当前位置:文档之家› 第九章 高层建筑结构的空间计算及设计概念

第九章 高层建筑结构的空间计算及设计概念

第九章 高层建筑结构的空间计算及设计概念
第九章 高层建筑结构的空间计算及设计概念

第九章高层建筑结构的空间计算及设计概念

9.1 杆件有限元计算方法及计算简化假定

1、计算机计算建筑结构的方法大体上分为三种

(1)将结构离散为杆单元。再将杆单元集舍成结构,采用矩阵位移法计算(有时也称为杆件有限元方法);

(2)将结构离散为平面的连续单元,运用平面有限元方法计算整体结构;

(3)将结构离散为平面或空间的连续条元,采用有限条方法计算整体结构。

在上述三种方法中,杆件矩阵位移法应用得最为广泛,有限条法应用较少,组合有限元法近年来应用较多,此法被认为是对高层建筑结构进行较精确计算的通用方法。

2、杆件有限元方法计算高层结构的基本假定

采用矩阵位移法计算高层建筑结构时,基本假定有以下几方面,采用的假定不同,就形成不同类型的计算程序:

(1)平面结构和空间结构

平面结构:仅考虑构件平面内刚度,不考虑平面外刚度,同一平面内构件组成的结构计算空间结:构件平面内、 平面外刚度都考虑,空间结构计算

图 空间杆件和平面杆件

(2)刚性楼板和弹性楼板

楼板的作用除了承受竖向荷载外(楼板产生竖向挠度和受弯),在水平荷载作用下.楼板把各个抗侧力结构联系在一起.共同受力。刚性楼板和弹性楼板是指在水平荷载作用下楼板在其自身平面内的性质,因此也是计算的假定。

(3)杆件具有轴向、弯曲、剪切、扭转刚度,对应于杆件的轴向、弯曲、剪切及扭转变

形及相应内力,计算时必须输入杆件的有关刚度。

3、楼板模型

刚性楼板模型假定楼板平面内刚度无限大,平面外刚度为零。楼板刚度无限大的假定的定量标准尚在研究之中,一般认为楼板在自身平面内的挠度小于1/2000时,就可以做为刚性楼板来考虑。

弹性楼板壳单元模型计算楼板的面内刚度和面外刚度。

弹性楼板中厚板弯曲单元模型计算楼板平面外刚度,而平面内是无限刚。

弹性楼板平面应力膜单元模型计算楼板的平面内刚度,同时又假定楼板的平面外刚度为零。

4、计算高层结构的基本计算类型及适用范围

根据所采用的基本假定,计算建筑结构的程序大体上分为四大类,其适用范围亦不同:(1)平面协同计算模型,平面结构,楼板刚性平移

对于一般的框架、剪力墙和框架-剪力墙结构,为简化计算,其在水平荷载作用下的内力和位移计算可采用下列两条假定:

a)楼板在自身平面内为绝对刚性,在平面外的刚度为零。按此假定,在水平荷载作用下整个楼面在自身平面内作刚体移动和转动,各轴线上的抗侧力结构在同一楼层处具有相同的位移参数。

b)各轴线上的抗侧力结构在自身平面内的刚度远大于平面外刚度,即假定各抗侧力平面结构只在其平面内具有刚度,不考虑其平面外刚度。按此假定,整个结构体系可划分为若干个正交或斜交的平面抗侧力结构进行计算。

如果结构的平面布置有两个对称轴,且水平荷载也对称分布,则各方向水平荷载的合力F x和Fy .均作用在对称平面内,如图所示。此时,楼面在作用下只产生沿Fx方向的位移,在作用下只产生沿Fy方向的平移,亦即在水平荷载作用方向每个楼层只有一个位移未知量,结构不产生扭转。因此,结构体系有n个楼层,就有n个基本未知量,两个方向的平面结构各自独立,可分别计算。

楼层无扭转的位移

(2)空间协同计算模型,平面结构,楼板刚性平移和转动

采用平面协同计算模型中的两条假定,如果结构的平面布置不对称,或每个方向水平荷载的合力和不作用在对称平面内,则各层楼面不仅将产生刚体位移,而且将产生在自身平面内的刚体转动。此时每个楼层有3个自由度,各平面抗侧力结构在同一楼层处的侧移一般都不相等,但仍具有相同的位移参数u,v,θ。

如对于右下图所示的平面不对称结构,当第j楼层有刚体位移Uj,Vj,θj,时,该结构由坐标原点点移至点,则由几何关系可以得到各抗侧力结构的侧移与楼层刚体位移的关系

空间协同工作计算方法的优点是基本未知量为楼层的位移u,v, 和θ,对于n楼层,共有3n个基本未知量;不考虑结构扭转时,仅有2n个未知量,计算简单,适合于采用中小型计算机计算。

其主要缺点是仅考虑了各个抗侧力结构在楼层处水平位移和转角的协调,未考虑各抗侧力结构在竖直方向的位移协调。因此,协同工作计算方法可用于计算平面布置不对称的框架、剪力墙和框架-剪力墙结构在水平荷载作用下的内力和位移,比平面协同计算方法适用面广。但由于采用了抗侧力平面结构假定,因此该方法只适用于结构必须能分解为许多榀抗侧力平面结构的情况,不能用于空间作用很强的框筒结构(竖向位移协调必须考虑)、曲边和多边结构以及结构体型复杂的结构等的计算。

(3)空间结构计算模型,空间结构,楼板刚性平移和转动

杆件为空间杆件,每个节点有6个自由度。由于假定楼板平板内无限刚性,每个楼层只有三个自由度(U,V,θ)。

空间结构计算与空间协同计算不同,空间结构是整体计算的,凡是相交的各个杆件都互相关联。由于要求节点位移连续,在水平荷载作用下无论哪个方向的杆件在结点变形必须是一致,杆端竖向位移也必须协调。不过由于刚性楼板假定,在楼板平面内的杆件两端仍然没有相对位移,无法计算这些杆件的轴向变形和内力。

在大多数建筑结构中,楼板平面内的无限刚性假定是符合世纪的,所以计算结果的误差很小,楼板平面梁的轴向力也很小,可以忽略。因此,是目前实际工程中的应用较广泛的一种计算模型,适用于各种结构平面布置,可得到梁、柱、剪力墙等构件的全部变形和内力,又可以考虑结构扭转,是一种比较精细的计算方法

(4)完全空间结构计算模型,空间结构,楼板弹性

实际结构中:部分高层建筑的楼板开有大孔洞,从而使楼板在平面内无限刚性的假定不适用,应考虑楼板变形的影响;部分高层建筑具有复杂的空间剪力墙,如开有不规则的洞口、平面复杂的芯筒等;不少高层建筑使用了转换结构,包括转换大梁、转换桁架和转换厚板等。对于。对于这些高层建筑,可采用空间组合结构计算模型。

认为:梁和柱均采用空间杆单元,剪力墙采用可开门洞和进行单元内部细分的空间墙元,为了考虑楼板的变形,用空间板壳单元来模拟楼板。这种计算模型在每个节点上均有六个自由度,可以对高层建筑进行更细致、更精确的结构分析,可以考虑空间扭转变形,也可以考虑楼板变形。

但该法涉及更大量的未知量,需求解大量的方程组,对计算条件也有更高的要求。这种计算模型几乎不受结构体型的限制,它为复杂体型结构的分析提供了强有力手段

9.2 框架结构设计

框架只有梁、柱两类构件,用典型的杆件有限元方法计算是符合实际情况的,因而在所

有的结构专用计算程序中凡是框架,包括框架结构和框架-剪力墙结构、其他结构体系中的框架,计算模型都是相同的,计算结果也相差不大。

1、带刚域杆件

由于节点区较大,在取轴线作为框架计算模型时,杆件端部刚度比杆件本身刚度大很多,为简化计算,假定节点区不变形(无弯曲、剪切、轴向变形)。杆件成为带刚域杆件。

其中刚域长度取法: 梁左刚域=14l z h h ?,梁右刚域=24

l z h h ? 柱下刚域=14z l h h ?,柱上刚域=24z l h h ? 带刚域杆件的刚度矩阵与一般杆件的刚度矩阵具有同样的性质,在取框架轴线为计算简图,采用有限元矩阵位移进行计算时,只须改变带刚域杆件的刚度矩阵,其他计算完全相同。

2、柱轴向变形的影响

在高层建筑计算时忽略竖向构件(柱、墙)的轴向变形,会造成计算误差。只有在多层结构或进行高层建筑初步设计时可以采用忽略竖向构件(柱、墙)轴向变形的简化计算。

9.3 剪力墙结构的计算模型

1、剪力墙模型

2、薄壁杆件计算方法

薄壁杆件的特点是,在水平荷载作用下,除了一般的弯曲、轴力和剪力外,存在约束扭转,截面发生翘曲。伏拉索夫教授作了两点假定:

① 扭转后截面在与纵轴相垂直的平面上的投影应保持原有形状;

② 杆的中面上无剪应变;从而求解了约束扭转产生的扭转角和扭转应力。在高层建筑结构中,将剪力墙视为薄壁杆件,楼板视为平面内无限刚性平板,则可保证各种平面形状剪力墙(或简体)在荷载作用下截面投影的形状不变,

符合伏拉索夫教授关于薄壁杆件的基本假

定。

3、墙板单元计算方法

将剪力墙简化为平面单元,单元平面内有轴向、弯曲和剪切刚度,平面外刚度为零,称为墙板。工程中常用的主要有以下两种模型:

(1)平面应力单元:一般先把剪力墙按层分割为若干独立的板,每块板可根据精度要求再细分为更小的单元,单元分割愈细,精度愈高。如下图(平面应力单元)。

(2)新型高精度剪力墙单元:刚性梁在墙平面内的抗弯刚度、抗剪刚度为无穷大,轴向无变形,平面外刚度为零,它与墙单元的力学特性相协调,在力学性能上如同位于墙平面内的平面刚体。因此,这是一种考虑剪力墙受力特性的平面应力单元。 (如下图)

4、墙元单元计算方法

由于壳元既具有平面内刚度,又具有平面外刚度,所以用壳元模拟剪力墙可以较好地反映其实际受力状态。基于壳元理论的剪力墙分析模型,称为墙元模型,这是一种更为精确的剪力墙分析模型。中国建筑科学研究院PKPMCAD工程部编制的SATWE程序,其中的剪力墙就

采用墙元模型。

9.4 框筒、筒中筒、束筒的计算及设计概念

1、框架剪力滞后及其变形分布规律

2、影响剪力滞后的因素

影响剪力滞后的因素很多,影响较大的有:

(1)柱距与窗裙梁度,

(2)角柱面积,

(3)框筒结构高度,

(4)框筒平面形状

3、布置要点及其应用

(1)框筒必须做成密柱深梁,一般情况下,柱距为1-3m,不超过4.5m,窗裙梁净跨与高之比不大于3-4。一般窗洞面积不超过建筑面积的60%。

(2)框筒平面宜接近方形、圆形或正多边形,如为矩形平面,则长短边的比值不宜超过2。

(3)结构总高度与宽度之比(H/B)大于3,才能充分发挥框筒作用,在矮而胖的结构中不宜、也不必要采用框筒、筒中筒或束筒结构体系。

(4)筒中筒结构的内筒面积不宜过小,通常,内筒边长为外筒边长的l/2-1/3较为合理,内筒的高宽比大约为12左右,不宜超过15。

(5)框筒结构中楼盖构件(包括楼板和梁)的高度不宜太大,要尽量减小楼盖构件与柱子之间的弯矩传递。

(6)楼盖梁系的布置方式,宜使角柱承受较大竖向荷载,以平衡角柱中的较大拉力。

(7)框筒结构的柱截面宜做成正方形、扁矩形或T形。

(8)角柱截面要适当增大,截面较大可减少压缩变形,太大的角柱截面也不利,它会导致过大的柱轴力,特别是重力荷载不足以抵消过大的拉力时,柱将承受拉力。一般情况下,角柱面积宜取为中柱面积的l 5倍左右。

(9)筒中筒结构中,框筒结构的各柱已经承受了较大轴力,可抵抗较大倾覆弯矩,因此没有必要再在内、外简之间设置伸臂。

(10)由于框筒结构柱距较小,在底层往往因设置出入通道而要求加大柱距,必须布置转换层结构。

9.5 框架-核心筒结构、框架-核心筒伸臂结构的设计概念与计算

框架-核心筒结构及框架-核心筒-伸臂结构的设计概念

在结构布置方面,有以下一些要点:

(1)框架可以布置成方形、长方形、圆形或其他多种形状,对形状没有限制。

(2)内筒是主要抗侧力部分,承载力和延性要求都更高,抗震时要采取提高延性的各种构造措施。要控制内筒长细比,以10左右为宜,一般不要超过12。

(3)内筒、外柱之闻距离一般以10—12m为宜,如果距离很大,则要另设内柱,或采用预应力混凝土楼盖,否则楼层梁太大,不利于减小层高。

(4)框架一核心筒结构中楼板类型与布置与筒中筒结构相似,可参见筒中简结构有关要求。

(5)伸臂布置。在平面上,伸臂布置要对称,伸臂要与内筒的剪力墙对齐,以便剪力墙承受伸臂传来的大弯矩。

(6)与伸臂相连的外柱往往是受轴力很大的柱子,有些结构采用了断面很大的少量柱子抵抗倾覆力矩及剪力,周边再设置一些小断面柱子只承受少量楼板传来的荷载,它们可起到抗扭作用,例如上海金茂大厦。

(7)伸臂结构有实腹梁、桁架、空腹桁架等型式,通常取一层楼高为伸臂构件高度,需要刚度更大时,也可设置两层楼高的伸臂杆件。

9.6 转换层及加强层

1、转换层

转换层的基本功能就是把上部小开间结构的竖向荷载传递到下部大开间的结构上 ,设置转换层的结构称为带转换层结构,属于复杂结构,其主要的问题是:

①传力途径是否直接、通畅,

②如何克服和改善结构沿高度上下刚度和质量不均匀带来的不利,

③转换构件的选型、设计和构造。

2、转换层结构的类型

?对于不同的结构体系,对转换层结构的要求也不相同,可分为以下三大类 :

(1)上层柱、下层柱的转换;

?上层柱到下层柱 的转换又分为两种情况 :一类是上、下柱在同一平面内;另一类是上下柱不在同一平面内。常用的基本形式有实腹梁、斜杆析架、空腹析架、拱等。

(2)上层剪力墙、下层柱的转换;

(3)上下层结构体系和柱网轴线同时变化的转换。

? 转换构件的类型有实腹梁 、斜杆析架 、空腹析架 、拱、箱形梁 、厚板等 。

?常用的转换层结构有转换板、转换梁和转换桁架,其中转换桁架的形式有斜腹杆桁架和直腹杆桁架,一般满层设置。

?这种结构的传力途径被破坏,转换构件设计和结构设计都十分困难,可能采用的方案是箱形(交叉梁系)转换构件或厚板转换构件进行间接传力 。

3、加强层

当高层结构高度较大、高宽比较大或抗侧刚度不够时,可以用加强层加强。

加强层构件有三种类型:一是伸臂,二是腰桁架,三是环向构件。三者功能不同,不一

定同时设置,但如果设置,一般在同一层。

高层建筑结构设计试题及复习资料

高层建筑结构设计 名词解释 1. 高层建筑:10层及10层以上或房屋高度大于28m 的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而 设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置 轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力?-P 效应的主要参数。 10. 抗推刚度(D ):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产 生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的 变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受 轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹 塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固 端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。 第一章 概论 (一)填空题 1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002)规定:把10层及10层以上或房屋高度大于28m 的建筑物称为高层建筑,此处房屋高度是指室外地面到房屋主要屋面的高度。 2.高层建筑设计时应该遵循的原则是安全适用,技术先进,经济合理,方便施工。 3.复杂高层结构包括带转换层的高层结构,带加强层的高层结构,错层结构,多塔楼结构。

高层建筑结构概念设计

文章编号:1009-6825(2013)02-0048-02 高层建筑结构概念设计初探 收稿日期:2012-10-08作者简介:孙建文(1972-),男,工程师 孙建文 (晋城市晋方圆建筑检测有限公司,山西晋城048000) 摘 要:从设计的不同阶段如何对高层建筑结构概念设计的把握方面进行了论述,初步认识了高层建筑结构的概念设计,达到了 推广学习、进一步掌握高层建筑结构概念设计的效果。关键词:概念设计,规范,一体化计算机结构设计程序中图分类号:TU971 文献标识码:A 习惯的传统设计往往给结构工程师造成一种错觉:认为结构 设计就是 “规范+计算”,或是“规范+一体化计算机结构设计程序”。其导致的结果必然是:1)依赖和盲从于规范,认为规范就是 结构设计的全部法律依据,殊不知规范只是建筑物和构筑物所需要的最低标准要求,而且是滞后的。2)盲目依赖和依靠一体化计算机结构设计程序,而对结构设计程序的基本理论假定、应用范围、限制条件等缺乏了解,对计算结果不能进行正确的判断、取舍。 如何走出传统设计的误区。作为一名结构工程师,在高层建筑结构的设计中,应本着积极、主动的态度,自觉地完成高层建筑结构的概念设计,这是我们走出传统设计误区的关键。 那么,什么是高层建筑结构的概念设计。 高层建筑结构的概念设计就是在特定的空间形式、功能和地理环境的条件下,以结构工程师自身确定的理想承载力、刚度和延性为主导目标,用整体构思来设计各部分有机相连的结构总体 系, 并能有意识地利用和发挥结构总体系和主要分体系,以及分体系与构件之间的最佳受力特征与协调关系。 高层建筑结构的概念设计分为三个阶段:第一阶段,即建筑方案设计阶段。结构工程师以自身拥有的高层建筑结构体系功能及其受力、变形特征的整体设计概念与判断力去帮助建筑师开拓和实现业主梦寐以求的,或已初步构思的空间形式及其使用、构造与形象功能。并以此为统一目标,与建筑师一起构思总结构体系,并能明确结构总体系和主要分体系之间的最佳受力特征要求。第二阶段,即初步设计阶段。结构工程师通过概念性近似计算能迅速、有效地对结构体系进行构思、比较与选择,这种近似的 计算方法概念清楚, 定性准确,手算简单快捷,能较快地对结构体系进行探索、优化,乃至最后确定分体系及其构件的基本尺寸,并 确认设计方案的可行性。第三阶段,即施工图设计阶段。由初步设计阶段可以得到结构体系的计算模型和所需输入的原始数据,在施工图设计阶段,结构工程师结合自身拥有的结构概念、经验和判断力,对计算机内力分析输出数据的可靠性与否进行判断。 作为一名结构工程师,如何去把握,或者说有意识地去进行高层建筑结构的概念设计。一句话,对应于高层建筑结构概念设计的三个阶段,分别进行概念设计。首先,在建筑方案设计阶段,要正确把握高层建筑结构的概念设计,必须坚持结构设计没有惟一解的设计理念,充分发挥结构工程师的创造力和创新能力,协助建筑师以达到令业主满意的建筑。例如,美国芝加哥第一国家银行大楼建设之初,银行业主追求和向往能在他们银行大楼的整个底部有一个4层 5层楼高的无柱大空间,以充分满足他们银行业务在使用功能和形象功能上的需要。在芝加哥第一国家银行大楼方案设计中,结构工程师和建筑师合作开拓了一种新的结构形式,即将电梯井筒与设备井筒分别设置在建筑物的纵向两侧,作为巨型柱,并将第一道设备层设置在第6层,往上每隔18层再各自设置一道,作为承载力和刚度很大的巨型水平构件,并与周边的巨型柱有机地刚性连接在一起,从而构成了一种巨型框架体系的结构功能与受力特征,不但 能有效地抵抗重力荷载和水平荷载,还在整个大楼底部5110m 2櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅 的 1)在翼缘板上,对着纵长焊缝,由弯曲中心向两头作线状加热,即可矫正弯曲变形。如果效果不理想,可用辅助加载的方法。2)翼缘板上作线状加热,在腹板上作三角形加热。用这种办法矫正柱、梁的弯曲变形效果显著,横向线状加热宽度普通取20mm 90mm ,板厚小时,加热宽度要窄一些,加热过程应由宽度中心向两头扩大。加热三角形从顶部开始,从中心向两边扩大,一层层加热直到三角形的底为止。 6.2.3柱、梁腹板的波浪变形 矫正波浪变形是在波峰处用圆点加热法配合手锤矫正。加热圆点的直径一般为100mm 200mm 。烤嘴从波峰起作圆形挪动, 选用中温矫正。当温度到达600? 700?时,在波峰为止加垫板后再用大锤击打垫板,使加热区金属受压,冷却后变平。矫正时完成一个点后再进行加热矫正第二个波峰点。参考文献: [1]GB 50205-2001,钢结构工程施工质量验收规范[S ].[2]GB 50018-2002,冷弯薄壁型钢结构技术规范[ S ].Welding stress and deformation control of steel structure industrial plant LI Jian-bin (Hebei Yongcheng Project Management Limited Company ,Baoding 071000,China ) Abstract :According to the welding stress and deformation control problems of steel structure industrial plant members ,discussed from materials quality ,processing technology ,welding sequence ,welding processing and other links ,and put forward the eliminating method of welding stress and control measures and correction method of welding deformation ,in order to ensure the safety and reliability of structural members.Key words :industrial plant ,steel member ,welding stress ,deformation control · 84·第39卷第2期2013年1月 山西 建筑 SHANXI ARCHITECTURE Vol.39No.2Jan.2013

高层建筑结构设计原则及意义分析

高层建筑结构设计原则及意义分析 发表时间:2018-11-29T18:12:15.133Z 来源:《防护工程》2018年第22期作者:周德泓 [导读] 随着社会的不断进步和科技的不断发展,高层建筑越来越广泛的出现在城市建设中。 中国联合工程有限公司 310000 摘要:随着社会的不断进步和科技的不断发展,高层建筑越来越广泛的出现在城市建设中。在高层建筑结构设计方面出现了新的发展和变化。高层建筑的结构设计已经成为了高层建筑设计的重点内容,因此,研究高层建筑结构设计的问题是非常重要和有意义的。介绍了高层建筑结构特征,分析了高层建筑结构设计的原则,阐述了高层建筑结构体系的选型问题,并重点分析了高层建筑结构设计问题及对策。 关键词:高层建筑结构;设计;对策 0 引言 随着科技和社会的不断发展和进步,自从19 世纪以来出现了现代高层建筑,高层建筑越来越广泛的出现在人们的生活中。作为一个庞大复杂的系统,高层建筑的结构设计,一方面要满足包括抗震,抗风等在内的安全性能的要求,另一方面,也要满足高层建筑结构的科学性和合理性。 1 高层建筑结构的特征 高层建筑结构不但承受着由于外界的风产生的水平方向的荷载,同时也承受着在垂直方向的荷载,并且对于地震的抵抗能力也有要求。一般情况下,建筑结构受到低层建筑结构水平方向上的影响比较弱,然而在高层建筑中,外界地震的影响和外界风产生的水平方向的荷载的影响是主要的影响因素。随着建筑物高度的增加,高层建筑的位移增加较快,但是高层建筑过大的侧移不但影响人的舒适度,同时使得建筑物的使用受到影响,并且容易损坏结构构件以及非结构构件。基于此,在设计高层建筑结构时,首先控制侧移在规定的范围之内,所以,高层建筑结构设计的核心是抗侧力结构的设计。 2 高层建筑结构设计的原则 2.1 选择合理的高层建筑结构计算简图在计算简图基础上进行高层建筑结构设计的计算,如果选择不合理的计算简图,那么就比较容易造成由于结构安发生的事故,基于此,高层建筑结构设计安全保证的前提是合理的计算简图的选择。同时,计算简图应该采用相应的构造方法保证安全。在实际的结构中,其结构节点不单是钢节点或者饺节点,保证和计算简图的误差在规范规定的范围内。 2.2 选择合理的高层建筑结构基础设计按照高层建筑地质条件进行基础设计的选择。综合分析高层建筑上部的结构类型与荷载分布情况,考虑施工条件,相邻的建筑物的影响等各个因素,在此基础上选择科学合理的基础方案。基础方案的选择应该使得地基的潜力得到最大程度的发挥,必要的时候要求进行地基变形的检验。高层建筑设计要有详细的地质勘查报告,如果缺失,那么应该进行现场勘查并参考相邻建筑物的有关资料。一般情况下,相同结构单元应该采用相同的类型。 2.3 选择合理的高层建筑结构方案合理的结构设计方案必须满足经济性的要求,并且要满足结构形式和结构体系的要求。结构体系的要求是受力明确,传力简单。在相同的结构单元当中,应该选择相同结构体系,如果高层建筑处于地震区,那么应力需要平面和竖向的规则。在进行了地理条件,工程设计需求,施工条件,材料等的综合分析的基础上,并和建筑包括水,暖,电等各个专业的相协调的情况下,选择合理的结构,从而确定结构的方案。 2.4 对计算结果进行准确的分析随着科技的不断进步,计算机技术被广泛的应用在建筑结构的设计中。当前市场上存在着形形色色的计算软件,采用不同的软件得到的结果可能不同,所以,建筑结构设计人员在全面了解的软件使用的范围和条件的前提下,选择合适的软件进行计算。由于建筑结构的实际情况和计算机程序并不一定完全相符,所以进行计算机辅助设计的时候,出现人工输入误差或者因为软件本身存在着缺陷使得计算结果不准确的问题,基于此,结构设计工程师在得到了通过计算机软件得到的结果以后,应该进行校核,进行合理判断,得出准确结果。 2.5 高层建筑的结构设计要采用相应构造措施高层建筑结构设计的原则是强剪切力弱弯变,强压力弱拉力,强柱弱梁。高层建筑结构设计过程中把握上述原则,加强薄弱部位,对钢筋的执行段锚固长度给予重视,并且要重点考虑构件延性的性能和温度应力对构件的影响。 3 高层建筑结构体系的选型 建筑的结构在抵抗来自于水平方向和竖直方向的荷载时构件的组成形式和传力的路径就是高层建筑的结构体系。通过包括墙,柱等的竖向构件和楼盖等水平构件将竖向荷载传递到基础,利用抗侧力体系将水平荷载传递到基础。 根据高层建筑结构的材料将高层建筑的结构体系分为钢筋混凝土结构体系,钢结构体系,钢-混凝土混合结构体系以及钢-混凝土组合结构体系。钢筋混凝土结构体系被广泛的应用在各类的工程结构中,具有混凝土和钢筋两种材料的协同受力性能特征,造价低廉,耐久耐火,成本低,整体性能优良,但存在着自重大,延性差,施工慢等缺点;钢结构体系的强度高,抗震性能比较好,施工方便,跨度大,用途多,但是存在着费用高,防火性能差,施工复杂等不足;钢-混凝土混合结构结合了钢筋混凝土构件和钢构件的长处,不但增加了钢构件的材料强度,同时具有较高的抗震性能,成本低廉,然而这两种材料构件的连接技术还存在着不足;钢-混凝土组合结构具有承载能力高,抗震性能强,比钢结构具有更优良的耐火性,施工速度快,但是存在着节点的构造比较复杂的缺点,一般被用于小屁偏心受压构件。 根据结构形式可以将高层建筑结构分为框架结构体系,剪力墙结构体系,框架-剪力墙结构体系。利用柱,梁等结构体系作为高层建筑竖向承重的结构,并且承受水平荷载,这种结构侧向位移大,框架结构内力大,适于50m 高度以下的建筑;通过高层建筑的墙体当做抵抗侧力和竖向承重的结构体系,就是剪力墙结构体系。这种剪力墙结构的刚度大,整体性能好,不易受水平力作用发生变形,适应于高层建筑,但是由于剪力墙的间距小,使得平面的布置不灵活,因此,在公共建筑中不宜使用;利用框架和剪力墙组合的而构成的结构形式就是框架-剪力墙结构体系,这种结构形式不但具有实用性强,布局灵活的优点,同时承受水平负载的能力更高,在高层建筑中被广泛使用。在框架-剪力墙结构体系中,需要注意考虑剪力墙的位置,设计合理的剪力墙的数量,以及满足框架的设计要求。

高层建筑结构设计资料

名词解释: 高层建筑:10层及10层以上或房屋高度大于28m的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力 P效应的主要参数。 10. 抗推刚度(D):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。填空:1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002) 规定:把10层及10层以上或房屋高度大于28m的建筑物 称为高层建筑,此处房屋高度是指室外地面到房屋主要屋 面的高度。2.高层建筑设计时应该遵循的原则是安全适用, 技术先进,经济合理,方便施工。 3.复杂高层结构包括带转换层的高层结构,带加强层的高 层结构,错层结构,多塔楼结构。 4.8度、9度抗震烈度 设计时,高层建筑中的大跨和长悬臂结构应考虑竖向地震 作用。 5.高层建筑结构的竖向承重体系有框架结构体系,剪力墙 结构体系,框架—剪力墙结构体系,筒体结构体系,板柱 —剪力墙结构体系;水平向承重体系有现浇楼盖体系,叠 合楼盖体系,预制板楼盖体系,组合楼盖体系。 6.高层结构平面布置时,应使其平面的质量中心和刚度中 心尽可能靠近,以减少扭转效应。 7.《高层建筑混凝土结 构技术规程》JGJ3-2002适用于10层及10层以上或房屋高 度超过28m的非抗震设计和抗震设防烈度为6至9度抗震 设计的高层民用建筑结构。 9 三种常用的钢筋混凝土高层结构体系是指框架结构、剪 力墙结构、框架—剪力墙结构。 1.地基是指支承基础的土体,天然地基是指基础直接建造 在未经处理的天然土层上的地基。 2.当埋置深度小于基础底面宽度或小于5m,且可用普通开 挖基坑排水方法建造的基础,一般称为浅基础。 3,为了增强基础的整体性,常在垂直于条形基础的另一个 方向每隔一定距离设置拉梁,将条形基础联系起来。 4.基础的埋置深度一般不宜小于0.5m,且基础顶面应低于 设计地面100mm以上,以免基础外露。 5.在抗震设防区,除岩石地基外,天然地基上的箱形和筏 形基础,其埋置深度不宜小于建筑物高度的1/15;桩箱或 桩筏基础的埋置深度(不计桩长)不宜小于建筑物高度的 1/18—1/20。 6.当高层建筑与相连的裙房之间设置沉降缝时,高层建筑 的基础埋深应大于裙房基础的埋深至少2m。 7.当高层建筑与相连的裙房之间不设置沉降缝时,宜在裙 房一侧设置后浇带,其位置宜设在距主楼边柱的第二跨内。 8.当高层建筑与相连的裙房之间不设置沉降缝和后浇带 时,应进行地基变形验算。 9.基床系数即地基在任一点发生单位沉降时,在该处单位 面积上所需施加压力值。 10.偏心受压基础的基底压应力应满足maxpaf2.1 、af 和2 min maxppp 的要求,同时还应防止基础转动过 大。 11.在比较均匀的地基上,上部结构刚度较好,荷载分布 较均匀,且条形基础梁的高度不小于1/6柱距时,地基反 力可按直线分布,条形基础梁的内力可按连续梁计算。当 不满足上述要求时,宜按弹性地基梁计算。 12.十字交叉条形基础在设计时,忽略地基梁扭转变形和 相邻节点集中荷载的影响,根据静力平衡条件和变形协调 条件,进行各类节点竖向荷载的分配计算。 13.在高层建筑中利用较深的基础做地下室,可充分利用 地下空间,也有基础补偿概念。如果每㎡基础面积上墙体 长度≮400mm,且墙体水平截面总面积不小于基础面积的 1/10,且基础高度不小于3m,就可形成箱形基础。 1.高层建筑结构主要承受竖向荷载,风荷载和地震作用等。 2.目前,我国钢筋混凝土高层建筑框架、框架—剪力墙结 构体系单位面积的重量(恒载与活荷载)大约为12~14kN /m2 ;剪力墙、筒体结构体系为14~16kN/m2 。 3.在框架设计中,一般将竖向活荷载按满载考虑,不再一 一考虑活荷载的不利布置。如果活荷载较大,可按满载布 置荷载所得的框架梁跨中弯矩乘以1.1~1.2的系数加以放 大,以考虑活荷载不利分布所产生的影响。 4.抗震设计时高层建筑按其使用功能的重要性可分为甲类 建筑、乙类建筑、丙类建筑等三类。 5.高层建筑应按不同情况分别采用相应的地震作用计算方 法:①高度不超过40m,以剪切变形为主,刚度与质量沿高 度分布比较均匀的建筑物,可采用底部剪力法;②高度超 过40m的高层建筑物一般采用振型分解反应谱方法;③刚 度与质量分布特别不均匀的建筑物、甲类建筑物等,宜采 用时程分析法进行补充计算。, 6.在计算地震作用时,建筑物重力荷载代表值为永久荷载 和有关可变荷载的组合值之和。 7.在地震区进行高层建筑结构设计时,要实现延性设计, 这一要求是通过抗震构造措施来实现的;对框架结构而言, 就是要实现强柱弱梁、强剪弱弯、强节点和强锚固。 8.A级高度钢筋混凝土高层建筑结构平面布置时,平面宜 简单、规则、对称、减少偏心。 9.高层建筑结构通常要考虑承载力、侧移变形、稳定、倾 复等方面的验算 问答: 1.我国对高层建筑结构是如何定义的? 答:我国《高层建筑混凝土结构技术规程》 (JGJ3—2002)规定:10层及10层以上或房屋高度大 于28m的建筑物称为高层建筑,此处房屋高度是指室 外地面到房屋主要屋面的高度。 2.高层建筑结构有何受力特点? 答:高层建筑受到较大的侧向力(水平风力或水平地 震力),在建筑结构底部竖向力也很大。在高层建筑 中,可以认为柱的轴向力与层数为线性关系,水平力 近似为倒三角形分布,在水平力作用卞,结构底部弯 矩与高度平方成正比,顶点侧移与高度四次方成正 比。上述弯矩和侧移值,往往成为控制因素。另外, 高层建筑各构件受力复杂,对截面承载力和配筋要求 较高。

高层建筑结构设计(教案)

高层建筑结构设计 教案 山东大学 土建与水利学院 薛云冱

目录 第一章:高层建筑结构体系及布置 (2) §1-1 概述 (2) §1-2 高层建筑的结构体系 (7) §1-3 结构总体布置原则 (9) 第二章:荷载及设计要求 (12) §2-1 风荷载 (12) §2-2 地震作用 (13) §2-3 荷载效应组合及设计要求 (14) 第三章:框架结构的内力和位移计算 (15) §3-1 框架结构在竖向荷载作用下的近似计算—分层法 (15) §3-2 框架结构在水平荷载作用下的近似计算(一)—反弯点法 (16) §3-3 框架结构在水平荷载作用下的近似计算(二)—改进反弯 点(D值)法 (17) §3-4 框架在水平荷载作用下侧移的近似计算 (18) 第四章:剪力墙结构的内力和位移计算 (20) §4-1 剪力墙结构的计算方法 (20) §4-2 整体墙的计算 (22) §4-3 双肢墙的计算 (23) §4-4 关于墙肢剪切变形和轴向变形的影响以及各类剪力墙划 分判别式的讨论 (24) §4-5 小开口整体墙的计算 (29) §4-6 多肢墙和壁式框架的近似计算 (30) 第五章:框架—剪力墙结构的内力和位移计算 (30) §5-1 框架—剪力墙的协同工作 (30) §5-2 总框架的剪切刚度 (31) §5-3 框—剪结构铰结体系在水平荷载下的计算 (32) §5-4 框—剪结构刚结体系在水平荷载下的计算 (33) §5-5 框架—剪力墙的受力特征及计算方法应用条件的说明 (36) §5-6 结构扭转的近似计算 (36) 第六章:框架截面设计及构造 (36) §6-1 框架延性设计的概念 (36) §6-2 框架截面的设计内力 (37) §6-3 框架梁设计 (39) §6-4 框架柱设计 (42) §6-5 框架节点区抗震设计 (47) 第七章:剪力墙截面设计及构造 (49) §7-1 墙肢截面承载力计算 (49) §7-2 连梁的设计 (53)

高层建筑结构设计(上)试卷

一.单选题 1.地震荷载:结构物由于地震而受到的惯性力、土压力和水压力的总称。由于()震动对建筑物的影响最大,因而一般只考虑水平震动力。 (分数:10分) 标准答案:A 学员答案:A A.水平 B.内力 C.垂直 D.分布荷载 2.筒中筒结构体系是由内筒和外筒两个筒体组成的结构体系。内筒通常是由()围成的实筒,而外筒一般采用框筒或桁架梁。 (分数:10分) 标准答案:C 学员答案:C A.框架 B.筒中筒 C.剪力墙 D.框架--剪力墙 3.空气流动形成的风遇到建筑物时,就在建筑物表面产生压力或吸力,这种风力作用称为()。 (分数:10分) 标准答案:C 学员答案:C A.分布荷载 B.集中荷载 C.风荷载 D.应力荷载 4.()是高层建筑广泛采用的一种基础类型。它具有刚度大,整体性好的特点,适用于结构荷载大、基础土质较软弱的情况。 (分数:10分) 标准答案:A 学员答案:A A.箱形基础 B.独立基础 C.筏板基础 D.条形基础 5.()复杂,不规则,不对称的结构,不仅结构设计难度大,而且在地震作用的影响下,结构要出现明显的扭转和应力集中,这对抗震非常不利。 (分数:10分) 标准答案:C

学员答案:C A.大门形状 B.立面形状 C.平面形状 D.屋顶形状 6.两个以上的筒体排列在一起成束状,成为成束筒。成束筒的抗侧移刚度比()结构还要高,适宜的建造高度也更高。 (分数:10分) 标准答案:B 学员答案:B A.框架 B.筒中筒 C.剪力墙 D.框架--剪力墙 7.板式结构是指建筑物宽度较小,长度较大的平面形状。因平面短边方向抗侧移刚度较弱。一般情况下()不宜超过4。当抗震设防等于或大于8时,限制应更加严格。 (分数:10分) 标准答案:A 学员答案:B A.高宽比 B.长宽比 C.长高比 D.窗墙比 8.精确计算表明,各层荷载除了在本层梁以外以及与本层梁相连的柱子中产生内力外,对其它层的梁、柱内力影响不大,为此,可将整个框架分成一个个()来计算,这就是分层法。 (分数:10分) 标准答案:B 学员答案:B A.单独框架 B.单层框架 C.独立柱、梁 D.空间结构 9.当框架的高度较大、层数较多时,柱子的截面尺寸一般较大,这时梁、柱的线刚度之比往往要(),反弯点法不再适用。 (分数:10分) 标准答案:B 学员答案:B A.大于3 B.小于3 C.大小于2 D.小于2

浅谈高层建筑结构概念设计

浅谈高层建筑结构概念设计 浅谈高层建筑结构概念设计 摘要: 随着建筑新材料的开发和利用、建筑的高度继续提升、组合结构建筑的增加、新型结构形式的应用、耗能减震技术的应用发展,高层结构布置常屈从于建筑平面布置和美感的要求,这引起了相关的结构问题。本文就高层建筑结构设计中结构体系的选择、结构抗震设计、侧向位移的控制、构造要求等方面加以阐述。 关键词:高层建筑结构设计;结构体系的选择;结构抗震设计;侧向位移的控制;构造要求 中图分类号:TU973 文献标识码:A 一、高层建筑结构设计注意项 高层建筑结构中,随着高度的增加,不但竖向荷载产生的效应很大,水平荷载产生的内力和侧向位移更是迅速增大。而且对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。因此水平荷载成了设计中的主要控制因素。(注:风荷载作用在建筑物表面,结构处于弹性阶段;地震作用是惯性力,结构考虑进入塑性阶段以耗散能量。) 高层建筑结构中,建筑应具有充分的刚度。必须限制水平位移,防止由于重力荷载大在产生二阶P-△效应时使建筑突然倒塌,防止非结构构件的破坏(出现裂缝)、防止电梯井变形过大影响使用、防止对使用者产生的不舒适感。(注:高层建筑结构在承载能力极限状态和正常使用极限状态方面同等重视。) 高层建筑结构中,由于徐变和收缩的竖向积累变形很大,足以引起非结构构件的破坏,同时在水平构件中引起明显的结构内力,尤其在结构的上部区域。 高层建筑结构中,结构的重力和水平荷载通过基础传递到地基,应注重结构特性和土—结构相互作用力对基础变形的影响。

因此在高层建筑结构的设计中,应在结构体系的选择、结构抗震设计、侧向位移的控制、构造要求等方面加以注意。 二、高层建筑结构设计步骤 1、选择合理的结构形式; 2、构件的截面尺寸; 3、结构上荷载的确定; 4、结构内力分析和水平位移计算; 5、截面设计和结构的延性; 6、构造要求; 7、绘施工图。 三、高层建筑结构体系的选择 高层建筑从本质上可看做是一个竖向悬臂构件,所以应注重水平荷载的作用。在总体结构中常包含一个以上独立作用的竖向悬臂构件,如剪力墙或芯筒,每个独立构件都相关于自己的轴线抗弯,它们之间仅通过楼板的平面内刚度相互协调。另一方面,悬臂结构也可以包括大量柱和墙的组合作用。从某种程度上说,各柱和墙是通过梁连接形成独立粗大的悬臂杆,如果主要的竖向构件具有不同的自由变形特征,在这种情况下它们将通过连接的板和梁相互影响,以致这些悬臂构件的侧向刚度和强度可以进一步提高。因此高层建筑结构体系设计中,还应考虑楼板对各竖向构件的抗侧力起到整体联系的作用。(注:楼板由于跨度过大易发生翘曲,故楼板构件设计时其跨度应受到限制。) 选择结构体系应对内力进行控制,发挥主要竖向构件在平面上位置的优势,使其在恒荷载作用下产生的压应力大于水平引起的拉应力,避免在竖向构件中出现纯拉力和拔起基础。在各种类型结构体系的平面布置时,各外构件必须受压。 四、高层建筑结构抗震设计 抗震设计除了集中在抵抗地震对结构在水平方向上产生的惯性力,还应当要求结构有很好的延性和塑性。设计结合软件输入参数时,宜做到能量的平衡,减小地震能量的输入,增大结构耗能的能量。 在平面上设计应注意:为了避免转动弯矩,刚度中心和质心应尽

高层建筑结构设计考试试题(含答案)

高层建筑结构设计考试试题一、填空题( 2× 15=30) 1、2、钢筋混凝土剪力墙结构的水平荷载一般由剪力墙承担,竖向荷载由剪力墙承担。其整体位移曲线特点为弯曲型,即结构的层间侧移随楼层的 而增大而增大。与框架结构相比,有结构整体性好,刚度大,结构高度可 以更大。等优点。 框架——剪力墙结构体系是把框架和剪力墙结构两种结构共同结合在一起形成的结构体系。结构的竖向荷载由框架和剪力墙承担,而水平作用主要由 剪力墙承担。其整体位移曲线特点为弯剪型,即结构的层间位移在结构底部层间位移随层数的增加而增大,到中间某一位置,层间位移随 层数的增加而增大。 3、框架结构水平荷载作用近似手算方法包括反弯点法、D值 4、 法。当结构的质量 中心下会发生扭转。 中心和刚度中心中心不重合时,结构在水平力作用 二、多项选择题(4×5= 20) 1、抗震设防结构布置原则(ABC) A 、合理设置沉降缝C、 足够的变形能力B D 、合理选择结构体系 、增大自重 E、增加基础埋深 2、框架梁最不利内力组合有(AC) A、端区 -M max, +M max, V max C、跨中 +M max D B、端区 M max及对应 N, V 、跨中 M max及对应 N, V E、端区N max及对应M, V 3、整体小开口剪力墙计算宜选用( A )分析方法。 A、材料力学分析法 B、连续化方法 C、壁式框架分析法 D、有限元法 4、高层建筑剪力墙可以分为(ABCD )等几类。 A、整体剪力墙 B、壁式框架 C、联肢剪力墙 D、整体小开口墙 5、高层建筑基础埋置深度主要考虑(ACD)。 A、稳定性 B、施工便利性 C、抗震性 D、沉降量 E、增加自重 三、简答题(7×5= 35) 1、试述剪力墙结构连续连杆法的基本假定。 1、剪力墙结构连续连杆法的基本假定:忽略连梁的轴向变形,假定两墙肢的水平位移完全相同;各墙肢截面 的转角和曲率都相等,因此连梁两端转角相等,反弯点在中点;各墙肢截面,各连梁截面及层高等几何尺寸 沿全高相同。

高层建筑结构设计复习题

高层建筑结构复习题 一、填空题50道及答案 1板柱体系是指钢筋混凝土【无梁楼板】和【柱】组成的结构。 2.由框架和支撑框架共同承担竖向荷载和水平荷载的结构,称为【框架-支撑结构】。 3.单独采用框筒作为抗侧力体系的高层建筑结构较少,框筒主要与内筒组成【筒中筒】结构或多个框筒组成【束筒】结构。 4.框架-核心筒结构可以采用【钢筋混凝土结构】、【钢结构】、或混合结构。 5.巨型框架结构也称为主次框架结构,主框架为【巨型】框架,次框架为【普通】框架。 6.钢筋混凝土巨型框架结构有【两】种形式。 7. 高层建筑的外形可以分为【板式】和【塔式】两大类。 8.结构沿高度布置应【连续】、【均匀】,使结构的侧向刚度和承载力上下相同,或下大上小,自下而上连续,逐渐减小,避免有刚度或承载力突然变小的楼层。 9.平面不规则的类型包括【扭转】不规则、【楼板凹凸】不规则和【楼板局部】不连续。 10. 钢结构房屋建筑一般不设置【防震缝】。 11.高层建筑的外荷载有竖向荷载和水平荷载。竖向荷载包括自重等【恒载】及使用荷载等【活载】。水平荷载主要考虑【风荷载】和【地震作用】。 12. 结构的地震反应包括【加速度】、【速度】和【位移】反应。 所13.抗震设计的两阶段设计分别为:第一阶段为【结构设计】阶段,第二阶段为【验算】阶段。 14.计算地震作用的方法可分为【静力法】、【反应谱法】和【时程分析法】三大类。 15.影响α值大小的因素除自振署期和阻尼比外,还有【场地特征周期】。 16.场地土愈【软】,软土覆盖层的厚度愈【大】,场地类别就愈【高】,特征周期愈【大】,对长周期结构愈不利。 17.框架-核心筒结构设置水平楼伸臂的楼层,称为【加强层】。 18.巨型框架也称为主次框架结构,主框为【巨型框架】,次框架为【普通框架】。 19.水平何载作用下,出现侧移后,重力荷载会产生【附加弯矩】。附加弯矩又增大侧移,这是一种【二阶效应】,也称为“P-Δ“效应。 20.一般用延性比表示延性,即【塑性变形】能力的大小。 21.要设计延性结构,与下列因素有关:选择【延性材料】、进行结构【概念设计】、设计【延性结构】、钢筋混凝土结构的抗震构造措施及【抗震等级】。

高层建筑结构设计特点.

浅论高层建筑结构特点及其体系 [摘要]文章分析高层建筑结构的六个特点,并介绍目前国内高层建筑的四大结构体系:框架结构、剪力墙结构、框架剪力墙结构和筒体结构。 [关键词]高层建筑;结构特点;结构体系 我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特点及其结构体系,只有这样才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。 一、高层建筑结构设计的特点 高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有: (一水平力是设计主要因素 在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

高层建筑设计原理

1.下列哪一种形状的平面体形系数最小,能耗最少。 A.方形B.圆形C.三角形D.梯形 2、我国《民用建筑设计通则》中规定,()层及其以上的建筑为高层住宅。 A.10 B.20 C.15 D.9 3、《通则》中规定,建筑高度大于()米的民用建筑为超高层建筑。 A. 200 B.60 C.100 D.300 4、目前世界排名第一的超高层建筑是() A.台湾101大厦 B.迪拜哈利法塔 C.美国帝国大厦 D.芝加哥蒙托克大厦 5、下列哪一选项不属于高层建筑带来的负面环境影响。() A.有可能造成令人不愉快的环境。 B.存在比多层建筑更多的安全隐患。 C.不利于人们户外活动,容易形成对人类健康不利的室内环境。 D.高层建筑象征城市的综合经济实力和技术水平,也表现了拥有者的财富、地位和商业信用。 6、高层建筑场地调查包括项目背景、基地现状和周边环境以及()等方面的内容。 A.能源供应 B.地域特征 C.项目定位 D.开发强度 7下列哪一项是比较良好的高层建筑外部空间尺度。()

A.b/h≤1 B.b/h≥2 C. 1≤b/h≤2 D.b/h≥3 8、若建筑用地为条形用地,则下列说法正确的是:()A.用地相对进深较大,不利于吸引顾客; B.建筑多沿街布置,且首层多为商业功能; C.用地中高层建筑对城市道路多有退缩; D.条形用地临街面多为短轴方向。 9、平原和丘陵城市用地评价一般将坡度大于()的用地列为不适于作为建筑用地的类别。 A.25% B. 20% C.30% D.50% 10、在平坦地区,当建筑间距与高度之比()时,通风效率可视为良好。 A.b>2h B.b=2h C.b=h D.b

高层建筑抗震设计原则及应注意的问题

高层建筑抗震设计原则及应注意的问题 摘要:高层建筑抗震工作一直建筑设计和施工的重点,概述高层建筑的发展,对建筑抗震进行必要的理论分析,从而来探索高层建筑的设计理念、方法,从而采取必须的抗震措施。为了避免短柱脆性破坏问题在高层建筑中发生,笔者认为,首先要正确判定短柱,然后对短柱采取一些构造措施或处理,提高短柱的延性和抗震性能。 关键词:高层建筑抗震设计措施 0引言 结构工程师按抗震设计要求进行结构分析与设计,其目标是希望使所设计的结构在强度、刚度、延性及耗能能力等方面达到最佳,从而经济地实现“小震不坏,中震可修,大震不倒”的目的。但是,由于地震作用是一种随机性很强的循环、往复荷载,建筑物的地震破坏机理又十分复杂,存在着许多模糊和不确定因素,在结构内力分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等多种因素,计算方法还很不完善,单靠微观的数学力学计算还很难使建筑结构在遭遇地震时真正确保具有良好的抗震能力。 1高层建筑抗震结构设计的基本原则 1.1结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能①结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。②对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。③承受竖向荷载的主要构件不宜作为主要耗能构件。 1.2尽可能设置多道抗震防线①一个抗震结构体系应由若干个延性较

好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架

—剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。②强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。③适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。④在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。 1.3对可能出现的薄弱部位,应采取措施提高其抗震能力①构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。②要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。③要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。④在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。 2高层建筑抗震设计常见的问题

高层建筑结构设计

《高层建筑结构设计》课程教学大纲 开课单位:土木工程系 课程负责人:黄林青 适用于本科土木工程专业 教学时数:40学时 一、课程概况 《高层建筑结构设计》课程是土木工程专业(房屋建筑工程方向)的专业方向限选课。本课程的任务是:主要学习高层建筑结构设计的基本原理和方法,通过本课程的教学活动,使学生掌握多高层建筑结构的结构体系与布置,荷载与设计要求,框架、剪力墙、框架—剪力墙等结构的内力和位移计算,以及框架及剪力墙的截面设计与构造,并具备多高层建筑结构设计和施工的初步能力。 本课程的先修课程主要有:《结构力学》、《建筑结构设计》、《建筑结构抗震设计》、《混凝土结构原理》等。 本课程的后续课程主要有:《毕业设计》。 二、教学基本要求 1.了解高层建筑的发展史和发展趋势,熟悉高层建筑的结构力学特征; 2.熟悉高层建筑体系的各种形式及各种布置,熟悉高层结构体系的受力性能; 3.熟悉荷载作用计算方法,熟悉高层建筑结构设计基本原则及假定; 4.掌握框架结构的设计方法; 5.掌握理解剪力墙结构设计方法; 6.掌握理解框架-剪力墙结构设计方法; 7.了解筒体结构设计方法; 8.了解高层建筑基础设计方法; 9.掌握运用计算机软件进行结构设计方法。 三、教学内容及要求 1. 高层结构体系及布置 教学内容:高层建筑结构体系及受力特点;结构总体布置的原则及需要考虑的问题;各种结构缝的处理,地基基础选型。 基本要求:了解不同体系的特点、优缺点及适用范围;理解结构总体布置的原则及需要考虑的问题;掌握各种结构缝的处理,地基基础选型等。 重点:高层建筑的发展、高层建筑的特点、高层建筑结构的结构体系及其布置原则。 难点:高层建筑结构的结构体系受力特点。 2. 高层建筑结构荷载作用与结构设计原则 教学内容:高层建筑结构风荷载、地震荷载计算方法;抗震设计的基本概念;结构周期的计算原理和近似计算方法;高层建筑荷载效应组合方法和设计对强度、位移、构造延性的要求。 基本要求:掌握高层建筑结构风荷载、地震荷载计算方法,掌握抗震设计的基本概念,以及结构周期的计算原理和近似计算方法。掌握高层建筑荷载效应组合方法和设计对强度、位移、构造延性的要求。 重点:介绍高层建筑结构的风荷载计算、地震作用特点、抗震设计目标及方法、反应谱方法计算等效地震荷载、结构自振周期和振型计算、荷载效应组合及设计要求。 难点:风荷载计算和地震作用计算。 3. 框架结构设计 教学内容:竖向荷载作用下的内力近似计算方法:分层法;水平荷载作用下的内力计算方法:

相关主题
文本预览
相关文档 最新文档