当前位置:文档之家› 高考第一轮复习讲义(第七 八章机械振动和机械波 热学)

高考第一轮复习讲义(第七 八章机械振动和机械波 热学)

高考第一轮复习讲义(第七 八章机械振动和机械波 热学)
高考第一轮复习讲义(第七 八章机械振动和机械波 热学)

第七章机械振动和机械波 热学 第一讲 机械振动几个概念

考点归纳分析

一、简谐运动的概念 1、机械振动

物体在平衡位置附近所做的往复运动叫机械振动。 机械振动的条件是:(1)物体受到回复力的作用;(2)阻力足够小。 2、回复力

使振动物体返回平衡位置的力叫回复力。回复力时刻指向平衡位置。回复力是以效果命名的力,它是振动物体在振动方向上的合外力,可能是几个力的合力,也可能是某个力或某个力的分力,可能是重力、弹力、摩擦力、电场力、磁场力等。

3、简谐运动

物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力作用下的振动,叫简谐运动。表达式为:F=-kx。

4、描述简谐运动的物理量

(1)位移x:由平衡位置指向振子所在处的有向线段,最大值等于振幅; (2)振幅A:是描述振动强弱的物理量。(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的,而位移是时刻在改变的)

(3)周期T:是描述振动快慢的物理量。频率f=T

1。 二、两种简谐运动模型 1、弹簧振子

弹簧一端固定,另一端固定一个质点则构成一个弹簧振子,其振动周期T=k

m

π

2,与振幅无关,只由振子质量和弹簧的劲度系数决定。

2、单摆

细线一端拴上一个小球,另一端固定在悬点上,如果悬挂小球的细线的伸缩和质量可以忽略,线长又比球的直径大得多,忽略小球在运动过程中所受的空气阻力,这们的装置叫单摆。

最大摆角小于50

单摆的振动可以看作是简谐振动。

(1)单摆振动的周期:g

l T π

2=。 (2)秒摆:周期T=2s的单摆称秒摆。

重难点突破

一、平衡位置的理解

平衡位置是做机械振动物体最终停止振动后振子所在的位置,也是振动过程中回复力为零的位置。

(1)平衡位置是回复力为零的位置; (2)平衡位置不一定是合力为零的位置;

(3)不同振动系统平衡位置不同:竖直方向的弹簧振子,平衡位置是其弹力等于重力的位置;水平匀强电场和重力场共同作用的单摆,平衡位置在电场力与重力的合力方向上。

二、回复力的理解

1、回复力是指振动物体所受的总是指向平衡位置的合外力,但不一定是物体受到的合外力。

2、性质上,回复力可以是重力、弹力、摩擦力、电场力、磁场力等。 3、回复力的方向总是“指向平衡位置”。

4、回复力的作用是使振动物体回到平衡位置。 三、简谐运动

1、简谐运动的判定

在简谐运动中,回复力的特点是大小和位移成正比,方向与位移的方向相反,即满足公式 F =-kx。所示对简谐运动的判定,首先要正确分析出回复力的来源,再根据简谐运动中回复力的特点进行判定。

2、简谐运动的特点

(1)周期性:简谐运动的物体经过一个周期或n个周期后,能回复到原来的运动状态,因此处理实际问题时,要注意多解的可能性或需定出结果的通式。千万不要用特解代替通解。

例1:如图所示,光滑圆弧槽的半径为R,A为最低点,C到A的距离远小于R。两小球B和C都由静止开始释放,要使B、C两球在A点相遇,问B到A点的距离H应满足什么条件?

(2)对称性——简谐振动的物体在振动过程中,其位移、速度、回复力、加速度等物理量的大小关于平衡位置对称。

例2:一个质点在平衡位置O点附近做机械振动,若从O点开始计时,经过3s钟质点第一次经过M点,如图所示;再继续运动,又经过2s钟它第二次经过M点;则该质点第三次经过M点还需的时间是:

A、8s;B、4s;C、14s;D、

s 3

10。 四、单摆周期公式g

l T π

2= 1、周期公式中摆长L:周期公式中L为单摆的摆长,摆长L是指摆动圆弧的圆心到摆球重心的距离,而不一定为摆线的长。

2、单摆周期公式中的g:只受重力的和绳拉力的单摆:单摆在角小于10O

时可以看为简谐运动,其回复力由重力沿切线的分力提供,g为当地重力加速度,在地球不同位置g的取值是不同的,不同星球g值也不相同。

第二讲 机械振动的图象

考点分析归纳

一、简谐运动的图象

1、物理意义:表示振动物体的位移随时间变化的规律,振动图象不是质点的运动轨迹。 2、特点:简谐运动的图象是正弦(余弦)曲线。

二、简谐运动的能量

1、振动过程是一个动能和势能不断转化的过程,任意时刻动能和势能之和等于振动物体总的机械能。总的机械能与振幅有关,振幅越大则机械能越大。

2、阻尼振动的振幅不断减小,因此阻尼振动的机械能不守恒。

三、受迫振动、共振:

1、受迫振动:物体在周期性驱动力作用下的振动,受迫振动的频率等于驱动的频率,与固有频率无关。

2、共振:共振是一种特殊的受迫振动。当驱动力的频率跟物体的固有频率相等时,受迫振动的振幅度最大,这种现象叫共振。

重难点突破

一、简谐振动图象

简谐运动图象的应用:简谐运动的图象表示振动质点位移随时间的变化规律,从图象上可获取以下信息:

1、图象描述了做简谐运动的质点的位移随时间变化的规律,即是位移——时间函数图象。切不可将振动图象误解为物体的运动轨迹。

2、从振动图象可以知道质点在任一时刻相对平衡位置的位移;

3、从振动图象可以知道振幅;

4、从振动图象可以知道周期(两个相邻正向最大值之间的时间间隔或两个相邻负向最大值之间的时间间隔);

1、从振动图象可以知道开始计时时(t=0)振动物体的位置;

2、从振动图象可以知道质点在任一时刻的回复力和加速度的方向(指向平衡位置);

3、振动图象可以知道质点在任一时刻的速度方向。斜率为正值时速度为正,斜率为负值时速度为负。

4、利用简谐运动图象可判断某段时间内振动物体的速度、加速度、回复力大小变化及动能、势能的变化情况。

若某段时间内质点的振动速度指向平衡位置(可为正也可为负),则质点的速度、动能均变大,回复力、加速度、势能均变小,反之则相反。凡图象上与t轴距离相同的点,振动物体具有相同的振动动能和势能。

9、在简谐运动问题中,凡涉及到与周期有关的问题,可先画出振动图线,利用图线的物理意义及其对称性分析,求解过程简捷、直观。

二、振动的能量、阻尼振动、无阻尼振动

振动的能量:任意时刻振动系统的动能和势能的总和,就是振动系统的总机械能。

当弹簧振子或单摆在理想化条件下振动时,由于只有弹力或重力做功,振动系统的机械能守恒。对确定的振动系统来说,由于振子或单摆在最大位移处的势能即等于系统的总机械能,振幅越大,表明该振动系统的总机械能也越大。所以说,振幅是表示振动强弱的物理。

振动系统受摩擦和其他阻力,即受阻尼作用。系统的机械能随

时间逐渐减少。

振幅不变的振动叫无阻尼振动。

三、受迫振动、共振

振动分为自由振动和受迫振动两类,受迫振动是指物体在周期

性驱动力作用下的运动,当振动达到稳定状态时,其振动频率等于

驱动的频率。其振动的振幅随驱动力频率的不同而变化,当驱动力

频率等于物体的固有频率时,物体做受迫振动的振幅最大,这种特殊的受迫振动称为共振。共振曲线如图①f驱=f固时,A=Am,Am取决于驱动力的幅度及阻尼。②f驱与f固差别越大,物体作受迫振动的振幅A越小。

第三讲机械波的形成与图象

考点归纳分析

一、机械波的概念

1、机械波:机械振动在介质中的传播形成机械波。

2、机械波形成的条件:要有振动物体(波源)和介质。

3、机械波的分类:

①横波:质点振动方向与波的传播方向垂直的波叫横波。横波有凸部(波峰)和凹部(波谷)。

②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波。纵波有密部和疏部。

4、机械波的特点:

①机械波传播的是振动形式和能量。质点只在各自的平衡位置附近振动,并不随波迁移。

②介质中各质点的振动周期和频率都与波源的振动周期和频率相同。

③离波源近的质点带动离波源远的质点依次振动。每一质点开始振动的振动方向与波源开始振动的振动方向一致

二、波长、波速和频率的关系

1、波长:两个相邻的并且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。

振动在一个周期里在介质中传播的距离等于一个波长。对于横波,相邻的两个波峰或相邻的两个波谷之间的距离等于一个波长;对于纵波,相邻的两个密部或相邻的两个疏部之间的距离等于一个波长。

2、波速:波的传播速率。机械波的传播速率只与介质有关。在同一种均匀介质中,波速是一个定值,与波的频率无关。

3、频率:波的频率始终等于波源的振动频率。同一列波在不同介质中传播其频率是不变的。

4、三者的关系:f

=。

三、波的图象

1、坐标轴:取质点平衡位置的连线作为X轴,表示质点分布的顺序;取过波源质点的振动方向作为y轴,表示质点位移。

2、意义:在波的传播方向上,介质中振动的各质点在某一时刻相对各自平衡位置的位移。

3、形状:正弦(或余弦)图线。

4、图象形成:波的图象相当于一张照片,它记录了拍照时刻介质中各质点离开平衡位置的位移。

重难点突破

一、波的形成

1、波的形成过程

机械振动在介质中传播,形成机械波。波的形成有两个必要条件:

(1)要有振源(做机械振动的波源);

(2)要有介质,利用介质间的弹性带动周围质点发生振动,使振动在介质中传播开来。介质可以是固体、液体和气体。

波一旦形成,它就可以脱离波源,在介质中由近及远地传播,介质中各质点的振动都有是

受迫振动,驱动力来源于振源,所以介质中各质点振动频率均相同,都等于振源的频率。波有横波和纵波之分。

机械波传播的是运动形式——机械振动的传播,机械波传到哪一个质点,该质点则开始做机械振动;机械波的传播不是运动状态的传递;从整体上看波的传播又是波形以波速平移的过程。

2、波的传播方向和质点振动方向关系

波的形成过程是:波源的质点先开始振动起来,然后带动离波源远的质点开始振动,离波源远的质点再带动离波源更远的质点……离波源近的质点总是比离波源远的质点步调超前,离波源远的质点比离波源近的质点滞后,这样依次带动,则形成一列凹凸起伏(疏密相间)的一列波。总之离波源近的质点总是带动离波源远的质点;离波源远的质点总是向离波源近的质点“学习”。所以,由于各质点起振时刻有早晚之分,某时刻离开平衡位置的位移就不相同了。

注意:介质中的质点本身并不随波迁移,都各自在自己的平衡位置附近做受迫振动。

(1)已知波的图象,任意一质点的运动方向,确定波的传播方向。方法是:由质点的振动方向和邻近质点共同判定。若质点向上振动,则邻近上方的质点靠近波源;若振动方向向下,邻近下方向的质点靠近波源。由波源位置即可确定波的传播方向。

(2)已知波的图象及波的传播方向,确定介质中某质点的运动方向。方法是:由波的传播方向,从而找到更靠近波源的邻近质点,如邻近质点在下方,则质点向下运动;如邻近质点在上方,则质点向上运动。

二、波的图象

1、波的图象的用途

某一时刻,在波的传播方向上各质点的位移矢量的末端的连线为这一时刻波的图象。即波的图象是与时刻对应的,不同时刻,同一列波的图象不同。简谐波的图象特征是一条正弦(或余弦)曲线,如图所示,横轴X轴表示各质点的平衡位置,纵轴y表示各质点相对于平衡位置的位移;点的坐标(x,y)表示x处的质点的位移(相

对于平衡位置)是y,纵轴正、负极大值表示各质点的

振幅A;图象上处于正的极大值点称为波峰,处于负的

极大值点称为波谷;相邻两波峰(波谷)的距离称为

一个波长λ。

(1)从图象上直接读出波长和振幅。

(2)可确定任一质点在该时刻的位移。

(3)可确定任一质点在该时刻的位移。

(4)若已知波的传播方向,可确定各质点在该时刻的振动方向。若已知某质点的振动方向,可确定波的传播方向。

(5)若已知波的传播方向,可画出在Δt前后的波形。

平移法:先算出经Δt时间后波传播的距离ΔX = V Δt,再把波形沿传播方向平移ΔX即可。因为波动图象的重复性,若知波长λ,则波形平移nλ时波形不变,当ΔX = nλ+ X时,可采取去整(nλ)留零(X)的办法(简称“去整留零”法),只需平移X即可。

特殊点法:在波形上找两特殊点,如过平衡位置的点和与它相邻的峰(谷)点,先确定这两点的振动方向,再看Δt = nT+ t,由于经nT时间后质点位置不变,所以也采取去nT留t的方法,分别找出两特殊点经时间t后的位置,然后按正弦规律画出新波形。

1、传播方向的双重性带来的多解

波在介质中的传播方向可以沿空间各个方向,在二维空间坐标系中,波的传播方向内有两

种可能;沿X

轴的正方向或负方向,若正、负两方向传播的时间之和等于周期的整数倍,则正负两方向传播到那一时刻波形相同,因此在波的传播方向未定的情况下必须要考虑这一点。

例:一列简谐横波在X轴上传播着,波形图如图所示,实线为t = 0 时刻的波形图,虚线为Δt = 0. 2s时刻的波形图,问:(1)波速多大? (2)若2T<Δt<3T,波速多大?

(3)若Δt>T,且波速为85m/s时,波向何方传播?

2、波的时间周期性带来的多解

在波的传播过程中,各质点都在各自的平衡位置附近振动,不同时刻,质点的位移不同,则不同时刻,波的图象不同。质点振动位移做周期性变化,则波的图象也做周期性变化,经过一个周期,波的图象复原一次。也就是说如在X轴上取一给定质点,在t+nT时刻的振动情况与它在t时刻的振动情况(位移、速度、加速度等)相同。因此在t时刻的波形,在t+nT时刻必然多次重复出现,这就是机械波的时间周期性。波的时间周期性,表明波在传播过程中,经过整数倍周期时,其波形图线相同。

3、图形多样性带来的多解

在波的传播过程中,质点的振动情况、波的传播方向及波形三者紧密相关。若质点在一定的限制条件(时差、空间、振动状态的限制)下振动,则质点间的波形可能不是惟一的,因此相应的波的参量亦可能不是惟一的。在处理这类问题时既要考虑波传播的双向性,又要考虑波在空间出现的重复性以及质点振动的周期性,因此,可根据两质点平衡位置的距离和两质点的振动差别确定可能的波长,并再兼顾其他方面的情况对波的参量进行分析才能解答有关的问题。

第四讲机械波的特性

考点归纳分析

一、波的反射

波遇到障碍物会返回来继续传播的现象叫反射。

1、特例:夏日轰鸣不绝的雷声;在空房子里说话会听到声音更响。

2、人耳能区分相差0.1s以上的两个声音。

二、波的折射

波从一种介质进入另一种介质时,传播方向会发生改变的现象叫波的折射。

波的折射中,波的频率不变,波速和波长都发生了改变。

三、波的叠加与波的干涉

1、波的叠加原理:在两列相遇的区域时里,每个质点都将参与两列波引起的振动,其位移是两列波分别引起位移的矢量和。相遇后仍保持原来的运动状态。波在相遇区域里,互不干扰,有独立性。

2、波的干涉

(1)条件:频率相同的两列同性质的波相遇。

(2)现象:某些地方的振动加强,某些地方的振动减弱,并且加强和减弱的区域间隔出现,加强的地方始终加强,减弱的地方始终减弱,形成的图样是稳定的干涉图样。

四、波的衍射

1、波绕过障碍物继续传播的现象叫波的衍射。

2、衍射现象始终存在,但能够发生明显衍射现象的条件是:障碍物或孔的尺寸比波长小或差不多。

3、注意:干涉和衍射现象是波的特有现象,一切波都能发生干涉和衍射现象;反之能够发生干涉和衍射现象,一定是波。

五、声波

1、可闻声波:能引起人类听觉器官感觉的声波、频率范围20Hz-20000Hz之间。

2、次声波:频率低于20Hz的声波,

超声波:频率高于20000Hz的声波,可用于工程质量检测及医疗、定位等。

3、声波亦能发生反射、干涉和衍射等现象。声波的共振现象称为声音的共鸣。

六、多普勒效应

1、波源和观察者之间有相对运动,使观察者感到频率发生变化的现象,叫做多普勒效应。

2、相对运动和频率的关系

(1)当波源不动,观察者朝着波源移动,与观察者不动相比,观察者在单位时间内接收到的完全波个数增加,即接收到的频率增大。反之,当观察者远离波源时,接收到的频率减小。

(2)当观察者不动,波源相对于观察者运动时,也可得到同样的结论。总之,当波源与观察者有相对运动时,如果二者相互接近,观察者接收到的频率增大;如果二者远离,观察者接收到的频率变小。

(3)注意:声源的频率并没有发生变化。

重难点突破

一、波的叠加和干涉

1、波的叠加

(1)波的独立性:两列波相遇后,仍象相遇前一样,各自优质原有的波形继续传播,这就是波的独立性原理。

(2)波的叠加:在两列波重叠的区域里,任何一个质点的总位移,都等于两列波引起位移的矢量和。

3、波的干涉

对于波的干涉应理解以下几点:

(1)在干涉区域里始终有两列波相互通过,并且两列波的频率、波速、波长都相同。

(2)在干涉区域里各个质点都以一定的振幅振动。振动最强区域里质点的振幅为两列波分别引起的振幅之和,振动最弱区域内质点的振幅为现金列波的振幅之差。因此我们看到的现象是等幅相干水波叠加时,振动最弱区域内的质点几乎没有振动。

(3)振动加强和振动减弱区域是稳定的:

在波的叠加区域里,若某质点在某时刻是波峰与波峰相遇,其位移大小为两列波的振幅之和,达到最大值,振动是加强的。经半个周期后,该质点一定处于两列波的波谷与波谷的相遇处,其位移大小仍为两列波的振幅之和,达到反向最大值,仍然是加强的。若某质点在某时刻处在第一列波的波峰与第二列波的波谷相遇位置,其位移大小应为两列波的振幅之差,达到最小值,振动是减弱的。经半个周期后,该质点一定外于第一列波的波谷与第二列波的波峰相遇处,其位移大小仍等于两列波的振幅之差,仍然是减弱的。当然在振动加强的区域内,某些时刻某些质眯的位移也可以为零,此时正处在平衡位置,但却具有最大的振动速度。

(4)靠近振动最强的质点其振动也是加强的,靠近振动最弱的质点其振动也是减弱的。

二、波的衍射

波的衍射是指波绕过障碍物的现象。能够发生明显的衍射现象的条件是:障碍物或孔的尺寸比波长小,或都跟波长相差不多。

三、波的多普勒效应

当波源与观察者有相对运动时,如果二者相互接近,观察者收到的频率增加;如果二者远离,观察者接收到的频率减小。

另外要注意的是我们所说的频率变大、减小是相对于波源的频率而言的,并不是说随波源和观察者的靠近,观察者接收到的频率逐渐增大;波源和观察者远离时逐渐地减小。如果两者之间的相对运动是匀速的,观察者听到的声音频率是不变的。

第五章热学

第一讲分子动理论

考点归纳分析

一、分子动理论

1、物质是由大量分子组成的

物质是由大量分子组成的,分子之间有间隙,分子体积很小,一般分子直径的数量级是10-10m。

2、分子的运动

分子永不停息地做无规则运动。扩散现象和布朗运动等实验证实了分子的无规则运动。

3、分子力

分子之间同时存在着相互作用的引力和斥力,其合力叫分子力。当两个分子间的距离等于数量级为10-19m的某个值r0时,分子间的引力和斥力相互平衡,分子间作用力为零。分子间的引力和斥力都随分子间的距离增大而减小,但斥力比引力减小得快;随分子间距离的减小而增大,但斥力比引力变化更快。其特点为:

r=r0时,F引=F斥,分子力F=0。

r<r0时,F引<F斥,分子力F为斥力。

r>r0时,F引>F斥,分子力F为引力。

r>r0时,F引、F斥迅速减小为零,分子力F=0。

二、阿伏加德罗常数

1、1moL的任何物质所含有的粒子数叫做阿伏加德罗常数NA,NA=6.02×1023moL-1.2、阿伏加德罗常数把摩尔质量M或摩尔体积V。

这种宏观物理量跟分子质量m或分子体积V这种微观物理量联系起来了。

3、分子质量:m=

A

N

M

,分子体积:

A

N

M

V

ρ

=

三、布朗运动

1、悬浮在液体或气体中的微粒做永不停息的无规则运动,叫做布朗运动。当微粒足够小时,由于任何时刻液体或气体的分子从各个方面对微粒的冲击作用不平衡,以及分子对微粒的

碰撞非常频繁,引起了微粒的无规则运动。

2、液体或气体分子永不停息的无规则运动是产生布朗运动的原因,但微粒的布朗运动并不是分子的运动。微粒越小,布朗运动越明显;温度越高,布朗运动越激烈。

重难点突破

一、微观量的估算

微观量是指微观领域内那些不能直接测量的物理量,如分子的质量、分子的体积、分子间的平均距离等,但这些微观量都与宏观领域内的一些物理量(即宏观量)有着密不可分的联系,阿伏加德罗常数是把宏观量与相应的微观量联系起来的重要物理量。

对于微观量的估算,主要是掌握根据固、液、气体微观结构的不同特点,利用阿伏加得罗常数由宏观量求出与此相关的微观量的思路。解此类题的关键是两个“模型”和一个“忽略”,两个模型是:在求液体固体分子直径时将分子视为球形,在求气体分子距离时将分子视为立方体。一个忽略就是:忽略固体、液体分子间的间隙。认为它们是一个挨一个紧密排列的。

二、布朗运动

布朗运动不是液体分子的运动,也不是固体分子的运动,是指悬浮在液体中的微粒的运动,因为我们不可能用普通显微镜看到分子。布朗运动的原因不是外界因素引起的,它来自液体内部,是液体分子不断地撞击悬浮在液体中的固体小颗粒引起的,因此,布朗运动虽然不是液体分子的运动,却证明了液体分子在不停的做无规则运动。

高中物理选修-4知识点机械振动与机械波解析

机械振动与机械波 简谐振动 一、学习目标 1.了解什么是机械振动、简谐运动 2.正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。 二、知识点说明 1.弹簧振子(简谐振子): (1)平衡位置:小球偏离原来静止的位置; (2)弹簧振子:小球在平衡位置附近的往复运动,是一种机械 运动,这样的系统叫做弹簧振子。 (3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。 2.弹簧振子的位移—时间图像 弹簧振子的s—t图像是一条正弦曲线,如图所示。 3.简谐运动及其图像。 (1)简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。 (2)应用:心电图仪、地震仪中绘制地震曲线装置等。 三、典型例题

例1:简谐运动属于下列哪种运动( ) A.匀速运动 B.匀变速运动 C.非匀变速运动 D.机械振动 解析:以弹簧振子为例,振子是在平衡位置附近做往复运动,并且平衡位置处合力为零,加速度为零,速度最大.从平衡位置向最大位移处运动的过程中,由F=-kx可知,振子的受力是变化的,因此加速度也是变化的。故A、B错,C正确。简谐运动是最简单的、最基本的机械振动,D正确。 答案:CD 简谐运动的描述 一、学习目标 1.知道简谐运动的振幅、周期和频率的含义。 2.知道振动物体的固有周期和固有频率,并正确理解与振幅无关。 二、知识点说明 1.描述简谐振动的物理量,如图所示: (1)振幅:振动物体离开平衡位置的最大距离,。 (2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,之后又回到O,这样一个完整的振动过程称为一次全振动。 (3)周期:做简谐运动的物体完成一次全振动所需要的时间,符号T表示,单位是秒(s)。 (4)频率:单位时间内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。 (5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。 (6)相位:用来描述周期性运动在各个时刻所处的不同状态。 2.简谐运动的表达式:。

完整版机械振动和机械波测试题

简谐运动,关于振子下列说法正确的是( A. 在a 点时加速度最大,速度最大 B ?在0点时速度最大,位移最大 C ?在b 点时位移最大,回复力最大 D.在b 点时回复力最大,速度最大 5. 一质点在水平方向上做简谐运动。如图,是该质点在0 的振动图象,下列叙述中正确的是( ) A. 再过1s ,该质点的位移为正的最大值 B ?再过2s ,该质点的瞬时速度为零 C. 再过3s ,该质点的加速度方向竖直向上 D. 再过4s ,该质点加速度最大 6. 一质点做简谐运动时,其振动图象如图。由图可知,在 时刻,质点运动的( ) A.位移相同 B .回复力大小相同 C.速度相同 D .加速度相同 7. 一质点做简谐运动,其离开平衡位置的位移 与时间 如图所示,由图可知( ) A.质点振动的频率为4 Hz B .质点振动的振幅为2cm C. 在t=3s 时刻,质点的速率最大 D. 在t=4s 时刻,质点所受的合力为零 8. 如图所示,为一列沿x 轴正方向传播的机械波在某一时刻的图像, 这列波的振幅A 、波长入和x=l 米处质点的速度方向分别为:( 高二物理选修3-4《机械振动、机械波》试题 一、选择题 1. 关于机械振动和机械波下列叙述正确的是:( ) A .有机械振动必有机械波 B .有机械波必有机械振动 C .在波的传播中,振动质点并不随波的传播发生迁移 D .在波的传播中,如振源停止振动,波的传播并不会立即停止 2. 关于单摆下面说法正确的是( ) A. 摆球运动的回复力总是由摆线的拉力和重力的合力提供的 B. 摆球运动过程中经过同一点的速度是不变的 C. 摆球运动过程中加速度方向始终指向平衡位置 D. 摆球经过平衡位置时加速度不为零 3. 两个质量相同的弹簧振子,甲的固有频率是 3f .乙的固有频率是4f ,若它们 均在频率为5f 的驱动力作用下做受迫振动.则( ) A 、振子甲的振幅较大,振动频率为3f B 、振子乙的振幅较大.振动频率为4f C 、振子甲的振幅较大,振动频率为5f D 、振子乙的振幅较大.振动频率为5f 班级: 姓名: 成绩: 4. 如图所示,水平方向上有一弹簧振子, 0点是其平衡位置,振子在a 和b 之间做 t 的关系 )

机械振动与机械波答案复习进程

衡水学院 理工科专业《大学物理 B 》机械振动 机械波 习题解答 命题教师:杜晶晶 试题审核人:杜鹏 一、 填空题(每空2分) 1、 一质点在x 轴上作简谐振动,振幅 A = 4cm ,周期T = 2s ,其平衡位置取坐标原点。若 t = 0时质点第一次通过 x =— 2cm 处且向 2 x 轴负方向运动,则质点第二次通过 x =— 2cm 处的时刻为一 S 。 3 2、 一质点沿x 轴作简谐振动,振动范围的中心点为 x 轴的原点,已知周期为 T ,振幅为A 。 (a )若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为 x Acos(2 t/T /2)。 (b )若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为 x Acos(2 t/T /3)。 3、 频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为 n /3则此两点相距 0.5 m 。。 4、 一横波的波动方程是 y 0.02sin2 (100t 0.4x)(SI),则振幅是 0.02m ,波长是 2.5m ,频率是 100 Hz 。 5、产生机械波的条件是有 波源 ___________ 和 _____________ 。 二、 单项选择题(每小题2分) (C ) 1、一质点作简谐振动的周期是 T,当由平衡位置向x 轴正方向运动时,从1/2最大位移处运动到最大位移处的这段路程所需的时间 为( ) (A ) T/12 (B ) T/8 (C ) T/6 (D ) T/4 (B ) 2、两个同周期简谐振动曲线如图 1所示,振动曲线 1的相位比振动曲线 2的相位( ) (A )落后 (B )超前 (C )落后 2 2 (D )超前 (C ) 3、机械波的表达式是 y 0.05cos(6 t 0.06 x),式中y 和x 的单位是m , t 的单位是

(完整word版)机械振动和机械波知识点复习及练习

机械振动和机械波 一 机械振动知识要点 1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动 条件:a 、物体离开平衡位置后要受到回复力作用。b 、阻力足够小。 ? 回复力:效果力——在振动方向上的合力 ? 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态) ? 描述振动的物理量 位移x (m )——均以平衡位置为起点指向末位置 振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱) 周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢) 全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程 频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢) 2. 简谐运动 ? 概念:回复力与位移大小成正比且方向相反的振动 ? 受力特征:kx F -= 运动性质为变加速运动 ? 从力和能量的角度分析x 、F 、a 、v 、E K 、E P 特点:运动过程中存在对称性 平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大 ? v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同 3. 简谐运动的图象(振动图象) ? 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律 可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化 4. 简谐运动的表达式:)2sin( φπ +=t T A x 5. 单摆(理想模型)——在摆角很小时为简谐振动 ? 回复力:重力沿切线方向的分力 ? 周期公式:g l T π 2= (T 与A 、m 、θ无关——等时性) ? 测定重力加速度g,g=2 24T L π 等效摆长L=L 线+r 6. 阻尼振动、受迫振动、共振 阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动 受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。 特点:驱受f f = ? 共振:物体在受迫振动中,当驱动力的频率跟物体的固有频率相等的时候,受迫振动的振 幅最大,这种现象叫共振 ? 条件:固驱f f =(共振曲线) 【习题演练一】 1 一弹簧振子在一条直线上做简谐运动,第一次先后经过M 、N 两点时速度v (v ≠0)相同,那么,下列说法正确的是( ) A. 振子在M 、N 两点受回复力相同 B. 振子在M 、N 两点对平衡位置的位移相同 C. 振子在M 、N 两点加速度大小相等 D. 从M 点到N 点,振子先做匀加速运动,后做匀减速运动 2 如图所示,一质点在平衡位置O 点两侧做简谐运动,在它从平衡位置O 出发向最大位移A 处运动过程中经0.15s 第一次通过M 点,再经0.1s 第2次通过M 点。则此后还要经多长时间第3次通过M 点,该质点振动的频率为 3 甲、乙两弹簧振子,振动图象如图所示,则可知( ) A. 两弹簧振子完全相同 B. 两弹簧振子所受回复力最大值之比F 甲∶F 乙=2∶1

2020年高考回归复习—机械振动和机械波选择综合题十 含答案

高考回归复习—机械振动和机械波选择之综合题十 1.一列沿x轴正方向传播的简谐横波,在t=0时刻波刚好传播到x=6m处的质点A,如图所示,已知波的传播速度为48m/s,下列说法正确的是() A.波源的起振方向是向上 B.从t=0时刻起再经过0.5s时间质点B第一次出现波峰 C.在t=0时刻起到质点B第一次出现波峰的时间内质点A经过的路程是24cm D.从t=0时刻起再经过0.35s时间质点B开始起振 E.当质点B开始起振时,质点A此时刚好在波谷 2.一列简谐横波在t=ls时的波形图如图所示,a、b、c分别为介质中的三个质点,其平衡位置分别为x a=0.5m、x b=2.0m、x c=3.5m。此时质点b正沿y轴负方向运动,且在t=l.5s时第一次运动到波谷。则下列说法正确的是() A.该波沿x轴正方向传播 B.该波的传播速度大小为1m/s C.质点a与质点c的速度始终大小相等、方向相反 D.每经过2s,质点a通过的路程都为1.6m E.质点c的振动方程为 π 0.4cos(m) 2 y t 3.一列周期为0.8 s的简谐波在均匀介质中沿x轴传播,该波在某一时刻的波形如图所示;A、B、C是介质中的三个质点,平衡位置分别位于2 m、3 m、6 m 处.此时B质点的速度方向为-y方向,下列说法正确的是( ) A.该波沿x轴正方向传播,波速为10 m/s

B .A 质点比B 质点晚振动0.1 s C .B 质点此时的位移为1 cm D .由图示时刻经0.2 s ,B 质点的运动路程为2 cm E.该列波在传播过程中遇到宽度为d =4 m 的障碍物时不会发生明显的衍射现象 4.有一列沿x 轴传播的简谐橫波,从某时刻开始,介质中位置在x =0处的质点a 和在x =6m 处的质点b 的振动图线分别如图1、2所示。则下列说法正确的是( ) A .质点a 的振动方程为y =4sin( 4 t +π2 )cm B .质点a 处在波谷时,质点b 一定处在平衡位置且向y 轴正方向振动 C .若波的传播速度为0.2m/s ,则这列波沿x 轴正方向传播 D .若波沿x 轴正方向传播,这列波的最大传播速度为3m/s 5.如图甲,介质中两个质点A 和B 的平衡位置距波源O 的距离分别为1m 和5m .图乙是波源做简谐运动的振动图像.波源振动形成的机械横波可沿图甲中x 轴传播.已知t =5s 时刻,A 质点第一次运动到y 轴负方向最大位移处.下列判断正确的是( ) A .A 质点的起振方向向上 B .该列机械波的波速为0.2m/s C .该列机械波的波长为2m D .t =11.5s 时刻,B 质点的速度方向沿y 轴正方向 E.若将波源移至x =3m 处,则A 、B 两质点同时开始振动,且振动情况完全相同 6.如图a 所示,在某均匀介质中S 1,S 2处有相距L =12m 的两个沿y 方向做简谐运动的点波源S 1,S 2。两波

机械振动与机械波 答案

衡水学院 理工科专业《大学物理B 》机械振动 机械波 习题解答 命题教师:杜晶晶 试题审核人:杜鹏 一、填空题(每空2分) 1、一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取坐标原点。若t =0时质点第一次通过x =-2cm 处且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为23 s 。 2、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。 (a )若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为cos(2//2)x A t T ππ=-。 (b )若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为cos(2//3)x A t T ππ=+。 3、频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距 0.5 m 。。 4、一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是 0.02m ,波长是 2.5m ,频率是 100 Hz 。 5、产生机械波的条件是有 波源 和 连续的介质 。 二、单项选择题(每小题2分) (C )1、一质点作简谐振动的周期是T ,当由平衡位置向x 轴正方向运动时,从1/2最大位移处运动到最大位移处的这段路程所需的时间 为( ) (A )T /12 (B )T /8 (C )T /6 (D ) T /4 ( B )2、两个同周期简谐振动曲线如图1所示,振动曲线1的相位比振动曲线2的相位( ) 图1 (A )落后2π (B )超前2 π (C )落后π (D )超前π ( C )3、机械波的表达式是0.05cos(60.06)y t x ππ=+,式中y 和x 的单位是m ,t 的单位是s ,则( ) (A )波长为5m (B )波速为10m ?s -1 (C )周期为13s (D )波沿x 正方向传播 ( D )4、如图2所示,两列波长为λ的相干波在p 点相遇。波在S 1点的振动初相是1?,点S 1到点p 的距离是r 1。波在S 2点的振动初相是2?,点S 2到点p 的距离是r 2。以k 代表零或正、负整数,则点p 是干涉极大的条件为( ) (A )21r r k π-= (B )212k ??π-= (C )()21212/2r r k ??πλπ-+-= 图2

机械振动和机械波知识点总结教学教材

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在 圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系:v T f ==? λ λ 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 2. 会用图像法分析机械振动和机械波。 振动图像,例:波的图像,例: 振动图像与波的图像的区别横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置 表征单个质点振动的位移随时间变 化的规律 表征大量质点在同一时刻相对于平衡位 置的位移 相邻的两个振动状态始终相同的质 点间的距离表示振动质点的振动周 期。例:T s =4 相邻的两个振动始终同向的质点间的距 离表示波长。例:λ=8m

2018机械振动和机械波专题复习

知识点一:振动图像(物理意义、质点振动方向)与波形图(物理意义、传播方向与振动方向),回复力、 位移、速度、加速度等分析 1.悬挂在竖直方向上的弹簧振子 , 周期为2 s,从最低点的位置向上运动时开始计时,它的振动图像如图所示,由图可知?( ) = s时振子的加速度为正,速度为正 = s时振子的加速度为负,速度为负 = s时振子的速度为零,加速度为负的最大值 = s时振子的速度为零,加速度为负的最大值 2.如图甲所示,一弹簧振子在A、B间做简谐运动,O为平衡位置,如图乙是振子做简谐运动时的位移-时间图像,则 关于振子的加速度随时间的变化规律,下列四个图像(选项)中正确的是?( ) 3.如图甲所示,水平的光滑杆上有一弹簧振子,振子以O点为平衡位置,在a、 b两点之间做简谐运动,其振动图象如图乙所示。由振动图象可以得知 A.振子的振动周期等于t1 B.在t=0时刻,振子的位置在a点 C.在t=t1时刻,振子的速度为零 D.从t1到t2,振子正从O点向b点运动 4.一简谐机械波沿x轴正方向传播,周期为T,波长为λ。若在x=0处质点的 振动图像如右图所示,则该波在t=T/2时刻的波形曲线为() 5.一列横波沿x轴正向传播,a、b、c、d为介质中沿波传播方向上四个质点的平衡位置。某时刻的波形如图1所示,此后,若经过3/4周期开始计时,则图2描述的是 处质点的振动图象处质点的振动图象 处质点的振动图象处质点的振动图象 A y t O T/2T A y x Oλ/2λ A y x Oλ/2λ A y x Oλ/2λ A y x Oλ/2λ

6.如图所示,甲图为一列简谐横波在t=时刻的波动图象,乙图为这列波上质点P 的振动图象,则该波 A .沿x 轴负方传播,波速为0.8m/s B .沿x 轴正方传播,波速为0.8m/s C .沿x 轴负方传播,波速为5m/s D .沿x 轴正方传播,波速为5m/s 7.如图所示是一列沿x 轴传播的简谐横波在某时刻的波形图。已知a 质点的运动状态总是滞后于b 质点,质点b 和质点c 之间的距离是5cm 。下列说法中正确的是 A .此列波沿x 轴正方向传播 B .此列波的频率为2Hz C .此列波的波长为10cm D .此列波的传播速度为5cm/s 8.一列向右传播的简谐横波在某一时刻的波形如图所示,该时刻,两个质量相同的质点P 、Q 到平衡位置的距离相等。关于P 、Q 两个质点,以下说法正确的是( ) A .P 较Q 先回到平衡位置 B .再经 4 1 周期,两个质点到平衡位置的距离相等 C .两个质点在任意时刻的动量相同 D .两个质点在任意时刻的加速度相同 9.在介质中有一沿水平方向传播的简谐横波。一质点由平衡位置竖直向上运动,经 s 到达最大位移处.在这段 时间内波传播了0.5 m 。则这列波( ) A .周期是 s B .波长是 m C .波速是2 m/s D .经 s 传播了8 m 10.如图所示,两列简谐横波分别沿x 轴正方向和负方向传播,两波源分别位于x=和x=处,两列波的速度大小均为v=0.4m/s ,两波源的振幅均为A=2cm 。图示为t=0时刻两列波的图象(传播方向如图所示),该时刻平衡位置位于x=0.2m 和x=0.8m 的P 、Q 两质点刚开始振动,质点M 的平衡位置处于x=0.5m 处。关于各质点运动情况的判断正确的是( ) A. t=0时刻质点P 、Q 均沿y 轴正方向运动 B. t=1s 时刻,质点M 的位移为-4cm C. t=1s 时刻,质点M 的位移为+4cm D. t=时刻,质点P 、Q 都运动到x= a b c O y /m x /cm x /10-1 m y /cm 0 -2 2 4 6 8 10 12 v 2 -2 v P Q M x /m y /m P t /s y /m

机械振动与机械波相结合的综合应用(教案)

机械振动与机械波相结合的综合应用 【教学目标】 1、通过对比简谐运动与简谐波,掌握简谐运动与简谐波的特征及描述方法。 2、知道简谐运动与简谐波相结合的综合题的题型,掌握解决此类问题的基本方法。【教学过程】 一、核心知识 1、研究对象:简谐运动、简谐波 2、简谐运动与简谐波的对比 学生活动:学生先讨论课前独立填写的学案中的下表中红色内容(2分钟),然后 学生活动:①学生先小组讨论学案上按要求完成的内容(每一类问题2分钟),然后展示要难点问题,提请全班讨论解决。②第三类题型讨论完后,总结合归纳解题基本方法。 老师活动:①老师对重点突破共同难点问题,突破方法是通过提前预设的PPT进行分析。②对学生归纳的解题方法进行提炼和深化。③强调解题规范。 1、已知波的传播和波上质点振动的部分信息,分析问题 【例1】(2016年全国Ⅲ卷,34(1))(5分)由波源S形成的简谐横波在均匀介质中向左、右传播。波源振动的频率为20 Hz,波速为16 m/s。已知介质中P、Q两质点位于波源S的两侧,且P、Q和S的平衡位置在一条直线上,P、Q的平衡位置到S的平衡位置之间的距离分别为m、m,P、Q开始震动后,下列判断

正确的是_____。(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分。每选错1个扣3分,最低得分为0分) A .P 、Q 两质点运动的方向始终相同 B .P 、Q 两质点运动的方向始终相反 C .当S 恰好通过平衡位置时,P 、Q 两点也正好通过平衡位置 、 D .当S 恰好通过平衡位置向上运动时,P 在波峰 E .当S 恰好通过平衡位置向下运动时,Q 在波峰 【答案】BDE 【考点】波的图像,波长、频率和波速的关系 【解析】根据题意信息可得1s 0.05s 20 T ==,16m/s v =,故波长为0.8m vT λ==,找P 点关于S 点的对称点P ',根据对称性可知P '和P 的振动情况完全相同,P '、 Q 两点相距15.814.630.80.82x λλ???=-= ??? ,为半波长的整数倍,所以两点为反相点,故P '、Q 两点振动方向始终相反,即P 、Q 两点振动方向始终相反,A 错误B 正确; P 点距离S 点3194 x λ=,当S 恰好通过平衡位置向上振动时,P 点在波峰,同理Q 点距离S 点1184 x λ'=,当S 恰好通过平衡位置向下振动时,Q 点在波峰,DE 正确。 巩固练习:(2016年全国Ⅱ卷,34(2)))(10分)一列简谐横波在介质中沿x 轴正向传播,波长不小于10cm .O 和A 是介质中平衡位置分别位于x =0和x=5cm 处的两个质点.t=0时开始观测,此时质点O 的位移为y =4cm ,质点A 处于波峰位置;1 s 3 t =时,质点O 第一次回到平衡位置,t=1s 时,质点A 第一次回到平衡位置.求: (ⅰ)简谐波的周期、波速和波长;(ⅱ)质点O 的位移随时间变化的关系式. 【答案】(i )T =4s ,v =s ,λ=30cm (ii )50.08sin(t )26y ππ=+或者10.08cos(t )23 y ππ=+ 【解析】(i )t =0s 时,A 处质点位于波峰位置 t =1s 时,A 处质点第一次回到平衡位置可知 1s 4 T =,T =4s … 1s 3 t =时,O 第一次到平衡位置,t =1s 时,A 第一次到平衡位置 可知波从O 传到A 用时2s 3 ,传播距离x =5cm 故波速7.5cm /s x v t ==,波长λ=vT =30cm (ⅱ)设0sin(t )y A ω?=+,可知2rad/s 2T ππω== 又由t =0s 时,y =4cm ;1s 3t =,y =0,代入得A =8cm ,再结合题意得056 ?π= 故50.08sin(t )26y ππ=+或者10.08cos(t )23 y ππ=+ 2、已知两个时刻的波形图和部分信息,分析问题

机械振动和机械波知识点复习及总结要点

机械振动和机械波知识点复习 一机械振动知识要点 1.机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动 条件:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。回复力:效果力——在振动方向上的合力平衡位置:物体静止时,受(合)力为零的位置:运动过程中,回复力为零的位置(非平衡状态)描述振动的物理量 位移x(m)——均以平衡位置为起点指向末位置 振幅A(m)——振动物体离开平衡位置的最大距离(描述振动强弱)周期T (s)——完成一次全振动所用时间叫做周期(描述振动快慢)全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程 频率f(Hz)——1s钟内完成全振动的次数叫做频率(描述振动快慢) 2.简谐运动 概念:回复力与位移大小成正比且方向相反的振动受力特征:运动性质为变加速运动从力和能量的角度分析x、F、a、v、EK、EP 特点:运动过程中存在对称性 平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大、EK同步变化;x、F、a、EP同步变化,同一位置只有v可能不同 3.简谐运动的图象(振动图象) 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律可直接读出振幅A,周期T(频率f)可知任意时刻振动质点的位移(或反之)可知任意时刻质点的振动方向(速度方向)可知某段时间F、a等的变化 4.简谐运动的表达式: 5.单摆(理想模型)——在摆角很小时为简谐振动 回复力:重力沿切线方向的分力周期公式: l (T与A、m、θ无关——等时性) g 测定重力加速度g,g= 等效摆长L=L线+r 2 T 6.阻尼振动、受迫振动、共振

机械振动和机械波·机械波·教案

机械振动和机械波·机械波·教案 一、教学目标 1.在物理知识方面的要求: (1)明确机械波的产生条件; (2)掌握机械波的形成过程及波动传播过程的特征; (3)了解机械波的种类极其传播特征; (4)掌握描述机械波的物理量(包括波长、频率、波速)。 2.要重视观察演示实验,对波的产生条件及形成过程有全面的理解,同时要求学生仔细分析课本的插图。 3.在教学过程中教与学双方要重视引导和自觉培养正确的思想方法。 二、重点、难点分析 1.重点是机械波的形成过程及描述; 2.难点是机械波的形成过程及描述。 三、教具 1.演示绳波的形成的长绳; 2.横波、纵波演示仪; 3.描述波的形成过程的挂图。 四、主要教学过程 (一)引入新课

我们学习过的机械振动是描述单个质点的运动形式,这一节课我们来学习由大量质点构成的弹性媒质的整体的一种运动形式——机械波。 (二)教学过程设计 1.机械波的产生条件 例子——水波:向平静的水面投一小石子或用小树枝不断地点水,会看到水面上一圈圈起伏不平的波纹逐渐向四周传播出去,形成水波。 演示——绳波:用手握住绳子的一端上下抖动,就会看到凸凹相间的波向绳的另一端传播出去,形成绳波。 以上两种波都可以叫做机械波。 (1)机械波的概念:机械振动在介质中的传播就形成机械波 (2)机械波的产生条件:振源和介质。 振源——产生机械振动的物质,如在绳波中的手的不停抖动就是振源。 介质——传播振动的媒质,如绳子、水。 2.机械波的形成过程 (1)介质模型:把介质看成由无数个质点弹性连接而成,可以想象为(图1所示) (2)机械波的形成过程: 由于相邻质点的力的作用,当介质中某一质点发生振动时,就会带动周围的质点振动起来,从而使振动向远处传播。例如:

机械振动和机械波知识点总结复习过程

机械振动和机械波 、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位 置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力, 它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是: a 物体离开平衡位置后要受到回复力作用。 b 、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。 简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡 位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也 可说是物体在跟位移大小成正比, 方向跟位移相反的回复力作用下的振动, 即F= — kx ,其中 “一”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比, 方向跟位移方向相反 的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用, 简谐振动的特点在于它是 一种周期性运动, 它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能) 都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入 面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“ A ”表示,它是标量,为正 值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动 在振动过程中,动 阻尼 振动 1 一 [周期性运动 特征 「变加速运动 机械能守恒 >描写物理量 —&振幅A 、频率f 、周期T 描述方法 <■ 振动在媒质中传递 受迫 振动 周期公式 (测g ) 周期、频率|一| 波速 波长 入=vT=v/f 机械振动 图象法 共振 描写物理量—沙波动特征 传播规律 简谐波 机械波

机械振动和机械波知识点复习及总结

机械振动和机械波知识点复习及总结 1、机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动条件:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 回复力:效果力在振动方向上的合力平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态)描述振动的物理量位移x(m)均以平衡位置为起点指向末位置振幅A(m)振动物体离开平衡位置的最大距离(描述振动强弱)周期T(s)完成一次全振动所用时间叫做周期(描述振动快慢)全振动物体先后两次运动状态(位移和速度)完全相同所经历的过程频率f (Hz)1s钟内完成全振动的次数叫做频率(描述振动快慢) 2、简谐运动概念:回复力与位移大小成正比且方向相反的振动受力特征: 运动性质为变加速运动从力和能量的角度分析x、F、a、v、EK、EP特点:运动过程中存在对称性平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大 v、EK同步变化;x、F、a、EP同步变化,同一位置只有v可能不同 3、简谐运动的图象(振动图象)物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律可直接读出振幅A,周

期T(频率f)可知任意时刻振动质点的位移(或反之)可知任意时刻质点的振动方向(速度方向)可知某段时间F、a等的变化 4、简谐运动的表达式: 5、单摆(理想模型)在摆角很小时为简谐振动回复力:重力沿切线方向的分力周期公式: (T与 A、m、θ无关等时性)测定重力加速度g,g= 等效摆长L=L 线+r 6、阻尼振动、受迫振动、共振阻尼振动(减幅振动)振动中受阻力,能量减少,振幅逐渐减小的振动受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。 特点: 共振:物体在受迫振动中,当驱动力的频率跟物体的固有频率相等的时候,受迫振动的振幅最大,这种现象叫共振条件:(共振曲线) 【习题演练一】 1 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确的是() A、振子在M、N两点受回复力相同 B、振子在M、N两点对平衡位置的位移相同 C、振子在M、N两点加速度大小相等

机械振动和机械波知识点复习及总结

2. 机械振动和机械波知识点复习 机械振动知识要点 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振 动,简称振动 条件:a物体离开平衡位置后要受到回复力作用。b、阻力足够小回复力:效果力——在振动方向上的合力 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态)描述振动的物理量 位移x(m —均以平衡位置为起点指向末位置 振幅A(m ――振动物体离开平衡位置的最大距离(描述振动强弱) 过程频率f (Hz)―― 1s钟内完成全振动的次数叫做频率(描述振动快慢) 简谐运动 概念:回复力与位移大小成正比且方向相反的振动 受力特征:F二-kx运动性质为变加速运动 从力和能量的角度分析x、F、a、v、EK EP 特点:运动过程中存在对称性平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大v、EK同步变化;x、F、a、EP同步变化,同一位置只有v 可能不同3. 简谐运动的图象(振动图象) 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律可直接读出振幅A,周期T (频率f )可知任意时刻振动质点的 位移(或反之) 可知任意时刻质点的振动方向(速度方向)可知某段时间F、a 等的变化 4. 简谐运动的表达式:x二Asi n(仝t,J T 5. 单摆(理想模型)一一在摆角很小时为简谐振动 回复力:重力沿切线方向的分力 周期公式:T = 2\丨(T与A m 6无关——等时性) \ g 1. 周期T(s)完成一次全振动所用时间叫做周期(描述振动快慢)全振动物体先后两次运动状态(位移和速度)完全相同所经历的

高三第一轮复习《机械振动和机械波》

高三第一轮复习《机械振动和机械波》 一、机械振动: (一)夯实基础: 1、简谐运动、振幅、周期和频率: (1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。 特征是:F=-kx,a=-kx/m (2)简谐运动的规律: ①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。 ②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。 ③振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。 ④当质点向远离平衡位置的方向运动时,质点的速度减小、动量减小、动能减小,但位移增大、回复力增大、加速度增大、势能增大,质点做加速度增大减速运动;当质点向平衡位置靠近时,质点的速度增大、动量增大、动能增大,但位移减小、回复力减小、加速度减小、势能减小,质点做加速度减小的加速运动。 ④弹簧振子周期:T= 2 (与振子质量有关,与振幅无关) (3)振幅A :振动物体离开平衡位置的最大距离称为振幅。它是描述振动强弱的物理量, 是标量。 (4)周期T 和频率f :振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为频率,单位是赫兹(Hz )。周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f. 2、单摆: (1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。 (2)单摆的特点: ○ 1单摆是实际摆的理想化,是一个理想模型; ○ 2单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关; ○3单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角α<100 时,单摆的振动是简谐运动,其振动周期T= g L π 2。 (3)单摆的应用:○1计时器;○2测定重力加速度g=2 24T L π. 3、受迫振动和共振: (1)受迫振动:物体在周期性驱动力作用下的振动叫受迫振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 (2)共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。 ○ 2产生共振的条件:驱动力频率等于物体固有频率。○3共振的应用:转速计、共振筛。 4、简谐运动图象: (1)特点:用演示实验证明简谐运动的图象是一条正弦(或余弦)曲线。 (2)简谐运动图象的应用: ①可求出任一时刻振动质点的位移。 ②可求振幅A :位移的正负最大值。 ③可求周期T :两相邻的位移和速度完全相同的状态的时间间隔。 ④可确定任一时刻加速度的方向。 ⑤可求任一时刻速度的方向。 ⑥可判断某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。 πm K

机械振动及机械波知识点(全)知识讲解

机械波的产生和传播 知识点一:波的形成和传播 (一)介质 能够传播振动的媒介物叫做介质。(如:绳、弹簧、水、空气、地壳等) (二)机械波 机械振动在介质中的传播形成机械波。 (三)形成机械波的条件 (1)要有 ;(2)要有能传播振动的 。 注意:有机械波 有机械振动,而有机械振动 能产生机械波。 (四)机械波的传播特征 (1)机械波传播的仅仅是 这种运动形式,介质本身并不随波 。 沿波的传播方向上各质点的振动都受它前一个质点的带动而做 振动,因此波动的过程是介质中相邻质点间依次“带动”、由近及远相继振动起来的过程,是将这种运动形式在介质中依次向外传播的过程。 对简谐波而言各质点振动的振幅和周期都 ,各质点仅在各自的 位置附近振动,并 随波动过程的发生而沿波传播方向发生迁移。 (2)波是传递能量的一种运动形式。 波动的过程也是由于相邻质点间由近及远地依次做功的过程,所以波动过程也是能量由近及远的传播过程。因此机械波也是传播 的一种形式。 (五)波的分类 波按照质点 方向和波的 方向的关系,可分为: (1)横波:质点的振动方向与波的传播方向 的波,其波形为 相间的波。凸起的最高处叫 ,凹下的最底处叫 。 (2)纵波:质点的振动方向与波的传播方向 的波,其波形为 相间的波。质点分布最密的地方叫作 ,质点分布最疏的地方叫作 。 知识点二:描述机械波的物理量知识 (一)波长(λ) 两个 的、在振动过程中对 位置的位移总是相等的质点间的距离叫波长。 在横波中,两个 的波峰(或波谷)间的距离等于波长。 在纵波中,两个 的密部(或疏部)间的距离等于波长。 振动在一个 内在介质中传播的距离等于一个波长。 (二)频率(f ) 波的频率由 决定,一列波,介质中各质点振动频率都相同,而且都等于波源的频率。 在传播过程中,只要波源的振动频率一定,则无论在什么介质中传播,波的频率都不变。 (三)波速(v ) 振动在介质中传播的速度,指单位时间内振动向外传播的距离,即x v t ?=?。 波速的大小由 的性质决定。一列波在不同介质中传播其波速不同。 对机械波来说,空气中的波速小于液体中的波速,小于固体中的波速。 (四)波速与波长和频率的关系 v = 注意:一列波的波长是受 和 制约的,即一列波在不同介质中传播时,波长不同。 知识点三:机械波的图象 (一)机械波的图象 波的传播也可用图象直观地表达出来。在平面直角坐标系中,用横坐标表示介质中各质点的 位置;用纵坐标表示某一时刻,各质点偏离 位置的位移,连接各位移矢量的末端,得出的曲线即为波的图象, (二)物理意义 表示各质点在某一时刻离开 位置的情况。

机械振动及机械波知识点(全)

简谐运动及其图象 知识点一:弹簧振子 (一)弹簧振子 如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。小球滑动时的摩擦力可以,弹簧的质量比小球的质量得多,也可忽略。这样就成了一个弹簧振子。 注意: (1)小球原来的位置就是平衡位置。小球在平衡位置附近所做的往复运动,是一种机械振动。 (2)小球的运动是平动,可以看作质点。 (3)弹簧振子是一个不考虑阻力,不考虑弹簧的,不考虑振子(金属小球)的的化的物理模型。 (二)弹簧振子的位移——时间图象 (1)振动物体的位移是指由位置指向_的有向线段,可以说某时刻的位移。 说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于位置而言的,即初位置是位置,末位置是振子所在的位置。 (2)振子位移的变化规律 曲线。 知识点二:简谐运动 (一)简谐运动 如果质点的位移与时间的关系遵从函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。 简谐运动是机械振动中最简单、最基本的振动。弹簧振子的运动就是简谐运动。 (二)描述简谐运动的物理量 (1)振幅(A) 振幅是指振动物体离开位置的距离,是表征振动强弱的物理量。 一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是变的,而位移是时刻在变的。 (2)周期(T)和频率(f) 振动物体完成一次所需的时间称为周期,单位是秒(s);单位时间内完成的

次数称为频率,单位是赫兹(H Z)。 周期和频率都是描述振动快慢的物理量。周期越小,频率越大,表示振动得越快。 周期和频率的关系是: (3)相位(φ) 相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。 (三)固有周期、固有频率 任何简谐运动都有共同的周期公式:2 T=m是振动物体的,k是回复力系数,对弹簧振子来说k为弹簧的系数。 对一个确定的简谐运动系统来说,m和k都是恒量,所以T和f也是恒量,也就是说简谐运动的周期只由本身的特性决定,与振幅关,只由振子质量和回复力系数决定。T叫系统的周期,f叫频率。 可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是2 T=。这个结论可以直接使用。 (四)简谐运动的表达式 y=Asin(ωt+φ),其中A是,f ω==,φ是t=0时的相位,即初相位或初相。 T 知识点三:简谐运动的回复力和能量 (一)回复力:使振动物体回到平衡位置的力。 (1)回复力是以命名的力。性质上回复力可以是重力、弹力、摩擦力、电场力、磁场力等,它可能是几个力的合力,也可能是某个力或某个力的分力。 如在水平方向上振动的弹簧振子的回复力是弹簧在伸长和压缩时产生的 力;在竖直方向上振动的弹簧振子的回复力是弹簧力和力的合力。 (2)回复力的作用是使振动物体回到平衡位置。回复力的方向总是“平衡位置”。 (3)回复力是是振动物体在方向上的合外力,但不一定是物体受到的合外力。 (二)对平衡位置的理解 (1)平衡位置是振动物体最终振动后振子所在的位置。 (2)平衡位置是回复力为的位置,但平衡位置是合力为零的位置。 (3)不同振动系统平衡位置不同。竖直方向的弹簧振子,平衡位置是其弹力 于重力的位置;水平匀强电场和重力场共同作用的单摆,平衡位置在电场力与重力的合力方向上。(三)简谐运动的动力学特征 F回=,a回=-kx/m,其中k为比例系数,对于弹簧振子来说,就等于弹簧的系数。负号表示回复力的方向与位移的方向。 也就是说简谐运动是在跟对平衡位置的位移大小成正比、方向总是指向平衡位置的力作用下的振动。 = 。当振子振动过程中,位移为x时,由胡克定律(弹簧不超出弹簧振子在平衡位置时F 回 = ,k为弹簧的劲度系数,所以弹弹性限度),考虑到回复力的方向跟位移的方向相反,有F 回 簧振子做简谐运动。 (四)简谐运动的能量特征 振动过程是一个动能和势能不断转化的过程,总的机械能。 振动物体总的机械能的大小与振幅有关,振幅越大,振动的能量越。 知识点四:简谐运动过程中各物理量大小、方向变化情况 (一)全振动 振动物体连续两次运动状态(位移和速度)完全相同所经历的的过程,即物体运动完成一次规律性变化。 (二)弹簧振子振动过程中各物理量大小、方向变化情况 过程:物体从A由静止释放,从A→O→B→O→,经历一次全振动,图中O为平衡位置,A、B为最大位移处:

相关主题
文本预览
相关文档 最新文档