当前位置:文档之家› 《自动控制原理》实验3.线性系统的频域分析

《自动控制原理》实验3.线性系统的频域分析

《自动控制原理》实验3.线性系统的频域分析
《自动控制原理》实验3.线性系统的频域分析

实验三 线性系统的频域分析

一、实验目的

1.掌握用MATLAB 语句绘制各种频域曲线。

2.掌握控制系统的频域分析方法。

二、基础知识及MATLAB 函数

频域分析法是应用频域特性研究控制系统的一种经典方法。它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。

1.频率曲线主要包括三种:Nyquist 图、Bode 图和Nichols 图。

1)Nyquist 图的绘制与分析

MATLAB 中绘制系统Nyquist 图的函数调用格式为:

nyquist(num,den) 频率响应w 的范围由软件自动设定

nyquist(num,den,w) 频率响应w 的范围由人工设定

[Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量,不作图

例4-1:已知系统的开环传递函数为2

5262)(23++++=s s s s s G ,试绘制Nyquist 图,并判断系统的稳定性。

num=[2 6];

den=[1 2 5 2];

nyquist(num,den)

极点的显示结果及绘制的Nyquist 图如图4-1所示。由于系统的开环右根数P=0,系统的Nyquist 曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。

p =

-0.7666 + 1.9227i

-0.7666 - 1.9227i

-0.4668

图4-1 开环极点的显示结果及Nyquist 图

若上例要求绘制)10,10(32-∈ω间的Nyquist 图,则对应的MATLAB 语句为:

num=[2 6];

den=[1 2 5 2];

w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距离的点

nyquist(num,den,w)

2)Bode 图的绘制与分析

系统的Bode 图又称为系统频率特性的对数坐标图。Bode 图有两张图,分别绘制开环频率特性的幅值和相位与角频率ω的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。

MATLAB 中绘制系统Bode 图的函数调用格式为:

bode(num,den) 频率响应w 的范围由软件自动设定

bode(num,den,w) 频率响应w 的范围由人工设定

[mag,phase,w]=bode(num,den,w) 指定幅值范围和相角范围的伯德图

例4-2:已知开环传递函数为)

10016()12.0(30)(2+++=s s s s s G ,试绘制系统的伯德图。 num=[0 0 15 30];

den=[1 16 100 0];

w=logspace(-2,3,100);

bode(num,den,w)

grid

绘制的Bode 图如图4-2(a)所示,其频率范围由人工选定,而伯德图的幅值范围和相角范围是自动确定的。当需要指定幅值范围和相角范围时,则需用下面的功能指令:

[mag,phase,w]=bode(num,den,w)

mag,phase 是指系统频率响应的幅值和相角,由所选频率点的w 值计算得出。图4-2(a) 幅值和相角范围自动确定的Bode 图 图4-2(b) 指定幅值和相角范围的Bode 图

其中,幅值的单位为dB,它的算式为magdB=20lg10(mag)。

指定幅值范围和相角范围的MATLAB调用语句如下,图形如图4-2(b)所示。

num=[0 0 15 30];

den=[1 16 100 0];

w=logspace(-2,3,100);

[mag,phase,w]=bode(num,den,w); %指定Bode图的幅值范围和相角范围

subplot(2,1,1); %将图形窗口分为2*1个子图,在第1个子图处绘制图形semilogx(w,20*log10(mag)); %使用半对数刻度绘图,X轴为log10刻度,Y轴为线性刻度

grid on

xlabel(‘w/s^-1’); ylabel(‘L(w)/dB’);

title(‘Bode Diagram of G(s)=30(1+0.2s)/[s(s^2+16s+100)]’);

subplot(2,1,2);%将图形窗口分为2*1个子图,在第2个子图处绘制图形

semilogx(w,phase);

grid on

xlabel(‘w/s^-1’); ylabel(‘ (0)’);

注意:半Bode图的绘制可用semilgx函数实现,其调用格式为semilogx(w,L),其中L=20*log10(abs(mag))。

2.幅值裕量和相位裕量

幅值裕量和相位裕量是衡量控制系统相对稳定性的重要指标,需要经过复杂的运算求取。应用MATLAB功能指令可以方便地求解幅值裕量和相位裕量。

其MATLAB调用格式为:

[Gm,Pm,Wcg,Wcp]=margin(num,den)

其中,Gm,Pm分别为系统的幅值裕量和相位裕量,而Wcg,Wcp分别为幅值裕量和相位裕量处相应的频率值。

另外,还可以先作bode图,再在图上标注幅值裕量Gm和对应的频率Wcg,相位裕量Pm和对应的频率Wcp。其函数调用格式为:

margin(num,den)

例4-4:对于例4-3中的系统,求其稳定裕度,对应的MATLAB语句如下:

num=10; den=[1 3 9 0];

[gm,pm,wcg,wcp]=margin(num,den);

gm,pm,wcg,wcp

gm = 2.7000

pm = 64.6998

wcg = 3.0000

wcp = 1.1936

如果已知系统的频域响应数据,还可以由下面的格式调用函数:

[Gm,Pm,Wcg,Wcp]=margin(mag,phase,w)

其中(mag,phase,w )分别为频域响应的幅值、相位与频率向量。

三、实验内容

1.典型二阶系统

2222)(n

n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。

程序代码:

num=[0,0,36];den1=[1,1.2,36];den2=[1,3.6,36];

den3=[1,6,36];den4=[1,9.6,36];den5=[1,24,36];

w=logspace(-2,3,100);

[mag,phase,w]=bode(num,den1,w);

subplot(5,2,1);

semilogx(w,20*log10(mag));

grid on

xlabel('w/s^-1'); ylabel('L1(w)/dB');

subplot(5,2,2);

semilogx(w,phase);

grid on

xlabel('w/s^-1'); ylabel('(0)1');

%=================================================================

[mag,phase,w]=bode(num,den2,w);

subplot(5,2,3);

semilogx(w,20*log10(mag));

grid on

xlabel('w/s^-'); ylabel('L2(w)/dB');

subplot(5,2,4);

semilogx(w,phase);

grid on

xlabel('w/s^-1'); ylabel('(0)2');

%=========================================================== =======

[mag,phase,w]=bode(num,den3,w);

subplot(5,2,5);

semilogx(w,20*log10(mag));

grid on

xlabel('w/s^-1'); ylabel('L3(w)/dB');

subplot(5,2,6);

semilogx(w,phase);

grid on

xlabel('w/s^-1'); ylabel('(0)3');

%=========================================================== ==========

[mag,phase,w]=bode(num,den4,w);

subplot(5,2,7);

semilogx(w,20*log10(mag));

grid on

xlabel('w/s^-1'); ylabel('L4(w)/dB');

subplot(5,2,8);

semilogx(w,phase);

grid on

xlabel('w/s^-1'); ylabel('(0)4');

%=========================================================== ===============

[mag,phase,w]=bode(num,den5,w);

subplot(5,2,9);

semilogx(w,20*log10(mag));

grid on

xlabel('w/s^-1'); ylabel('L5(w)/dB');

subplot(5,2,10);

semilogx(w,phase);

grid on

xlabel('w/s^-1'); ylabel('(0)5');

截屏效果图

分析:由上图分析可知,由波特图容易的知道各自所对应的截止频率,相角裕度,-pi穿越频率及幅值裕度。既有,当6

ω(一定不变)时,

=

n

随着ζ的增大二介系统的幅频特性满足,下降初值w越小,越快开始下降;相位与频率满足,下降w初值越小,越快开始下降,且下降的越慢。

2.系统的开环传递函数为

)

5)(15(10)(2+-=s s s s G )

106)(15()1(8)(22++++=s s s s s s G )

11.0)(105.0)(102.0()13/(4)(++++=s s s s s s G 绘制系统的Nyquist 曲线、Bode 图,说明系统的稳定性。

程序代码:

num1=[0,0,0,0,10];den1=[5,24,-5,0,0];

num2=[0,0,0,0,8.8];den2=[1,21,100,150,0,0];

num3=[0,0,0,4/3,4];den3=[0.0001,0.007,0.17,1,0];

subplot(2,1,1);

nyquist(num1,den1);

subplot(2,1,2)

w=logspace(-2,3,100);

bode(num1,den1,w)

grid

[gm1,pm1,wcg1,wcp1]=margin(num1,den1);

gm1,pm1,wcg1,wcp1 ;

%=================;============================================

figure(2)

subplot(2,1,1);

nyquist(num2,den2);

subplot(2,1,2)

w=logspace(-2,3,100);

bode(num2,den2,w)

grid

[gm2,pm2,wcg2,wcp2]=margin(num2,den2);

gm2,pm2,wcg2,wcp2 ;

%=========================================================== ==

figure(3)

subplot(2,1,1);

nyquist(num3,den3);

subplot(2,1,2);

w=logspace(-2,3,100);

bode(num3,den3,w)

grid

[gm3,pm3,wcg3,wcp3]=margin(num3,den3);

gm3,pm3,wcg3,wcp3 ;

截屏效果图

分析:由上图可知,该系统为稳定的,Nyquist图所示,不过(-1,j0)这个点。又由bode图可知各自所对应的截止频率,相角裕度,-pi穿越频率及幅值裕度,且最终趋向稳定。

分析:由上图可知,该系统为稳定的,Nyquist图所示,不过(-1,j0)这个点。又由bode图可知各自所对应的截止频率,相角裕度,-pi穿越频率及幅值裕度,且最终趋向稳定。

分析:由上图可知,该系统为稳定的,Nyquist图所示,不过(-1,j0)这个点。又由bode图可知各自所对应的截止频率,相角裕度,-pi穿越频率及幅值裕度,且最终趋向稳定。

实验体会与总结:

通过自动控制原理实验的学习与调试,使我学习和了解了许

多知识。首先是对关自动控制原理相关的知识点有了更深刻的理

解,原本课本上不是很懂得知识点许多都得到了相应的解答;其

次是对这门课有了新的认识和理解,原本不知道学习这门课有什

么作用,觉得无聊,不过现在才发现,学习、掌握好这门课不仅

可以使我们队信号处理的过程与原理有了根本的理解和应用,而

且可以方便的利用相关知识去理解和解答相关疑难问题;更重要

的事学习和掌握了许多相关matlab软件的应用方法和知识,在

学习技能和方法上使得自己有了更高的进步,掌握了又多一门的

学习技能和方法,为以后学习和应用打下了相关的基础知识与根

基,相信在以后的学习和生后中都将受益。

不过,我也从中认识到自己在相关知识领域的认识不足和缺

陷,不过通过实验的过程都有所了解和体会,在以后的学习过程

中就会多方面去注意,查漏补缺。

综合而言,这门课的实验课给了我一个愉快的,丰厚的过程。

感谢这门课所带给我的巨大作用,同时感谢指导老师耐心细致的

开导与指点,此致敬礼。

第5章频域分析法习题解答

第5章频域分析法 学习要点 1 频率特性的概念,常用数学描述与图形表示方法; 2 典型环节的幅相频率特性与对数频率特性表示及特点; 3 系统开环幅相频率特性与对数频率特性的图示要点; 4 应用乃奎斯特判据判断控制系统的稳定性方法; 5 对数频率特性三频段与系统性能的关系; 6 计算频域参数与性能指标; 思考与习题祥解 题判断下列概念的正确性 ω的正弦信号加入线性系统,这个系统的稳态输出也将是同 (1) 将频率为 一频率的。 M仅与阻尼比ξ有关。 (2) 对于典型二阶系统,谐振峰值 p (3) 在开环传递函数中增加零点总是增加闭环系统的带宽。 (4) 在开环传递函数中增加极点通常将减少闭环系统的带宽并同时降低稳定性。 (5) 对于最小相位系统,如果相位裕量是负值,闭环系统总是不稳定的。 (6) 对于最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (7) 对于最小相位系统,如果幅值裕量是负分贝值,闭环系统总是不稳定的。 (8) 对于非最小相位系统,如果幅值裕量大于1,闭环系统总是稳定的。 (9) 对于非最小相位系统,须幅值裕量大于1且相位裕量大于0,闭环系统才是稳定的。 (10) 相位穿越频率是在这一频率处的相位为0。 (11) 幅值穿越频率是在这一频率处的幅值为0dB。 (12) 幅值裕量在相位穿越频率处测量。 (13) 相位裕量在幅值穿越频率处测量。 (14) 某系统稳定的开环放大系数25 K<,这是一个条件稳定系统。 (15) 对于(-2/ -1/ -2)特性的对称最佳系统,具有最大相位裕量。 (16) 对于(-2/ -1/ -3)特性的系统,存在一个对应最大相位裕量的开环放大系数值。 (17) 开环中具有纯时滞的闭环系统通常比没有时滞的系统稳定性低些。 (18) 开环对数幅频特性过0分贝线的渐近线斜率通常表明了闭环系统的相对稳定性。 M和频带宽BW (19) Nichols图可以用于找到一个闭环系统的谐振峰值 p 的信息。

电力系统分析实验报告四(理工类)

西华大学实验报告(理工类) 开课学院及实验室: 实验时间 : 年 月 日 一、实验目的 1)初步掌握电力系统物理模拟实验的基本方法。 2)加深理解功率极限的概念,在实验中体会各种提高功率极限措施的作用。 3)通过对实验中各种现象的观察,结合所学的理论知识,培养理论结合实际及分析问题的能力。 二、实验原理 所谓简单电力系统,一般是指发电机通过变压器、输电线路与无限大容量母线联接而且不计各元件的电阻和导纳的输电系统。 对于简单系统,如发电机至系统d 轴和g 轴总电抗分别为d X ∑和q X ∑,则发电机的功率特性为 当发电机装有励磁调节器时,发电机电势q E 随运行情况而变化,根据一般励磁调节器的性能,可认为保持发电机'q E (或' E )恒定。这时发电机的功率特性可表示成 或 这时功率极限为 随着电力系统的发展和扩大,电力系统的稳定性问题更加突出,而提高电力系统稳定性和输送能力的最重要手段之一,就是尽可能提高电力系统的功率极限。从简单电力系统功率极限的表达式看,要提高功率极限,可以通过发电机装设性能良好的励磁调节器,以提高发电机电势、增加并联运行线路回路数;或通过串联电容补偿等手段,以减少系统电抗,使受端系统维持较高的运行电压水平;或输电线采用中继同步调相机、中继电力系统等手段以稳定系统中继点电压。 (3)实验内容 1)无调节励磁时,功率特性和功率极隈的测定 ①网络结构变化对系统静态稳定的影响(改变戈): 在相同的运行条件下(即系统电压U-、发电机电势E 。保持不变.罚芳赆裁Ll=E 。),分别 测定输电线单回线和双回线运行时,发电机的功一角特性曲线,&豆甍辜授冁蝮和达到功率极 限时的功角值。同时观察并记录系统中其他运行参数(如发电极端毫玉萼蔫交化。将两种 情况下的结果加以比较和分析。 实验步骤如下: a)输电线路为单回线; b)发电机与系统并列后,调节发电机,使其输出的有功和无ZZ 蔓专零: c)功率角指示器调零; d)逐步增加发电机输出的有功功率,而发电机不调节震磁: e)观察并记录系统中运行参数的变化,填入表1.3中: f)输电线路为双回线,重复上述步骤,将运行参数填入表l 。毒=:

控制系统的频域分析实验报告

实验名称: 控制系统的频域分析 实验类型:________________同组学生姓名:__________ 一、实验目的和要求 用计算机辅助分析的方法,掌握频率分析法的三种方法,即Bode 图、Nyquist 曲线、Nichols 图。 二、实验内容和原理 (一)实验原理 1.Bode(波特)图 设已知系统的传递函数模型: 1 1211121)(+-+-+???+++???++=n n n m m m a s a s a b s b s b s H 则系统的频率响应可直接求出: 1 1211121)()()()()(+-+-+???+++???++=n n n m m m a j a j a b j b j b j H ωωωωω MATLAB 中,可利用bode 和dbode 绘制连续和离散系统的Bode 图。 2.Nyquist(奈奎斯特)曲线 Nyquist 曲线是根据开环频率特性在复平面上绘制幅相轨迹,根据开环的Nyquist 线,可判断闭环系统的稳定性。 反馈控制系统稳定的充要条件是,Nyquist 曲线按逆时针包围临界点(-1,j0)p 圈,为开环传递函数位于右半s 一平面的极点数。在MATLAB 中,可利用函数nyquist 和dnyquist 绘出连续和离散系统的乃氏曲线。 3.Nicho1s(尼柯尔斯)图 根据闭环频率特性的幅值和相位可作出Nichols 图,从而可直接得到闭环系统的频率特性。在 MATLAB 中,可利用函数nichols 和dnichols 绘出连续和离散系统的Nichols 图。 (二)实验内容 1.一系统开环传递函数为 ) 2)(5)(1(50)(-++=s s s s H 绘制系统的bode 图,判断闭环系统的稳定性,并画出闭环系统的单位冲击响应。 2.一多环系统 ) 10625.0)(125.0)(185.0(7.16)(+++=s s s s s G 其结构如图所示 试绘制Nyquist 频率曲线和Nichols 图,并判断稳定性。 (三)实验要求

3-系统分析实验报告

管理信息系统实验报告 实验3 系统分析 课程名称:管理信息系统 指导教师:王玮 班级:信管1401 学号: 姓名:唐赛赛 时间: 2016.04.06 地点: 3 号机房

一、实验目的 1.了解开发Visio解决方案的基本概念和关于Visio工具的一些基本的操作和应用; 2.掌握系统分析阶段数据流程图的画法; 二、实验步骤和实验结果: 使用Visio中提供的“组织结构图”模具,绘制下面例题的组织结构图,附在图后。 2、使用Visio绘制“业务流程图模具”和“数据流程图模具”(1)创建“业务流程图模具” 先在“框图”-〉“基本形状”中找到圆角矩形,右击选择“添加到我的形状”-〉“添加到新模具”。之后出现“另存为”对话框,把新模具命名为“业务流程图”,把圆角矩形形添加到了新模具“业务程图”中。用同样的思路,先在“框图”-〉“基本形状”中找到圆形,右击选择“添加到我的形状”-〉“添加到模具“业务程图”中;在“框图”-〉“基本形状”找到矩形,在“流程图”中的“IDEFO图表形状”找到动态连接线,在“流程图”中的“SDL图表形状”中找到文档,多文档,添加到模具“业务程图”中。可以通过设置“动态连接线”属性来改变其形状。如下图:

添加完成后,我们就可以在画业务流程图时打开该模具,业务流程图所有的元素都会在一个模具中显示出来。(2)创建“数据流程图模具”先在“框图”-〉“基本形状”中找到圆形(或是“流程图”中的“混合流程图形状”中找到外部实体2 ),右击选择“添加到我的形状”-〉“添加到新模具”(注,使用外部实体2来表示外部实体的时候,请将之旋转180度使用)。之后出现“另存为”对话框,把新模具命名为“数据流程图”,这样我们就把圆形形添加

第五章 线性系统的频域分析法习题

501 第五章 线性系统的频域分析法 5-1 设闭环系统稳定,闭环传递函数为)(s Φ,试根据频率特性的定义证明:系统输入信号为余弦函数)cos()(φω+=t A t r 时,系统的稳态输出为 )](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。 证明:根据三角定理,输入信号可表示为 )90sin()( ++=φωt A t r , 根据频率特性的定义,有 ]90)(sin[|)(|)( +Φ∠++Φ=ωφωωj t j A t c ss , 根据三角定理,得证: )](cos[|)(|)(ωφωωj t j A t c ss Φ∠++Φ=。 5-2 若系统的单位阶跃响应 t t e e t c 948.08.11)(--+-=, 试确定系统的频率特性。 解:s s s s C 1 361336)(2++= ,36 1336)(2++=s s s G ,)9)(4(36)(ωωωj j j G ++=; 2 /122/12) 81()16(36 |)(|ωωω++=j G ,9arctan 4arctan )(ωωω--=∠j G 。 或:)(2.7)()(94t t e e t c t g ---== ;36 1336 )]([)(2 ++==s s t g L s G ; 5-3 设系统如下图所示,试确定输入信号 )452cos()30sin()( --+=t t t r 作用下,系统的稳态误差)(t e ss 。 解:2 1)(++=Φs s s e ; )452sin()30sin()( +-+=t t t r 6325.0|)(|=Φj e , 4.186.2645)(=-=Φ∠j ; 7906.0|)2(|=Φj e , 4.18454.63)2(=-=Φ∠j ; 答案:)4.632sin(7906.0)4.48sin(6325.0)( +-+=t t t e ss 。 5-4 典型二阶系统的开环传递函数 ) 2()(2 n n s s s G ωζω+= , 当取t t r sin 2)(=时,系统的稳态输出为 )45sin(2)( -=t t c ss , 试确定系统参数n ω和ζ。 解:2 222)(n n n s s s ωζωω++=Φ; 1] 4)1[(2 2222=+-n n n ωζωω, 451 2arctan 2 -=--n n ωζω; 122 -=n n ωζω, 答案:414.12==n ω,3536.04/2==ζ。

系统分析实验报告

天津职业技术师范大学课程设计大学学籍管理系统的设计与开发 专业:软件工程 班级学号:软件1002-17 学生姓名:靳利强 指导教师:龚良波老师 二〇一三年七月

一.需求分析 1.课程名称:大学教务信息系统的设计与开发 2.设计目的: 为方便学校做好学生学籍管理工作,设计一个学生学籍管理系统,在设计过程中作了系统分析和总体设计,软件设计采取模块化的设计思路。 3.需求概述 该学生学籍管理系统主要对学生学籍信息、成绩信息进行管理,提供一个平台,供学籍管理人员增删改查学生信息、学生成绩信息。系统分为学生信息管理、学生成绩管理、信息查询等几个模块。学籍管理人员登录成功后可以对学生信息管理、学生成绩管理、信息查询等模块进行操作,如学生信息添加、修改、删除和查询;学生成绩登记、修改、删除和查询;查询信息等。 4功能需求: 1)功能齐全:界面操作灵活方便,设计包括以下基本功能: 2)学生信息管理、教师信息管理、财务信息管理、班级信息管理、课 程信息管理、成绩信息管理、打印信息管理、教室信息管理、综合信息查询、系统管理等,至少实现其中的三个功能,且每个功能至少包括两个子功能。 3)按照软件工程的要求进行分析、设计和开发。 4)界面友好:界面友好、输入有提示、尽量展示人性化。 5)可读性强:源程序代码清晰、有层次、主要程序段有注释。

6)健壮性好:用户输入非法数据时,系统应及时给出警告信息。 二.概要设计 1.功能模块: 2数据流图: (1)学生端

(2)管理员端

学生端功能: A 登录,学生登录后,验证成功,进入其信息展示页。 管理员端功能: B 登录,管理员登录后,验证成功,进入学生信息列表,可以对学生信息进行修改,删除,按班级查询,按学号查询,按名字查询。上传图片,更新图片等操作。 三.详细设计及实现 数据库设计: 学生表: 教师表:

自动控制原理实验六 线性系统的频域分析

实验六 线性系统的频域分析 一. 实验目的 (1)熟练掌握使用MA TLAB 命令绘制控制系统Nyquist 图的方法; (2)能够分析控制系统Nyquist 图的基本规律; (3)加深理解控制系统乃奎斯特稳定性判据的实际应用; (4)学会利用奈氏图设计控制系统; (5)熟练掌握运用MA TLAB 命令绘制控制系统伯德图的方法; (6)了解系统伯德图的一般规律及其频域指标的获取方法; (7)熟练掌握运用伯德图分析控制系统稳定性的方法; (8)设计超前校正环节并绘制Bode 图; (9)设计滞后校正环节并绘制Bode 图。 二. 实验原理及内容 1、频率特性函数)(ωj G 。 频率特性函数为: n n n n m m m m a j a j a j a b j b j b j b jw G ++???++++???++= ---)()()()()()()(1101110ωωωωωω 由下面的MATLAB 语句可直接求出G(jw)。 i=sqrt(-1) % 求取-1的平方根 GW=polyval(num ,i*w)./polyval(den ,i*w) 2、用MATLAB 作奈魁斯特图。 控制系统工具箱中提供了一个MATLAB 函数nyquist( ),该函数可以用来直接求解Nyquist 阵列或绘制奈氏图。当命令中不包含左端返回变量时,nyquist ()函数仅在屏幕上产生奈氏图,命令调用格式为: nyquist(num,den) ; 作Nyquist 图, nyquist(num,den,w); 作开环系统的奈氏曲线, 3、奈奎斯特稳定性判据(又称奈氏判据) 反馈控制系统稳定的充分必要条件是当ω从-∞变到∞时,开环系统的奈氏曲线不穿过点(-1,j0)且逆时针包围临界点(-1,j0)点的圈数R 等于开环传递函数的正实部极点数。 4、用MATLAB 作伯德图 控制系统工具箱里提供的bode()函数可以直接求取、绘制给定线性系统的伯德图。 命令的调用格式为: [mag,phase,w]=bode(num,den) [mag,phase,w]=bode(num,den,w) 由于伯德图是半对数坐标图且幅频图和相频图要同时在一个绘图窗口中绘制,因此,要用到半对数坐标绘图函数和子图命令。 (1) 对数坐标绘图函数 利用工作空间中的向量x ,y 绘图,要调用plot 函数,若要绘制对数或半对数坐标图,只需要用相应函数名取代plot 即可,其余参数应用与plot 完全一致。 (2) 子图命令

系统分析实验报告2016

本科实验报告 课程名称:系统分析与设计 实验项目:《》实验实验地点: 专业班级:学号: 学生姓名: 指导教师: 2016年11月日

一、实验目的 通过《系统分析与设计》实验,使学生在实际的案例中完成系统分析与系统设计中的主要步骤,并熟悉信息系统开发的有关应用软件,加深对信息系统分析与设计课程基础理论、基本知识的理解,提高分析和解决实际问题的能力,使学生在实践中熟悉信息系统分析与设计的规范,为后继的学习打下良好的基础。 二、实验要求 学生以个人为单位完成,自选题目,班内题目不重复,使用UML进行系统分析与设计,并完成实验报告。实验报告(A4纸+电子版)在最后一次上课时提交(10周)。 三、实验主要设备:台式或笔记本计算机 四、实验内容 1 选题及项目背景 学生填写自选题目 2 定义 学生填写(对自选项目系统进行描述200-400字) 3 参考资料 学生填写 4 系统分析与设计 4.1需求分析 4.1.1识别参与者 学生填写 4.1.2 对需求进行捕获与描述 学生填写时删除以下括号内容 (内容要求1:对每个用例进行概要说明,参考以下格式: 用例名称:删除借阅者信息执行者:管理员 目的:完成一次删除借阅者信息的完整过程。) (内容要求2:选择其中一个用例(如下订单)给出其用例描述。格式参考下表

) 4.1.3 用例图 通过已掌握的需求,初步了解系统所要完成的功能。下面给出用例图。 4.1.4 分析与讨论 1)建模用例图的步骤、方法? 2)如何识别系统的参与者?应该如何划分用例,应注意哪些问题? 3)心得 4.2 建立对象模型 4.2.1 候选类的数据字典 学生填写 4.2.2定义类 (内容以“书籍信息”类为例列出该类的属性和操作如下: “书籍信息”类 ?属性 国际标准书号(ISBN):文本(String) 书名(name):文本

(实验三)连续时间LTI系统的频域分析汇总

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3 由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说 是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,

管理信息系统分析实验报告

《管理信息系统》 实验二 题目:系统分析 专业:信息管理与信息系统 班级:1106班 姓名 ************************* 指导教师:贺玉珍老师 完成日期:2014.4.28

运城学院超市管理系统设计分析说明书 一、系统目标:随着小超市规模的发展不断扩大,商品数量急剧增加,有关商品的各种信息量也成倍增长。超市时时刻刻都需要对商品各种信息进行统计分析。而大型的超市管理系统功能过于强大而造成操作繁琐降低了小超市的工作效率。 超市管理系统是市场上最流行的超市上常用的系统之一,它主要包含以下几个模块:系统权限的设定、原始数据录入、数据的汇总及查询等。从而,实现对进货、销售及员工信息等实现全面、动态、及时的管理。 本文系统的分析了软件开发的背景以过程;首先介绍了软件的开发环境,其次介绍了本软件的详细设计过程:数据库的设计、各个模块的设计和实现,以及具体界面的设计和功能。 二、系统的初步调查 通过实地参观和学习,对超市的整体情况进行调研。了解超市的组织机构划分,充分了解超市进销存的流程的整体情况,对开发新系统的态度等。通过召开座谈会和个人访谈方法了解各个部门的主要职能及具体运作方式、过程等。 进行初步调研的具体内容为: (1)员工的规模:大约有多少员工,有多少是稳定的,有多少是浮动的; (2)员工管理人员的数量; (3)超市的商品销售状况 (4)客户编码方式; 三、可行性分析: 1.技术可行性研究,在IT行业中从业的工作人员一般都要求掌握计算机技术,具有一定的软硬件基础,会使用各种管理软件,熟悉IT产品。因为,有的超市对员工的素质要求比较高,从管理层到下面的销售人员,都要求具有一定的计算机基础,所以在新系统投入使用时,只要对员工进行少量的培训,系统的功能和使用方法就基本上能够是系统顺利运行。 2经济可行性研究,因为通过网络传递销售信息可以不受距离的限制,因此可以借阅许多的人力和物力,方便管理,由此可以减少不必要的开支,同时该系统可以提高超市的销售效率,即提高了超市的经济效益,所以从经济上完全是可行的,(1)超市有能力承担系统开发费用,(2)新系统将为企业带来经济效益3操作可行性研究,本系统采用基于Windows的图形用户界面,而该系统是大家熟悉的操作系统,对于那些有一般的计算机知识的人员就可以轻松上手。而整个超市管理系统采用最友好的交互界面,简介明了,不需要对数据库进行深入的

管理信息系统实验报告分析

实验报告 课程:管理信息系统 一、实验目的 验证有关概念和理论,加深对概念和知识的理解和认识;熟悉和掌握Visual Basic 6.0 软件的使用方法;初步具备信息管理知识和制作数据字典、系统数据流程图的能力。运用课程讲授的管理信息系统的系统分析方法、模块化系统设计方法以及系统的调试方法进行人事档案管理信息系统的分析、设计、开发、实现与调试。 二、实验方法 面向对象法 三、实验环境及开发工具 1.硬件环境 在最低配置的情况下,系统的性能往往不尽如人意,但现在的硬件性能已经相当的出色,而且价格便宜,因此通常给服务器的配置高性能的硬件。 处理器:Interl Pentium II 266 MX 或更高 内存:64M 硬盘空间:2 GB 显卡:SVGA 显示适配器 显示器:液晶17寸 2.软件环境 操作系统:Windows/98/ME/2000/XP或更高版本 数据库:Microsoft Access 2000 3.实验开发工具:Visual Bisic 6.0程序系统 四、实验内容

(一)、系统分析 1、系统数据流程图 2、数据字典 3、系统中所有实体(包括实体的属性)以及实体之间的联系类型分析 人员的个人资料经过专业的处理部门的处理形成个人档案。档案包括自然情况,工作情况,简历,政治情况等各方面信息,内容比较庞大复杂。将档案信息传送到人员信息库。同时还综合考虑档案管理工作的性质,总结归纳出所需实现

的功能。为人事档案进行服务,对人事的变动、人事资料、以及人事资料的查询,统计等功能。总体上说具有编辑,查询,用户管理,图表统计等功能。然后将最终结果提交到人力资源管理部门,由人力资源管理人员进行审查,以便于对职工的调配。 4、典型处理的表达 档案完整添加用户档案到档案库 个人信息成功添加到档案库 修改用户档案信息 失败退回用户档案 退回用户档案 (二)、系统设计 1、子系统划分(或功能划分或模块划分) 功能划分 1、用户管理 功能:设置使用人事管理系统的用户及其使用权限。整个人事管理系统由多个功能模块组成,不同的模块完成不同的功能,所以可以为不同的职工分配不同的功能,使其具有不同的权限,完成其权限所对应的功能,从而很好地管理好整个系统。 2、辅助表管理 功能:通过它的这个功能可以有效的对本单位人事部门的扩充进行及时的计算机管理。只要管理员进行简单的数据字段添加即可。辅助表管理功能是高级管理员及中级管理员拥有的权限,它的功能是对数据库进行新表的添加。 3、档案编辑 功能:档案编辑模块中有4个子模块。他们是档案卡片、个人简历、家庭成员、历史档案等功能。这些功能因管理员的权限不同所表示出的功能使用也不同,普通管理员没有数据修改及删除的权利。在这些功能里详细的记录了所有单位员工的资料。 4、档案查询 功能:对档案卡片的查询功能,在这里可以查到符合程序要求的任何信息。

自动控制原理-线性系统的频域分析实验报告

自动调节系统频域分析 班级11081801 学号1108180135 姓名王佳炜 日期2014.1.5

线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 2 22)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 解: 程序如下: num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold bode(num,den2,w) bode(num,den3,w) bode(num,den4,w) bode(num,den5,w)

-100-80-60-40-200 20M a g n i t u d e (d B )10 -2 10 -1 10 10 1 10 2 10 3 P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 分析:随着.0=ζ的增大 ,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为 ) 5)(15(10 )(2 +-= s s s s G ) 106)(15() 1(8)(22++++= s s s s s s G ) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解: 程序如下 奈氏曲线: (1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100); nyquist(num1,den1,w)

系统频域分析课程设计报告

系统频域分析课程设计 报告 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

《综合仿真》课程设计报告 姓名 学号 同组成员 指导教师 时间 11周至14周

系统的频域分析 【目的】 (1) 加深对系统频域分析基本原理和方法的理解。 (2) 加深对信号幅度调制与解调基本原理和方法的理解。 (3) 锻炼学生综合利用所学理论和技术,分析与解决工程实际 问题的能力。 【研讨内容】 题目1.幅度调制和连续信号的Fourier 变换 本题研究莫尔斯码的幅度调制与解调。本题中信号的形式为 )π2sin()()π2sin()()π2cos()()(132211t f t m t f t m t f t m t x ++= 其中信号x (t )由文件定义,可用命令Load ctftmod 将文件定义的变量装入系统内存。运行命令Load ctftmod 后,装入系统的变量有 af bf dash dot f1 f2 t x 其中 bf af : 定义了一个连续系统H (s )的分子多项式和分母多项式。可利用freqs(bf,af,w)求出该系统的频率响应,也可用sys=tf(bf,af)得到系统的模型,从而用lsim 求出信号通过该系统的响应。 dash dot : 给出了莫尔斯码中的基本信号dash 和dot 的波形 f1 f2: 载波频率 t: 信号x (t )的抽样点 x: 信号x (t )的在抽样点上的值 信号x (t )含有一段简单的消息。Agend 007的最后一句话是

The future of technology lies in ··· 还未说出最后一个字,Agend 007就昏倒了。你(Agend 008)目前的任务就是要破解Agend 007的最后一个字。该字的信息包含在信号x (t )中。信号x (t )具有式(1)的形式。式中的调制频率分别由变量f1和f2给出,信号m 1(t ),m 2(t )和m 3(t )对应于字母表中的单个字母,这个字母表已用国际莫尔斯码进行编码,如下表所示: (1)字母B 可用莫尔斯码表示为b=[dash dot dot dot],画出字母B 莫尔 斯码波形; (2) 用freqs(bf,af,w)画出系统的幅度响应; (3) 利用lsim 求出信号dash 通过由sys=tf(bf,af)定义的系统响应,解释你所获得的结果; (4)用解析法推导出下列信号的Fourier 变换 )π2cos()π2cos()(21t f t f t m )π2sin()π2cos()(21t f t f t m

实验三线性系统的频域分析

自动控制理论 上 机 实 验 报 告 学院:机电工程学院 班级:13级电信一班

: 学号: 实验三 线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、基础知识及MATLAB 函数 频域分析法是应用频域特性研究控制系统的一种经典方法。它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。 1.频率曲线主要包括三种:Nyquist 图、Bode 图和Nichols 图。 1)Nyquist 图的绘制与分析 MATLAB 中绘制系统Nyquist 图的函数调用格式为: nyquist(num,den) 频率响应w 的围由软件自动设定 nyquist(num,den,w) 频率响应w 的围由人工设定 [Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量, 不作图 例4-1:已知系统的开环传递函数为2 526 2)(2 3++++=s s s s s G ,试绘制Nyquist 图,并判断系统的稳定性。

num=[2 6]; den=[1 2 5 2]; [z,p,k]=tf2zp(num,den); p nyquist(num,den) 极点的显示结果及绘制的Nyquist 图如图4-1所示。由于系统的开环右根数P=0,系统的Nyquist 曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。 p = -0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668 若上例要求绘制)10,10(32-∈ω间的Nyquist 图,则对应的MATLAB 语句为: num=[2 6]; den=[1 2 5 2]; w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距 离的点 nyquist(num,den,w) 2)Bode 图的绘制与分析 系统的Bode 图又称为系统频率特性的对数坐标图。Bode 图有两图,分别绘制开环频率特性的幅值和相位与角频率ω的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。 MATLAB 中绘制系统Bode 图的函数调用格式为: bode(num,den) 频率响应w 的围由软件自动设定 bode(num,den,w) 频率响应w 的围由人工设定 图4-1 开环极点的显示结果及Nyquist 图

电力系统分析实验报告金科

学生实验报告 (理工类) 课程名称:专业班级: 学生学号:学生: 所属院部:指导教师: 20 13 ——20 14 学年第二学期 金陵科技学院教务处制 实验一电力系统分析计算 实验项目名称:电力系统分析计算实验学时: 2

同组学生:实验地点: C208 实验日期: 2014 6 23 实验成绩: 批改教师:静批改时间: 一.实验目的 1.掌握用Matlab软件编程计算电力系统元件参数的方法. 2.通过对不同长度的电力线路的三种模型进行建模比较,学会选取根据电路要求选取模 型。 3.掌握多级电力网络的等值电路计算方法。 4.理解有名制和标幺制。 二.实验容 1.电力线路建模 有一回220kV架空电力线路,导线型号为LGJ-120,导线计算外径为15.2mm,三相导线水平排列,两相邻导线之间的距离为4m。试计算该电力线路的参数,假设该线路长度分别为60km,200km,500km,作出三种等值电路模型,并列表给出计算值。 2.多级电力网络的等值电路计算 部分多级电力网络结线图如图1-1所示,变压器均为主分接头,作出它的等值电路模型,并列表给出用有名制表示的各参数值和用标幺制表示的各参数值。 线路额定电压电阻 (欧/km) 电抗 (欧/km) 电纳 (S/km) 线路长度 (km) L1(架空线)220kv 0.08 0.406 2.81*10-6 200 L2(架空线)110kV 0.105 0.383 2.81*10-6 60 L3(架空线)10kV 0.17 0.38 忽略15 变压器额定容量P k(kw) U k% I o% P o(kW) T1 180MVA 893 13 0.5 175 T2 63MVA 280 10.5 0.61 60 三.实验设备 1.PC一台 2.Matlab软件 四.实验记录 1.电力线路建模 电阻电抗电纳电阻电抗电纳电阻电抗电纳

线性系统的频域分析报告

1 γ = 50 20- =s K0

原系统的伯德图: num/den = 1.2347 s + 1 ------------- 0.20154 s + 1 校正之后的系统开环传递函数为: num/den = 6.1734 s + 5 ------------------------------------------- 0.20154 s^4 + 1.6046 s^3 + 3.4031 s^2 + 2 s alpha =6.1261; P h a s e (d e g ) Bode Diagram Gm = Inf dB (at Inf rad/sec) , P m = 9.04 deg (at 3.14 rad/sec) -200204060 80M a g n i t u d e (d B )

[il,ii]=min(abs(mag1-1/sqrt(alpha))); wc=w( ii); T=1/(wc*sqrt(alpha)); numc=[alpha*T,1]; denc=[T,1]; [num,den]=series(num0,den0,numc,denc); [gm,pm,wcg,wcp]=margin(num,den); printsys(numc,denc) disp('D£?y??oóμ??μí3?a?·′?μYoˉêy?a:');printsys(num,den) [mag2,phase2]=bode(numc,denc,w); [mag,phase]=bode(num,den,w); subplot(2,1,1);semilogx(w,20*log10(mag),w,20*log10(mag1),'--',w,20*log10(mag2),'-.'); grid; ylabel('·ù?μ(db)'); title('--Go,-Gc,GoGc'); subplot(2,1,2); semilogx(w,phase,w,phase1,'--',w,phase2,'-',w,(w-180-w),':'); grid; ylabel('?à??(0)'); xlabel('?μ?ê(rad/sec)'); title(['D£?y?°£o·ù?μ?£á?=',num2str(20*log10(gm1)),'db','?à???£á?=',num2str(pm1),'0'; 'D£?yoó£o·ù?μ?£á?=',num2str(20*log10(gm)),'db','?à???£á?=',num2s tr(pm),'0']); 10-110 10 1 10 2 -60 -40-20020 40幅值(d b ) --Go,-Gc,GoGc 10 -110 10 1 10 2 -300 -200-1000 100相位(0) 频率(rad/sec) 矫正后系统的伯德图

系统分析与设计实验报告样本

鞋店进销存管理系统 一.项目背景 随着计算机技术的不断发展, 它已经成为人们工作和生活中不可缺少的工具。早在1954年, 银行、大公司和大企业纷纷采用计算机进行账户和账目管理、生产管理、库存管理、销售管理、统计报表等。从数据的收集、存储、整理到检索统计, 应用的范围日益扩大, 使计算机的应用很快超过科学计算, 成为最大的计算机应用领域。 鞋店管理的特点是信息处理量比较大, 所存的鞋种类多, 而且由于进货单、销售单、需求单等单据发行量特别大, 关联信息多, 查询和统计的方式各不相同等原因,因此在管理上实现起来有一定困难。在管理的过程中经常会出现信息的重复传递, 单据报表种类繁多, 各个部门管理规格不统一等问题。 在本系统的设计过程中, 为了克服这些困难, 满足计算机管理的需要,我们采取了下面的一些原则: 1、统一各种原始单据的格式, 统一账目和报表的格式。 2、删除不必要的管理冗余, 实现管理规范化、科学化。 3、程序代码标准化, 软件统一化, 确保软件的可维护性和 实用性。 4、界面尽量简单化, 做到实用, 方便, 尽量满足书店中 不同层次员工的需要。 二.定义

”鞋店进销存管理系统”为用户提供添加、修改、查询、退货操作等服务。 用户在登陆界面输入用户名, 密码后系统核对正确进入系统内部。 系统就要求用户选择事务类型( 添加、修改、查询、退货等) , 直至用户选择退出应用服务, 询问用户是否退出应用服务, 如果 用户选择结束, 系统重回登陆界面。用户进入添加界面后, 首先 能够输入的数字必须大于等于100) , 否则系统显示输入有误。用 户点击确认后, 由系统查询, 判断该取值是否超出库存量, 如果没有, 则系统会显示确认界面, 用户单点击”确认”后, 系统自动生成账单, 并在后台 进行工作, 系统进行清点并发出命令给仓库管理人员, 并将数据 更新到数据库中; 否则提示用户库存量不足, 请重新输入, 重复 上述过程。 三.参考资料 《系统分析与设计》 四.系统分析与设计 4.1需求分析 4.1.1识别参与者 用户(下订单者), 系统维护人员, 仓库管理人员 4.1.2 对需求进行捕获与描述 用例名称: 添加执行者: 用户目的: 向仓库中发出下订单命令。 用例名称: 退货执行者: 用户目的: 将未售出的货物退还到仓库 用例名称: 修改执行者: 用户目的: 修改用户登录密码。

线性系统的频域分析-自动控制

实验三·线性系统的频域分析 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 22 ()2n n n G s s s ωζωω=++ 绘制出6n ω=,0.1ζ =,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 2.系统的开环传递函数为 210 ()(51)(5)G s s s s =-+ 228(1) ()(15)(610) s G s s s s s += +++ 4(/31) ()(0.021)(0.051)(0.11) s G s s s s s += +++ 绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 3.已知系统的开环传递函数为21()(0.11) s G s s s += +。求系统的开环截止频率 穿越频率、幅值裕度和相位裕度。应用频率稳定判据判定系统的稳定性。 三、实验内容及分析 1. 系统1:2 22 ()2n n n G s s s ωζωω=++中6n ω=,(1)0.1ζ=时 Matlab 文本如下: num=[36 0 0]; den=[1 1.2 36]; w=logspace(-2,3,100); bode(num,den,w) Grid 得到图像:

同理,得到其他值情况下的波特图:ξ=0.3时 ξ=0.5时 ξ=0.8时

ξ=2时 从上面的图像中可以看出:随着ξ的不断增大,波特图中震荡的部分变得越来越平滑。而且,对幅频特性曲线来说,其上升的斜率越来越慢;对相频特性曲线来说,下降的幅度也在变缓。 2. 开环传递函数1:210 ()(51)(5) G s s s s = -+ 奈奎斯特图函数及图像如下: num=[0 10]; den=[conv([5,-1],[1,5]),0,0]; [z,p,k]=tf2zp(num,den); p

自动控制原理线性系统的频域分析实验报告

实验四 专业 自动化 班号 03班 指导教师 陈艳飞 姓名 胡波 实验名称 线性系统的频域分析 实验日期 第 次实验 一、实验目的 1.掌握用MATLAB 语句绘制各种频域曲线。 2.掌握控制系统的频域分析方法。 二、实验内容 1.典型二阶系统 2 2 22)(n n n s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。 解: 程序如下: num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold bode(num,den2,w) bode(num,den3,w) bode(num,den4,w) bode(num,den5,w)

-100-80-60-40-200 20M a g n i t u d e (d B )10 -2 10 -1 10 10 1 10 2 10 3 P h a s e (d e g ) Bode Diagram Frequency (rad/sec) 分析:随着.0=ζ的增大 ,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为 ) 5)(15(10 )(2+-= s s s s G ) 106)(15() 1(8)(22++++= s s s s s s G ) 11.0)(105.0)(102.0() 13/(4)(++++= s s s s s s G 绘制系统的Nyquist 曲线、Bode 图和Nichols 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。 解: 程序如下 奈氏曲线: (1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100); nyquist(num1,den1,w)

相关主题
文本预览
相关文档 最新文档