控制混凝土浇筑、养护0 引言 钢板-混凝土组合剪力墙(以下简称钢板剪力墙)作为一种新型抗侧力体系在超高层建筑中得到越来越广泛的应用。在超高层建筑施工过程中,需要土建与钢结构专业相互配合,互相穿插,相互影响,共同完成钢板剪力墙结构的施工,要实现超高层建筑钢板剪力墙高效建造,在加工阶段、安装阶段、土建钢筋、模板、混凝土浇筑施工阶段需要提前采取各种技术措施、综合应用。 1 工程概况 1.1工程整体概况 深圳太子广场工程为大型城市综合体,占地面积18950m2,地下4层,地上裙房4层、塔楼41层,总建筑高度205.84m,总建筑面积152740m2。 1.2钢板剪力墙结构概况 深圳太子广场钢板剪力墙呈东西向,从地下1层至17层,28~29层布置于核心筒位置。最高处标高为142.98m。钢板剪力墙中钢板为内嵌单片连续式钢板,钢板厚度为16mm,墙身厚度为300~900mm,剪力墙端部、纵横向墙体相交处含有劲性结构柱,劲性钢柱为“H”形,钢板及劲性结构钢柱均采用Q345B材质钢材。钢板剪力墙地下及地上三维图如下:

相关主题
文本预览
相关文档 最新文档