当前位置:文档之家› 热电偶热电阻温度计讲义

热电偶热电阻温度计讲义

热电偶热电阻温度计讲义
热电偶热电阻温度计讲义

温度测量仪表

热电偶

原理:

热电偶测温基本原理是将两种不同材料的导体或半导体焊接起来,构成一个闭合回路。由于两种不同金属所携带的电子数不同,当两个导体的二个接点之间存在温差时,就会发生高电位向低电位放电现象,因而在回路中形成电流,温度差越大,电流越大,这种现象称为热电效应,也叫塞贝克效应。热电偶就是根据此效应制成的。

两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。

根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时, 只要该材料两个接点的温度相同, 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此, 在热电偶测温时, 可接入测量仪表, 测得热电动势后, 即可知道被测介质的温度。

结构要求:

①组成热电偶的两个热电极的焊接必须牢固;

②两个热电极彼此之间应很好地绝缘,以防短路;

③补偿导线与热电偶自由端的连接要方便可靠;

④保护套管应能保证热电极与有害介质充分隔离。

热电偶的补偿:

热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。一般显示、控制都有温度自动补偿系统,不需要担心。仪表在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度一般不超过100℃,特殊工况下,可以选用热电偶延长线,即导线材质和热电偶电极材质一致的导线连接,根据热电偶的中间导体定律,这种补偿导线温度不受限制。

补偿分类:

补偿导线和延伸型补偿导线

一、使用热电势和热电偶电势接近的廉价金属代替热电极延伸信号,这就是补偿导线,这一类补偿导线有:

1,铜-康铜 KC 补偿K分度镍铬-镍硅热电偶

2,铜-铜镍 SC 补偿S分度铂铑10-铂热电偶

这两种补偿导线属于补偿型的,在工作中,热电偶冷端温度不得大于100度,即使使用聚四氟乙烯或者玻璃纤维做绝缘护套,其补偿温度

也不得大于100度,如果使用的是聚氯乙烯绝缘护套,其工作环境温度【热电偶冷端】不得大于70度。

二、一些廉金属热电偶采用和热电极材料一致的导体做补偿导线,这一类补偿导线叫做延伸型补偿导线,它们有:

1,镍铬-镍硅 KX 延伸补偿K分度镍铬-镍硅热电偶

2,镍铬-康铜 EX 延伸补偿E分度镍铬-康铜热电偶

3,铁—康铜 JX 延伸补偿J分度铁-康铜热电偶

4,铜-铜镍 TX 延伸补偿T分度铜-铜镍热电偶

这一类补偿导线在热电偶冷端补偿温度则不受限制,如果使用聚四氟乙烯护套,可以使用的环境温度为250度,玻璃纤维护套的使用环境温度为500度,如果使用聚氯乙烯护套则使用环境温度不得大于70度。

另外,B分度热电偶由于在低温段电势非常微弱,400度以下不计精度,所以,B分度铂铑30-铂铑6热电偶没有补偿导线,一般用双芯铜护套线就可以。

热电偶的分类:

常用热电偶可分为标准热电偶和非标准热电偶两大类

所谓标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,

一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。

各类型热电偶特点:

1、(S型热电偶)铂铑10-铂热电偶

铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。

S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。

S型热电偶不足之处是热电势,热电势率较小,灵敏度低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。

2、(R型热电偶)铂铑13-铂热电偶

铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。

R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R型热电偶的综合性能与S型热电偶相当,在我国一直难于推广,除在进口设备上的测温有所应用外,国内测温很少采用。1967年至1971年间,英国NPL,美国NBS和加拿大NRC三大研究机构进行了一项合作研究,其结果表明,R型热电偶的稳定性和复现性比S型热电偶均好,我国目前尚未开展这方面的研究。

R型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。

3、(B型热电偶)铂铑30-铂铑6热电偶

铂铑30-铂铑6热电偶(B型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(BP)的名义化学成分为铂铑合金,其中含铑为30%,含铂为70%,负极(BN)为铂铑合金,含铑为量6%,故俗称双铂铑热电偶。该热电偶长期最高使用温度为1600℃,短期最高使用温度为1800℃。

B型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长,测温上限高等优点。适用于氧化性和惰性气氛中,也可短期用于真空中,但不适用于还原性气氛或含有金属或非金属蒸气气氛中。B型热电偶一个明显的优点是不需用补偿导线进行补偿,因为在0~50℃范围内热电势小于3μV。

B型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。

4、(K型热电偶)镍铬-镍硅热电偶

镍铬-镍硅热电偶(K型热电偶)是目前用量最大的廉金属热电偶,其用量为其他热电偶的总和。正极(KP)的名义化学成分为:Ni:Cr=90:10,负极(KN)的名义化学成分为:Ni:Si=97:3,其使用温度为-200~1300℃。

K型热电偶具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中。广泛为用户所采用。

K型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛中。

5、(N型热电偶)镍铬硅-镍硅热电偶

镍铬硅-镍硅热电偶(N型热电偶)为廉金属热电偶,是一种最新国际标准化的热电偶,是在70年代初由澳大利亚国防部实验室研制成功的它克服了K型热电偶的两个重要缺点:K型热电偶在300~500℃

间由于镍铬合金的晶格短程有序而引起的热电动势不稳定;在800℃左右由于镍铬合金发生择优氧化引起的热电动势不稳定。正极(NP)的名义化学成分为:Ni:Cr:Si=84.4:14.2:1.4,负极(NN)的名义化学成分为:Ni:Si:Mg=95.5:4.4:0.1,其使用温度为-200~1300℃。

N型热电偶具有线性度好,热电动势较大,灵敏度较高,稳定性和均匀性较好,抗氧化性能强,价格便宜,不受短程有序化影响等优点,其综合性能优于K型热电偶,是一种很有发展前途的热电偶.

N型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛中。

6、(E型热电偶)镍铬-铜镍热电偶

镍铬-铜镍热电偶(E型热电偶)又称镍铬-康铜热电偶,也是一种廉金属的热电偶,正极(EP)为:镍铬10合金,化学成分与KP相同,负极(EN)为铜镍合金,名义化学成分为:55%的铜,45%的镍以及少量的锰,钴,铁等元素。该热电偶的使用温度为-200~900℃。E型热电偶热电动势之大,灵敏度之高属所有热电偶之最,宜制成热电堆,测量微小的温度变化。对于高湿度气氛的腐蚀不甚灵敏,宜用于湿度较高的环境。E热电偶还具有稳定性好,抗氧化性能优于铜-康铜,铁-康铜热电偶,价格便宜等优点,能用于氧化性和惰性气氛中,广泛为用户采用。

E型热电偶不能直接在高温下用于硫,还原性气氛中,热电势均匀性较差。

7、(J型热电偶)铁-铜镍热电偶

铁-铜镍热电偶(J型热电偶)又称铁-康铜热电偶,也是一种价格低廉的廉金属的热电偶。它的正极(JP)的名义化学成分为纯铁,负极(JN)为铜镍合金,常被含糊地称之为康铜,其名义化学成分为:55%的铜和45%的镍以及少量却十分重要的锰,钴,铁等元素,尽管它叫康铜,但不同于镍铬-康铜和铜-康铜的康铜,故不能用EN和TN来替换。铁-康铜热电偶的覆盖测量温区为-200~1200℃,但通常使用的温度范围为0~750℃

J型热电偶具有线性度好,热电动势较大,灵敏度较高,稳定性和均匀性较好,价格便宜等优点,广为用户所采用。

J型热电偶可用于真空,氧化,还原和惰性气氛中,但正极铁在高温下氧化较快,故使用温度受到限制,也不能直接无保护地在高温下用于硫化气氛中。

8、(T型热电偶)铜-铜镍热电偶

铜-铜镍热电偶(T型热电偶)又称铜-康铜热电偶,也是一种最佳的测量低温的廉金属的热电偶。它的正极(TP)是纯铜,负极(TN)为铜镍合金,常之为康铜,它与镍铬-康铜的康铜EN通用,与铁-康铜的康铜JN不能通用,尽管它们都叫康铜,铜-铜镍热电偶的盖测量温区为-200~350℃。

T型热电偶具有线性度好,热电动势较大,灵敏度较高,稳定性和均匀性较好,价格便宜等优点,特别在-200~0℃温区内使用,稳定性更好,年稳定性可小于±3μV,经低温检定可作为二等标准进行低温量值传递。

T型热电偶的正极铜在高温下抗氧化性能差,故使用温度上限受到限制。

热电阻

热电阻的原理:

大多数金属在温度升高1℃时,电阻值增加0.4%~0.6%,热电阻就是利用金属材料的阻值随温度升高而增大的这一特性来测量温度的。首先将温度的变化转化为电阻值的变化,再通过测量电桥转换成电压信号送至显示仪表指示或记录被测温度。

热电阻的材料:

应用最广泛的热电阻材料是铂和铜:铂电阻精度高,适用于中性和氧化性介质,稳定性好,具有一定的非线性,温度越高电阻变化率越小;铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150易被氧化。中国最常用的有R0=10Ω、R0=100Ω和R0=1000Ω等几种,它们的分度号分别

为Pt10、Pt100、Pt1000;铜电阻有R0=50Ω和R0=100Ω两种,它们的分度号为Cu50和Cu100。其中Pt100和Cu50的应用最为广泛。

热电阻的引线分类:

热电阻传感器的测量线路一般使用电桥。实际应用中,热电阻安装在生产环境中,感受被测介质的温度变化,而测量电阻的电桥通常作为信号处理器或显示仪表的输入单元,随相应的仪表安装在控制室。由于热电阻很小,热电阻与测量桥路之间的连接导线的阻值R1会随环境温度的变化而变化,给测量带来较大的误差。为此,工业上常采用三线制接法。热电阻的两根引线的电阻值被分配在两个相邻的桥臂中,如r1=r2,则由环境温度变化引起的引线电阻值变化造成的误差相互抵消。

1、二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合

2、三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的。热电阻采用三线制接法。采用三线制是为了消除连接导线电阻引起的测量误差。这是因为测量热电阻的电路一般是不平衡电桥。热

电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造成测量误差。采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差

3、四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。

热电阻的分类:

金属热电阻的电阻值和温

度一般可以用以下的近似关系

式表示,即

Rt=Rt0[1+α(t-t0)]

式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。

半导体热敏电阻的阻值和温度关系为

Rt=AeB/t

式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。

金属热电阻的分类:

工业上常用金属热电阻

1)普通型热电阻

从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。

2)铠装热电阻

铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。

3)端面热电阻

端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。

4)隔爆型热电阻

隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla--B3c 级区内具有爆炸危险场所的温度测量。

热电偶与热电阻的选型:

1、被测量对象的正常温度范围在300℃以下的选用热电阻.

2、被测量对象的正常温度范围在300℃以上的选用热电偶.

热电偶与热电阻的安装要求

对热电阻与热电偶的安装,应注意热电偶的安装使用中的几个细节;有利于测温准确,安全可靠及维修方便,而且不影响设备运行和生产操作.要满足以下要求,在选择对热电偶和热电阻的安装部位和插入深度时要注意以下2点:

1、带有保护套管的热电偶和热电阻有传热和散热损失,为了减少测量误差,热电偶和热电阻应该有足够的插入深度:

(1)当测量原件插入深度超过1m时,应尽可能垂直安装,或加装支撑架和保护套管.

(2)假如需要测量是烟道内烟气的温度,尽管烟道直径为1000mm,热电偶或热电阻插入深度500mm即可.

(3)对于测量管道中心流体温度的热电偶,一般都应将其测量端插入到管道中心处(垂直安装或倾斜安装).如被测流体的管道直径是100毫米,那热电偶或热电阻插入深度应选择50~100毫米(应考虑到安装底座或法兰的尺寸);

2、对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套管对流体的阻力和防止保护套管在流体作用下发生断裂,可采取保护管浅插方式或采用热套式热电偶.浅插式的热电偶保护套管,其插入主蒸汽管道的深度应不小于75mm;热套式热电偶的标准插入深度为100mm;

3、为了使热电偶和热电阻的测量端与被测介质之间有充分的热交换,

应选择合理测点位置,尽量避免在阀门,弯头及管道和设备的死角附近装设热电偶或热电阻.

附:

热电阻的校验

1)分度校验法:即在不同温度点上材料电阻值,看其与温度

的关系是否符合规定。

(2)纯度校验法:即在0℃和100℃时,测量电阻值R0和R100,求出R100和R0的比值R100/ R0,看是否符合规定

热电偶的检定

本检定规程经国家技术监督局于1996 年8 月23 日批准,并自1997 年 3 月 1 日起施行。

工作用廉金属热电偶检定规程

本规程适用于长度不小于750mm的新制造和使用中的分度号为K的镍铬-镍硅热电偶、分度号为N 的镍铬-镍硅热电偶、分度号为E 镍铬-铜镍热电偶、分度号为J的铁-铜镍热电偶(以下分别简称K、N、E、J、X型热电偶)在-40-1300℃范为内的检定。编辑本段技术要求

1热电极的名义成分如表1规定。

表1

(完整word版)热电偶温度计的测温原理、选型及其应用

《自动检测技术及仪表》课程设计报告 热电偶温度计的测温原理、选型及其应用 学院: 班级: 姓名: 学号:

目录 一摘要 (3) 二热电偶温度计的测温原理 (3) 2.1 热电偶的测温原理 (3) 2.2 接触电势 (4) 2.3 温差电势 (4) 2.4 热电偶温度计闭合回路的总热电势 (4) 三热电偶温度计的组成结构及其作用和特 (5) 3.1 热电偶温度计的组成结构 (5) 3.2 热电偶温度计的作用及特点 (6) 四热电偶温度计测温技术中涉及到的定则 (7) 4.1 均质导体定则 (7) 4.2 中间导体定则 (7) 4.3 连接导体和中间温度定则 (8) 五热电偶温度计的误差分析及选型 (8) 5.1 影响测量误差的主要因素 (8) 5.1.1插入深度 (8) 5.1.2响应时间 (9) 5.1.3热辐射 (10) 5.1.4冷端温度 (11) 5.2 热电偶温度计的选型 (11) 六现场安装及其注意事项 (13) 七总结 (13) 八参考文献 (15)

一、摘要 热电偶温度计是一种最简单﹑最普通,测温范围最广的温度传感器,是科研﹑生产最常用的温度传感器。在使用时不注意,也会引起较大测量误差。针对当前存在的问题,详细探讨影响测量误差的主要因素:热电偶插入深度﹑响应时间﹑热辐射及冷端温度等因素对测量的影响;在使用时应该怎样选择热电偶温度计,以及使用时的一些安装注意事项,这对提高测量精度,延长热电偶寿命,都有一定的意义。 二、热电偶温度计的测温原理 热电偶温度计是一种感温元件 , 把温度信号转换成热电动势信号 , 通过电气仪表转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的均质导体组成闭合回路 , 当两端温度不同时 , 回路中就会产生电势,这种现象称为热电效应(或者塞贝克效应)。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系 , 制成热电偶分度表;分度表是自由端温度在 0°C 时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时 , 只要该材料两个接点的温度相同 , 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此 , 在热电偶测温时 , 可接入测量仪表 , 测得热电动势后 , 即可知道被测介质的温度。 热电偶温度计测温原理图如图所示: 其中,T是热端、工作端或者测量端, T

热电偶温度计和热电阻温度计的比较及应用

热电偶温度计和热电阻温度计的比较及应用 【摘要】 温度不能直接测量,只能借助于冷热不同物体之间的热交换,以及物体的某些物理性质随冷热程度不同而变化的特性来加以间接测量。温度测量范围很广,有的处于接近绝对零度的低温, 有的在几千度的高温下进行,所以需要各种不同的测温方法和测温仪器。 关键词:热电偶温度计,热电阻温度计,选型,特点,区别,应用 一引言 热电偶是一种感温元件,是一次仪表。它直接测量温度,并把温度信号转换成热电动势信号, 通过电气仪表(二次仪表)转换成被测介质的温度。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 二两种温度计的工作原理 热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的

热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 三热电偶温度计 两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数; 2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 特点 ◆装配简单,更换方便 ◆压簧式感温元件,抗震性能好 ◆测量范围大

基于热电偶的温度测量电路设计

燕山大学 课程设计说明书题目:基于热电偶的温度测量电路设计 学院(系):电气工程学院 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位: 学号学生姓名专业(班级)设计题目基于热电偶的温度测量电路设计 设 计技术参数 设计基于运算放大器的热电偶传感器输出信号调理电路以及冷端补偿电路。自选一款热电偶,对其在500到1200度测温范围内的输出信号进行放大。输出信号为直流0到2.5V 设计要求1:完成题目的理论设计模型;2完成电路的multisim仿真; 工 作 量1:完成一份设计说明书(其中包括理论设计的相关参数以及仿真结果); 2:提交一份电路原理图;

工作计划周一,查阅资料; 周二到周四,理论设计及计算机仿真;周五,撰写设计说明书; 参考资料1:基于运算放大器和模拟集成电路的设计;2:模拟电子技术; 3:电路理论; 4:数字电子技术; 指导教师签字基层教学单位主任签字 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2011年6 月26 日燕山大学课程设计评审意见表

指导教师评语: 成绩: 指导教师: 年月日答辩小组评语:

成绩: 组长: 年月日课程设计总成绩: 答辩小组成员签字: 年月日

目录 第1章摘要 (2) 第2章引言 (2) 第3章电路结构设计 (2) 3.1 热电偶的工作原理 (2) 3.2 冷端补偿电路设计 (5) 3.3 运算放大器的设计 (6) 第4章参数设计及运算 (8) 4.1 补偿电路的计算 (8) 4.2 运算放大器的计算 (9) 4.3 仿真器仿真图示 (10) 心得体会 (12) 参考文献 (13)

大学物理实验 热电偶温度计设计

热电偶温度计的设计探讨 吉林建筑大学城建学院 土木工程系 交通工程12级-1班 1205000123 屈少伟 【内容摘要】 用温差电偶测温就是把非电学量转化为电学量测量,即把温度转化为温差电动势来测量温度。将两种不同金属导体的两端分别连接起来,构成一个闭合回路,一端加热,另一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生(温差效应)。这种温度计测温范围很大。本次实验选用铜-康铜两种金属形成闭合回路作为温差电偶装置,设计热电偶温度计。并通过恒温水浴锅、数字电压表、电热杯等设备为所设计的热电偶温度计定标。 【关键词】 温差效应铜-康铜温差电偶温差固定点法定标 一、引言 传统温度计测量范围相对较小,而热电偶温度计测量范围很大,本实验探究热电偶温度计的实验原理,并尝试制作热电偶温度计。 二、实验目的: (1)了解热电偶温度计的测温原理 (2)学会热电偶温度计的设计方法 (3)学会数字电压表(或电位差计)的原理和使用方 三、实验仪器: 铜-康铜温差电偶数字电压表(或电位差计)保温杯电热杯恒温水浴锅(含温度显示)等。 四、实验原理: 1、热电效应:两种不同成份的导体(本实验中选用铜-康铜)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。 2、测温原理:热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。 【注意问题】 1、热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 2 、热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 3、当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。 五、测量方法: 理论和实验均表明,接触电势差的大小和相接处的两种金属的性质及接触处的温度有关。

基于单片机和K型热电偶的温度测量仪表设计

1.概述 1.1题目名 基于单片机和K 型热电偶的温度测量仪表设计 1.2功能和技术指标要求 (1)温度测量范围:室温~200℃; (2)温度检测元件:K 型分度号热电偶; (3)具有热电偶冷端温度自动补偿功能; (4)温度测量精度:1℃±FS*2%; (5)温度显示:LED 或LCD 数字显示,显示分辨率0.1℃ (6)具有温度上限、下线设置功能,当温度测量值越限时,进行声光报警; (7)电源:电网AC220V , 要求在电网电压变化±15%范围内能够正常工作。 1.3国内外相关情况概述 温度的测量的历史:第一个温度传感器是伽利略做出来的。而温度测量的里程碑是由法勒海 特设计的水银温度计。1740年瑞典人摄氏提出在标准大气压下,把冰水混合物的温度规定 为0度,而水的沸腾度为100度。温度测量在保证产品的质量,节约能源,安全生产起到至 关重要的作用。技术现状有点到线,线到面温度分布的测温技术;由表面到内部的测温技术。 发展趋势是由于环境的多样化,复杂化,测温对象的多样化,智能检测成为现在温度测试的 趋势。所以要加强新工艺的开发;向着智能化发展。 2.技术方案 2.1温度测量的基本方法与原理 常见的温度测量方法和测温原理有:接触式,原理是热胀冷缩,这种方法测温方便。液体式 (如毛细管,水银温度计),原理是受热,液体膨胀系数变大,从而液体上升。这种方法测 温比较准确。 2.2总技术方案 温度测量仪表功能结构 热电偶 放大器 ADC 单 片 机 环境温度测量 直流稳压电源 数字显示 声光报警 上下限设置

先读取环境温度,热电偶测得温度经过ADC转换器变成数字,测得冷端温度,用补偿法再计算出温度值,送到显示器显示。如果温度超过上限设置,下限设置则蜂鸣器报警,且LED 灯变红。 3.硬件设计 3.1热电偶放大器设计 冷端补偿专用芯片MAX6675的温度读取 芯片MAX6675采用标准SPI串行外设总线与MCU接口,MAX6675只能作为从设备。 温度值与数字对应关系为:温度值=1023.75×转换后的数字量/4095 3.2热电偶冷端温度补偿方法及电路 冷端补偿法:测冷端温度补偿法再计算出温度值送到显示器 (循环) LCD显示(循环)ASC码 电路: 3.3ADC电路 由MAX6675完成AD转换。 3.4稳压电源电路 学生电源。 3.5微处理器 STC52单片机,芯片MAX7765;按键;显示系统采用四位共阳极数码管7SEG-MPX4-CA,报警电路由PNP型三极管Q1和蜂鸣器构成。 3.6总体电路原理图

实验二十一__热电偶的原理及现象实验

热电偶的原理及现象 一、实验目的:了解热电偶测温原理。 二、基本原理:1821年德国物理学家赛贝克(T?J?Seebeck)发现和证明了两种不同材料的导体A和B组成的闭合回路,当两个结点温度不相同时,回路中将产生电动势。这种物理现象称为热电效应(塞贝克效应)。 热电偶测温原理是利用热电效应。如图21—1所示,热电偶就是将A和B二种不同金属材料的一端焊接而成。A和B称为热电极,焊接 的一端是接触热场的T端称为工作端或测量端, 也称热端;未焊接的一端处在温度T0称为自由端 或参考端,也称冷端(接引线用来连接测量仪表的图21—1热电偶 两根导线C是同样的材料,可以与A和B不同种材料)。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,并且有相应的分度表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。热电偶一般用来测量较高的温度,应用在冶金、化工和炼油行业,用于测量、控制较高的温度。 本实验只是定性了解热电偶的热电势现象,实验仪所配的热电偶是由铜—康铜组成的简易热电偶,分度号为T。实验仪有二个热电偶,它们封装在悬臂双平行梁上、下梁的上、下表面中,二个热电偶串联在一起,产生热电势为二者之和。 三、需用器件与单元:机头平行梁中的热电偶、加热器;显示面板中的F/V表(或电压表)、-15V电源;调理电路面板中传感器输出单元中的热电偶、加热器;调理电路单元中的差动放大器;室温温度计(自备)。 四、实验步骤: 1、热电偶无温差时差动放大器调零:将电压表量程切换到2V档,按图21—2示意接线,检查接线无误后合上主、副电源开关。将差动放大器的增益电位器顺时针方向缓慢转到底(增益为101倍),再逆时针回转一点点(防电位器的可调触点在极限端点位置接触不良);再调节差动放大器的调零旋钮,使电压表显示0V左右,再将电压表量程切换到200mV档继续调零,使电压表显示0V。并记录下自备温度计所测的室温tn。

热电阻温度计和热电偶温度计的比较与使用_许小华

热电阻温度计和热电偶温度计的比较与使用Ξ 许小华 (江苏省盐城技师学院,江苏盐城 224002) 摘 要:温度的测量是保证工业生产正常进行、确保产品质量和安全生产的关键环节。热电偶温度计及热电阻温度计在工业生产中应用广泛。本文主要对这两种温度计的工作原理、特点、选择及安装故障排除等作比较,以便于人们熟悉两种温度计的使用。 关键词:热电偶温度计;基本原理;选择;安装;注意事项 温度是表示物体冷热程度的物理量,温度的测量是保证化工生产实现稳产、高产、安全、优质、低消耗的关键之一。温度不能直接测量,只能借助于冷热不同的物体之间的热变换,以及物体的某些物理性质随冷热程度不同而变化的特征间接测量。 利用热平衡原理,我们可以选择某一物体同被测物体相接触来测量它的温度,当两者达到热平衡状态,选择物体与被测物体的温度相同,通过对选择物体的物理量的测量,便可得到被测物体的温度数值。其中,热电阻温度计和热电偶温度计在化工产业中广泛应用,但它们有各自的使用特点,下面从几个方面进行比较。 1 基本原理比较 两种温度计都属于接触式温度测量仪表。 1.1 热电偶温度计 热电偶温度计是根据热电效应来测量温度的。在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电势后,即可知道被测介质的温度。 1.2 热电阻温度计 热电阻温度计是利用导体或半导体的电阻值随温度变化的性质来测量温度的。大家知道,金属导体的电阻值是随温度的变化而变化的。实际证明,大多数金属在温度每升高1℃时,其阻值要增加0.4%~0.6%,热电阻温度计就是把温度变化所引起的导体电阻的变化,通过测量电路(电桥)转换成电压(毫伏)信号,然后送至显示仪表以指示或记录被测温度的。 由上可知,两种温度计的测量原理是不同的。热电偶温度计是把温度的变化通过测温元件—热电偶转化为热电势的变化来测量温度的;而热电阻温度计则是把温度的变化通过测温元件—热电阻转换为电阻值的来测量温度的。 2 结构、特点比较 2.1 结构比较 热电偶温度计外形很多,但各种热电偶的基本结构通常均由热电极、绝缘套管、保护套管和接线盒等主要部分构成。热电偶温度计测量精度高,测量范围广,常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。需冷端温度补偿。在低温段测量精度较低,一般适用于测量500℃以上的温度。 2.2 使用特点比较 对于500℃以下的中、低温利用热电偶进行测量,有时就不一定适合。例如在100℃时,热电偶的热电势仅为0.645m v,如此小的热电势,对电位差计的放大器和抗干扰措施要求很高,仪表维修也困难。另外,在较低的温度范围内,由于冷端温度变化和环境温度所引起的相对误差就显得很突出,且不易得到全补偿。所以在中、低温区,采用热电阻温度计测量是很适宜的。目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。热电阻温度计的主要特点是测量精度高,性能稳定,其中铂热电阻的测量精度最高。热电阻通常和显示仪表、记录仪和变送器配套使用。它可以直接测量各种生产过程中从-200至+600范围内的液体、蒸汽和气体及固体表面的温度。 这两种温度计的共同特点是都构造简单,使用方便。都便于远传、自动记录和集中控制,因而在化工生产中应用极为普遍。下面是我国已定型生产的几种温度计。 工业常用热电偶 热电阻类型测温范围℃分度号 铂铑30-铂铑6300~1600B 铂铑10-铂-20~1300S 镍铬-镍硅-50~1000K 镍铬-铜镍-40~800E 铁-铜镍-40~700J 铜-铜镍-40~300T w zp型铂电阻-200~420P t100 w zc型铜电阻-150~100Cu50 65内蒙古石油化工 2009年第23期 Ξ收稿日期:2009-07-14 作者简介:许小华(1970-),女,江苏盐城人。讲师,学士,主要从事化学技术应用的研究。

基于单片机的数码管显示的K型热电偶温度计的设计与仿真

武汉理工大学毕业设计(论文) 基于单片机的数码管显示的K型热电偶温度 计的设计与仿真 学院(系): 信息工程学院 专业班级: 信息工程xxxx班 学生姓名: xx 指导教师: xx

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包括任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名: 年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士论文评选机构将本学位论文的全部或部分内容编入有关数据进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于1、保密囗,在年解密后适用本授权书 2、不保密囗。 作者签名:年月日 导师签名:年月日

摘要 本文主要介绍了基于热电偶温度传感器的测温系统的设计。利用转换芯片MAX6675和k型热电偶,将温度信号转换成数字信号,通过模拟SPI的串行通信方式输送数据,在通过单片机处理数据,最后由数码管显示数据。 本文采用了带有冷端补偿的温度转换芯片MAX6675、K型热电偶、89C51单片机、数码管等元器件设计了相应温度采集电路、温度转换电路、温度数码管显示电路。结合硬件电路给出了相应的软件设计,测温精度可达到0.25℃。本系统的工作流程是:首先热电偶采集温度,数据经过MAX6675内部电路的处理后送给单片机进行算法处理,最后通过数码管电路显示出测量温度。本设计最后对系统进行了proteus的调试和仿真,实现了设计的要求。 关键词温度传感器热电偶热时间常数冷端补偿

热电偶测温基本原理

1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1)

在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补偿导线的原因, 2.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

热电偶温度计的设计

热电偶温度计的设计 Xxx xxxxxxxx 计算机科学与工程学院 计算机科学与技术xxxxx 班 学号:xxxxxx 邮编:xxxxx 摘要 热电偶是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度。 在本实验中利用点热偶测量温度,其基本原理就是热电效应。将两种不同的金属两端分别连接起来,构成一个闭合回路,一端加热一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生。因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计测量温度。 关键字 热电偶,温度差,电动势,水浴锅 前言 在做热电偶温度计设计这一实验中时,了解了热电偶和温度差现象, 引发了我对它的兴趣,经过自己的查阅资料成功设计出该实验的设计 方案。 实验仪器介绍 铜- 康铜温差电偶、数字电压表、水浴锅、保温杯 实验原理 1)温度差现象 把两种不同的导体(称为热电偶丝材或热电极)两端接合连接成回路,并使两接点处于不同温度,则回路中就产生电动势。这种现象称为塞贝克效应(热电效应)。这种电动势与两接点的温度及两材料性质有关,所以称为热电动势温差电现是由温差而引起电动势以及由电流而引起吸热和放热的现象,又称热电现象。它包括塞贝克、珀耳帖及汤姆孙等三个效

应。 塞贝克效应将两个不同导体(或半导体)两端相连,组成一回路,当两个接头处在不同温度时,在回路中有电动势产生的现象。1821 年由德国物理学家T. 塞贝克发现。这电动势称为温差电动势。金属的塞贝克效应常被应用于测量温度,而半导体的塞贝克效应常可被用来将热能直接转化成电能,即制成半导体温差发电器。 珀耳帖效应当有电流通过由两种不同材料组成的回路时,在两种材料的接头处会发生吸热或放热的现象。1834年由法国物理学家J. 珀耳帖发现。汤姆孙效应当有电流流过存在温度梯度的导体(或半导体)时,除焦耳热外,还会产生附加的吸热或放热的现象。1856 年由英国物理学家W.汤姆孙发现,称为汤姆孙效应。 热电偶 是利用温差电现象制成的一种元件。利用两种能产生显著温差电现象的金属丝(如铜和康铜)焊接而成。温差电动势与温差的关系通常用幂函数表示,在常温范围内,要求准确度不太高时,可以取一级近似,写为 E=a+bt,式中,a 取决于参考点温度,b 称为温差系数,其大小决定了组成电偶材料的性质。热电偶就是由两种不同的金属材料焊接而成。其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为参考端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电动势。 使用时通常将一端(参考端)保持在一定的恒定温度(如0℃或

热电偶测量原理

热电偶测量原理 摘要:温度,无论是在工业还是农业生产过程中都属于很普遍又很重要的指标。测量温度信号使用各种类型的温度传感器实现,如热电偶(TC)、热电阻(RTD)、热敏电阻(NTC)等。本文主要介绍热电偶测量原理及其类型,以及对热电偶选取的简单介绍。 一、何为热电偶 两种不同材料的导体或半导体(通常称为热点极)两端接合(接合点A与B)形成回路时候,当两端的接合点T A≠T B时,在回路中就会产生电动势,通过温度差变化引起电动势的变化称为热电效应,该电动势又被称为热电势,如图 1所示。由于该热电势是由两种不同的导体材料产生的,又称之为热电偶。由热电偶的定义可以发现,热电偶可将温度直接转化电信号,使得测量可以很容易简单的进行。 图 1 热电效应原理 二、热电偶类型 对于热电偶热电势的产生需要达到如下条件: 1.两种不同材料的导体或半导体; 2.温度差的产生,即TA≠TB; 改变T A(称之为测量端,也叫热端)结点温度时,保持T B(称之为参考端,也叫冷端)处于一恒温状态,就能通过热电势与温度关系得出该两种材料所形成的热电偶分度表,由于热电势指的是E AB(T A,T B),两端接合点温度差所对应的电势差有关,而温度差相同但温度段不同时对应的信号大小也是不一致的,例如0~50℃和50~100℃的温度差相同,但信号大小却是不相同,为了准确测量温度信号就必须把其中一头的温度固定下来,通常分度表的T B一般为0℃。所以从理论上讲,任何两种导体都可以配制为热电偶,但得到的并不全是满足测量需求的,如测温精度、测温范围、测温瞬变程度等。在多年的时间测试了许多种热电材料组合的热电特性,经过百多年的发展已经对产品的规格及性能都已标准化。目前常用的热电偶类型有8种,S、R、B、E、T、J、K、N。其中S、R、B属于贵金属材料热电偶;E、T、J、K、N属于廉金属材料热电偶。对于热电偶类型所选用的材料均可在网上找到对应资料。 对于不同型号类型热电偶拥有自己所测量的最优温度区间,将在后续选取中进一步介绍。 三、热电偶测量原理 四个热电偶基本经验定律: 1.均质导体定律:由同一种均质材料两端焊接组成闭合回路时,无论导体两端及其截面温度如何分布,均不产生接触电势,而温差电势相互抵消,总电势为零; 2.中间导体定律:在热电偶回路中接入中间导体(第三导体),只要中间导体两端温度相同,中间导体的引入对热电偶回路的总电势没有影响;

热电偶测温原理

热电偶测温原理 教育知识 热电偶测温原理与检定 前言 热电偶是热电效应理论的具体应用,它在温度测量中得到了广泛的应用。热电偶具有结构简单,容易制造,使用方便和测量精度高等优点。 本论文阐述了热电偶的测温原理、热电偶的安装使用方法以及热电偶检定等方面,特别重点讨论了热电偶的测温原理和检定方法,以便能重点突出本论文的写作目的及观点。通过撰写此论文,使自己能更进一步地掌握和熟悉这些关于热电偶的知识点,为以后在工作岗位上的实践和对热电偶进一步的讨论中打下坚实而有力的基础。 撰写人:王彭 2006年1月12日 摘要:热电偶的测温原理是将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 关键词:原理,使用,检定,实例 热电偶测温原理与检定 第一章热电偶测温原理及正确使用 第一节热电偶的测温原理 在1821年德国医生塞贝克在实验中发现热电效应以来,经珀尔帖、汤姆逊以及开尔文等科学家的大量研究,热电效应理论得到了不断的发展,并日趋完善。热电偶是热电效应的具体应用之一,它在温度测量中得到了广泛的应用,热电偶具有结构简单、容易制造、使用方便和测量精度高等优点。可用于快速测温、点温测量和表面测量等,但是热电偶也存在着不足的地方,如使用的参考端温度必须恒定,否则将歪曲测量结果;在高温或长期使用中,因受被测介质或气氛的作用(如氧化、还原等)而发生劣化,降低使用寿命。尽管如此,热电偶

仍在工业生产和科研活动中起着举足轻重的作用。下面我们从三个热电效应的阐述中来讨论热电偶的测温原理。 一、塞贝克效应和塞贝克电势 热电偶为什么能用来测量温度呢?这就是从热能和电能的相互转化的热电现象说起。在1821年,塞贝克通过实验发现一对异质金属A、B组成的闭合回路(如图1—1)中,如果对接点a加热,那么,a,b两接点的温度就会不同,温度不同,就会有电流产生,使得接在电路中的电流表发生偏转。这一现象现今称为温差电效应或塞贝克效应,相应的电势称为温差热电势或塞贝克电势,它在热电偶回路中产生的电流称为热电流。A、B称为热电极,接点a是用焊接的方法连接一起的,测温时,将它置于被测温度场中,称为测量端或者工作端,接点b一般要求恒定在某一温度称为参考端或自由端。 A A T a b T0 图1—1塞贝克效应示意图 不同的导体材料的电子密度不同,即使相同的导体材料,温度不同,其电子密度也不相同,当异质金属A、B组成闭合回路,由于接点a、b的温度不同(设T>T0),则同一导体温度高的地方自由电子密度大,温度低的地方自由电子密度小,即NA,T>NA,T0;NB,T>NB,T0。由于两金属导体的自由电子密度不同(设NA,T>NB,T;NA,T0>NB,T0),所以在闭合回路中,自由电子密度大的要向自由电子密度小的区域扩散,这样在回路中就产生了“净”电荷流动,即回路中有电动势eAB,这就是产生塞贝克电动势原因。实验证明,当热电极材料一定后,则热电势仅与两接点的温度有关,即: dEAB(T,T0)=SABdT (1—1) 式中:SAB——热电势率或塞贝克系数,其随热电极材料和两接点温度而定。 当两接点的温度分别为T,T0时,回路的热电势为: EAB(T,T0)= SABdT=eAB (T)- eAB (T0) (1—2) 式中:eAB (T),eAB (T0)——接点a,b的分热电势或分塞贝克电势 式(1—2)中角标A、B表示不同的热电极材料,按正极写在前,负极写在后的顺序排列。当温度T>T0时,eAB(T)与总电动势的方向一致,eAB (T0)与总热电动势的方向相反。如果接点的分热电势角标颠倒,它不会改变分热电势的大小,而改变热电势的方向,即: eAB (T0)=- eBA(T0) (1—3) 代入式(1—2)得: EAB(T,T0)= eAB (T)+ eBA(T0) (1—4) 由此可知,热电偶回路的总热电动势的大小仅与热电极的材料和两接点的温度有关,与热电极中间温度分布无关。 对于已定的热电偶,当其参考端温度T0恒定时,eAB(T0)为一常数,则热电势EAB(T,T0)仅是测量端温度的函数,即:

热电偶测温基本原理

A,B 两种导体,一端通过焊接形成结点,为工作端,位于待测介质。另一端接测温仪表,为参考端。为更好地理解下面的内容,我们将以上测温回路中形成的热电动势表示为EAB(T1,T0),理解为:A、B两种导体组成的热电偶,工作端温度为T1,参考端温度为T0,形成的热电动势为EAB(T1,T0)。 需要特别强调的是:热电偶测温,归根结底是测量热电偶两端的热电动势。测量仪表能够让我们看到温度数值,是因为它已经将热电动势转换成了温度。 图中,工作端温度T1, A、B与C、D连接处温度为T2,测量仪表端(参考端)温度为T0。 我们可以把总回路的总电动势E 分成两段热电动势的和,即A、B为一段,热电动势为EAB(T1,T2),C、D为另一段,热电动势为ECD(T2,T0), 即: E= EAB(T1,T2)+ ECD(T2,T0) (热电偶中间导体定律) (1) 在上图中,如果C、D的材质和A、B完全一样,即C即为A,D即为B,相当于热电偶A、B 在T2(中间温度)处产生了一个连接点,此时,回路总电势为: E= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (热电偶中间温度定律) (2) 从式(2)我们可以看出,只要是相同的热电偶,中间产生了连接点,则总电势与连接点的温度(中间温度)无关,而只与工作端和参考端的温度有关。这正是我们希望得到的。我们在热电偶布线中,不需要考虑中间有没有连接点,也不需要考虑连接点的温度,而是和一根热电偶连接到介质和测量仪表一样。 再来比较式(2)和式(1)。如果我们能找到某种材料C、D,它能满足: ECD(T2,T0)= EAB(T2,T0) (3 ) 则式(1)成为: E= EAB(T1,T2)+ ECD(T2,T0)= EAB(T1,T2)+ EAB(T2,T0)= EAB(T1,T0) (4) 满足式(3)的材料C、D我们称为热电偶A、B的补偿导线。 式(4)还告诉我们,使用了补偿导线,我们将T2延伸到了T0,但最后我们的测量结果与T2无关,这样我们也可以理解为,因为我们使用了导线C、D,是它补偿了T2处连接所产生的附加电势,而使得我们最终测量不需要再考虑T2,这也是C、D为什么叫补

热电阻温度计的结构和原理

ZYl200A智能型全自动新型墙体砖液压成型机是中冶重工在ZYl200机型的基础上开发出的一款高端产品,该产品吸收了ZYl200机型的技术优点,创新设计采用进口工业机器人码垛,配备柔性夹砖机械手,减少了码砖的中间环节,大大提高了生产效率。 其优点如下: 1、循环周期9~13秒,生产效率高,—条线年产标砖6000万块。 2、蒸养车可码放砖坯16层,有效利用蒸压釜,节约蒸压能耗23%。 3、整机布局结构紧凑,占地面积小,能节省土建投资成本达28%。 4、抓坯和码垛定位精度高,减少中间周转过程,提高制品的成品率。 5、自动化程度高,操作简单方便,实现单机单人操作。

热电阻温度计的结构和原理? 热电阻是近年来发展起来的一种新型半导体感温元件。由于它具有灵敏度高、体积小、重量轻、热惯性小、寿命长以及价格便宜等优点,因此应用非常广泛。负系数热敏电阻热敏电阻与普通热电阻不同,它具有负的电阻温度特性,当温度升高时,电阻值减小 热敏电阻的阻值---温度特性曲线是一条指数曲线,非线性度较大,因此在使用时要进行线性化处理,线性化处理虽然能改善热敏电阻的特性曲线,但比较复杂。热敏电阻的应用是为了感知温度为此给热敏电阻以恒定的电流,测量电阻两端就得到一个电压,然后就可以求得温度。如能测得热敏电阻两端的电压,再知道参数和系数K,则可计算出热敏电阻的环境温度,也就是被测的温度。这样就把电阻随温度的变化关系转化为电压温度变化的关系了。电阻温度计就

是把热敏电阻两端电压值经A/D 转换变成数字量,然后通过软件方法计算得到温度值,再通过进行显示。 热电阻温度计的工作原理 热电阻 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 1、热电阻测温原理及材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 2、热电阻的类型 1)普通型热电阻 从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。 2)铠装热电阻 铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。 3)端面热电阻 端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 4)隔爆型热电阻 隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla--B3c级区内具有爆炸危险场所的温度测量。

热电偶温度计的制作与校正

热电偶温度计的制作与校正 1.了解热电偶温度计的测温原理 2.学会热电偶温度计的制作与校正方法 3.掌握电位差计的原理和使用方法 1. 热电偶原理 将两种不同材质的金属导线连接成闭合回路,如果两接点的温度不同,由于金属的热电 效应,在回路中就会产生一个与温差有关的电动势,称为温差电势。在回路中串接一毫伏表, 就能粗略地测出温差电势值。如下图: 温差电势的大小只与两个接点的温差有关,与导线的长短粗细和导线本身的温度分布无 关。这样一对导线的组合就称热电偶温度计。简称热电偶。 实验表明,在一定温度范围,温差电势E与两接点的温度T , T存在着函数关系E=F(T, 00 T), 如果一个接点T(通常指冷端)的温度保持不变,则温差电势就只与另一个接点T(通0 常指热端)的温度有关,即E=F(T) ,当测得温差电势后,即可求出另一个接点(热端)的

温度。 为了增加温差电势,提高测量精度,可将几个热电偶串联成热电堆,如下图:热电偶示意图热电堆示意图 2、热电偶的标定 将热电偶做为温度计,必须先将热电偶的温差电势与温度值T之间的关系进行标定。 1 一般不用内插式计算,而是用实验方法,用表格或T-E(或E-T)特性曲线形式表示。标定 1方法,一般采用:?固定点法,即测量已知沸点或熔点温度的标准物质在沸点或熔点时的温 2差电势值。 ?标准热电偶法,将待标热电偶与标准热电偶一起置于恒温介质中,逐点改变 恒温介质的温度,待热电偶处于热平衡状态下测出每一点的温差电势。热电偶的T-E特性曲线如下图: 3、热电偶的分类 热电偶的种类繁多,各有其优缺点。可根据不同的用途选择不同型号的热电偶。目前我

相关主题
文本预览
相关文档 最新文档