当前位置:文档之家› Heavy metal adsorbents mercapto and amino functionalized

Heavy metal adsorbents mercapto and amino functionalized

Heavy metal adsorbents mercapto and amino functionalized
Heavy metal adsorbents mercapto and amino functionalized

Colloids and Surfaces A:Physicochem.Eng.Aspects 426 (2013) 98–105

Contents lists available at SciVerse ScienceDirect

Colloids and Surfaces A:Physicochemical and

Engineering

Aspects

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c o l s u r f

a

Heavy metal adsorbents mercapto and amino functionalized palygorskite:Preparation and characterization

Xuefeng Liang a ,b ,c ,Yingming Xu b ,c ,?,Xin Tan a ,?,Lin Wang b ,c ,Yuebing Sun b ,c ,Dasong Lin b ,c ,Yang Sun b ,c ,Xu Qin b ,c ,Qian Wang b ,c

a

School of Environmental Science and Engineering,Tianjin University,Tianjin,300072,PR China

b

Key Laboratory of Original Environmental Quality of MOA,Agro-Environmental Protection Institute of Ministry of Agriculture,Tianjin,300191,PR China c

Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety,Tianjin,300191,PR China

h i g h l i g h t s

?Mercapto and amino groups were

grafted on palygorskite in high speed shear process.

?Surface modi?cation took place between silanol of palygorskite and organosilanes.

?Surface modi?cation can increase sorption amounts of heavy metals signi?cantly.

g r a p h i c a l

a b s t r a c t

Palygorskite was functionalized by mercapto and amino groups respectively in the high-speed shear process based on the rheological properties.The ?bers like bundles of laths in natural palygorskite became dispersed after high-speed shearing and individual ?bers appeared.Then organosilanes were introduced on the surface of the single ?bers to complete the modi?cation.This method was more ef?cient than the traditional surface grafting reaction in organic

solvents.

a r t i c l e

i n f o

Article history:

Received 2February 2013

Received in revised form 7March 2013Accepted 9March 2013

Available online 16 March 2013

Keywords:Palygorskite Mercapto Amino

Functionalization Characterization Sorption

a b s t r a c t

Palygorskite was functionalized by mercapto and amino groups respectively in the high-speed shear process based on the rheological properties to enhance its sorption amounts and selectivity for heavy metals.The mercapto and amino functionalized samples were characterized through solid-state 29Si CP/MAS NMR,TEM,SEM,TG,XRD,surface area analysis and zeta potentials.The surface modi?cation took place in the high-speed shear process between the silanol groups of palygorskite and organosilanes.The reaction produced a continuous coating of individual ?bers of palygorskite.The crystal structure of palygorskite did not change signi?cantly after surface modi?cation.The isoelectric points shifted to lower pH values and the surface areas decreased due to the bulk size of the functional ligands.The sorption of Pb 2+,Cd 2+and Cu 2+on the samples was studied in batch experiments and it was found that the surface modi?cation could obviously increase the sorption capacities for Pb 2+,Cd 2+and Cu 2+.The mercapto and amino functionalized palygorskite could provide a potential remedy for heavy metal contamination in aqueous environment.

? 2013 Elsevier B.V. All rights reserved.

?Corresponding authors at:No.31,Fukang Road,Nankai District,Tianjin,PR China.Tel.:+862223618061;fax:+862223618060(Y.Xu);No.92,Weijin Road,Nankai District,Tianjin,PR China.Tel.:+862227403661;fax:+862227404177(X.Tan).

E-mail addresses:dingandliang@https://www.doczj.com/doc/d418220922.html, (Y.Xu),tanxin@https://www.doczj.com/doc/d418220922.html, (X.Tan).

1.Introduction

At present heavy metals as water pollutants and soil contami-nates are a worldwide concern due to their toxic effects on humans.Numerous efforts are being made to develop methods for the removal of heavy metals from aqueous solutions such as membrane separation,ion exchange,precipitation and adsorption [1].Among

0927-7757/$–see front matter ? 2013 Elsevier B.V. All rights reserved.https://www.doczj.com/doc/d418220922.html,/10.1016/j.colsurfa.2013.03.014

X.Liang et al./Colloids and Surfaces A:Physicochem.Eng.Aspects426 (2013) 98–10599

these methods,based on its simplicity,low cost,high ef?ciency and reversibility,adsorption could be a preferential choice.

Natural clays including montmorillonite[2,3],kaolinite[4,5] and sepiolite[6,7]can adsorb heavy metal ions.However,there are still some limitations such as limited adsorption capacity,rel-atively small metal binding constants and low selectivity to heavy metal types.In the recent years,surface modi?cation of clay min-erals with reagents containing metal chelating groups have been explored in an effort to enhance the heavy metal binding constants and selectivity[8–12].

The approaches for the surface modi?cation of clays include intercalation[13–15]and grafting[9,11].The intercalation refers to a process that a guest molecule or ion is inserted into the inter-layer space by adsorption or ion exchange[16].Grafting is a process that links the inorganic and organic components via strong bonds such as covalent or ionic-covalent to obtain functionalized clays [17,18].Silanol groups of clays can react directly with sililylating reagents to form covalent bonds.The traditional grafting process is performed by mixing clays and organic compositions in the selected organic solvents and heating[18].Another method is atom trans-fer radical polymerization methods[19].Polyacrylamide grafted attapulgite was prepared via surface-initiated atom transfer radical polymerization for removal of Hg2+[20].

Adsorption of aqueous metals can be realized by employing adsorbents that contain functional groups possessing metal binding ability such as amino[21],carboxyl[22],phosphoric[23],mercapto [24],amidoxime[25].Grafting of amino or mercapto group by reac-tion with the silanol groups onto the surface of clay mineral is of particular interest due to the chelating effect toward heavy metal cations[26,27].

Palygorskite,also known as attapulgite,is a hydrous magnesium alumina silicate with theoretical formula Mg5 (Si,Al)8O20(OH)2(OH2)4·4H2O.It can remove Pb2+,Ni2+,Cu2+from aqueous solution[28]and appears as an effective amendment to stabilize soil polluted with Pb,Cu,Zn or Cd[29].The paly-gorskite?bers aggregates decrease and single?bers appear in the high-speed shear process.

In this paper,natural palygorskite was functionalized by mer-capto and amino group respectively and applied for the sorption of Pb2+,Cd2+and Cu2+in aqueous solution.The physic-chemical prop-erties of the functionalized samples were characterized in detail.

2.Experiments

2.1.Preparation of mercapto and amino functionalized palygorskite

Palygorskite was obtained from Jiangsu Jiuchuan Nano-material Technology Co.,Ltd.(XYPAL in short).3-mercaptopropyltrimethoxysilane(MPTMS,>98%)and3-aminopro-pyltrimethoxysilane(APTMS,>98%)were purchased from Sigma–Aldrich.The palygorskite was used as received with-out any puri?cation.XYPAL is composed of1.21%CaO,10.43% Al2O3,1.54%Na2O,20.48%MgO,64.42%SiO2,0.11%K2O and0.89% Fe2O3.

Palygorskite sample(5g)was dispersed in deionized water (100mL)at the room temperature and then was stirred with a disperser(IKA T10basic ultra-turrax)at13,500rpm for5min to form an aqueous gel.MPTMS or APTMS(5g)was added to the gel and stirred at13,500rpm for15min.Then all the products were cured in an oven at80?C overnight.The products(XYPAL-SH and XYPAL-NH2in short,respectively)were puri?ed by several cycles of washing in dichloromethane and any residual organosilanes was removed by Soxhlet extraction over ethanol for24h.Finally,all the products were dried at70?C in a vacuum oven for12h.2.2.Characterization of mercapto and amino functionalized palygorskite

The sulfur and nitrogen contents were determined quanti-tatively via elemental analyses in a CNHS analyzer(Vario EL III,Elementar Analysensysteme GmbH).Solid state29Si cross-polarization magic angle spinning nuclear magnetic resonance (CP/MAS NMR)was performed on a Varian In?nity Plus300MHz equipped with a7.5mm chemagnetics probe in order to determine the covalent bonding of functional group to silicates structure.The NMR experiment was conducted under conditions of magic angle spinning at3.0kHz and a4.5?s90?pulse with a repetition delay of5s.Chemical shifts have been referenced to the corresponding nuclei in tetramethylsilane(TMS).TEM micrographs were collected via JEOL JEM2010FEF?eld emission transmission electron micro-scope operating at200kV.The samples were dispersed in ethanol and then deposited on carbon coated copper grids.The SEM Micro-graphs were characterized by LEO1530VP?eld emission scanning electron microscope(LEO Electron Microscopy Inc.)at an accel-eration voltage of10.0kV and a working distance of10mm at high vacuum mode.The TG analyses were carried out in air atmo-sphere in the temperature range25–750?C at a heating rate of 10?C min?1by a thermal analyzer SDT Q600(TA instruments,USA). X-ray diffraction(XRD)patterns were recorded on Bruker D8Focus X-ray diffractometer using Cu K?radiation at a scanning speed of 8?min?1over2?from6?to40?operated at40kV and40mA.N2 adsorption–desorption isotherm measurements were performed at77K with a surface area and pore size analyzer(Autosorb iQ-MP,Quantachrome Instrument Corp.)in the relative pressure(P/P0) range from about0.05–0.995.The samples were dried and out-gassed at70?C for5h under vacuum before N2adsorption.The zeta potentials of1.0g L?1suspensions in the pH range of2–10 were conducted using a zeta potential instrument(Zeta meter3.0, Zeta-Meter Inc.).

2.3.Adsorption experiments

Batch adsorption experiments of heavy metal ions were con-ducted to determine the adsorption capacities.The adsorbents samples(0.05g)were put into100mL centrifugal tubes,and then ?lled with50mL Pb(NO3)2,Cd(NO3)2or Cu(NO3)2solutions.The initial concentrations of Pb2+,Cd2+and Cu2+were about100,50and 50mg L?1,respectively.The solutions were prepared by dissolving the corresponding heavy metal nitrates into deionized water and the pH values were not adjusted.The centrifugal tubes were shak-ing at20?C for6h in a thermostatic water bath shaker.Then the suspensions were centrifuged at a speed of13,000rpm.The super-natants were collected by?ltering through a0.45?m syringe?lter to determine the equilibrium concentrations by atomic absorp-tion spectrometer(Solaar M6,ThermoElemental).The adsorption capacities were calculated from the decreases of heavy metal ions concentrations.

3.Results and discussion

3.1.Preparation of mercapto and amino functionalized palygorskite

The sulfur and nitrogen contents calculated from the elemen-tal analyses data were 2.72and 2.54mmol g?1for XYPAL-SH and XYPAL-NH2and the contents were similar to the tradi-tional surface grafting reaction in organic solvents,indicating the surface modi?cations in high-speed shear process were much more ef?cient.It can reduce the cost of energy and time.

100X.Liang et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 426 (2013) 98–

105

Fig.1.Schematic illustrations for the surface modi?cation.

The surface modi?cation process can be represented by Fig.1.The ?bers in the natural palygorskite are like bundles of laths (shown in Fig.1a),and they became dispersed after shearing at high speed.Then organosilanes were introduced on the surface of the ?bers to complete the modi?cation (Fig.1c).

3.2.Characterization of palygorskite and functionalized samples

3.2.1.29Si

CP/MAS NMR

Solid-state 29Si CP/MAS NMR is a reliable method for quantita-tively characterizing the nature of various solid surfaces.Regardless of the materials series and their functional group loading,distinct resonances characteristic of siloxane [Q n =Si(OSi)n (OH)4?n ,n =2–4]and organosilanes [T m =RSi(OSi)m (OH)3?m ,m =1–3]species could be observed [30].It can supply the evidences for the anchoring of mercapto or amino groups.

The spectrum of XYPAL shown in Fig.2was consisted of two well-resolved resonances.The resonance at ?90.84ppm was attributed to Si atoms sited at the center,which were located close to the Mg–OH groups and ?96.77ppm signal to Si atoms near the edge situated further away from the Mg–OH group.In addition to the typical resonances of Q n for the siloxane moieties of the lattice,new resonances for T 2and T 3at about ?57.81and ?66.39ppm for XYPAL-SH and ?58.67and ?65.86ppm for XYPAL-NH 2were detected respectively.Even though an accurate quantitative assess-ment is dif?cult due to cross polarization effects,it was apparent that the T 2resonance is much smaller than the T 3resonance,the lat-ter being indicative of cross-linked siloxanes.It can be concluded that most of the organosiloxane moieties are highly cross-linked to the walls of the mesoporous nanoparticles,in contrast to the products of classical grafting procedures,where the organosilox-ane moieties were typically anchored through a combination of lateral linkages and fewer direct bonds to the silica surface.The integral ratio of the inorganic palygorskite signals (Q region)to the organic silane signals (T region)was higher in XYPAL-NH 2than in XYPAL-SH,indicating that the content of organosilanes grafting on the surface of ?bers was higher in XYPAL-SH [31].The intensity ratio T 3to T 2signals was larger for XYPAL-NH 2(T 3/T 2=3.00)than XYPAL-SH (T 3/T 2=1.81),indicting that condensation was higher in XYPAL-NH 2and hydrolysis was more complete.

3.2.2.TEM and SEM

The TEM micrographs of different magni?cations in Fig.3A1and A2showed XYPAL ?bers having needle morphology of 30–50nm in diameter and 1–3?m in length [32].The ?brous crystals of XYPAL preferred to exist as aggregates or crystal bundles under the action of electrostatic and van der Waals’interactions [33].The borders of XYPAL ?bers were plain and regular,indicating the surfaces of the ?bers were smooth.After surface modi?cation,XYPAL-SH in Fig.3B and XYPAL-NH 2in Fig.4C also presented needle mor-phology,but the surface of palygorskite ?bers was covered with condensed silane discrete spheres of about 20nm in diameter.The

organic modi?er on the surface of the ?bers can weaken the inter-actions between palygorskite single crystals and isolate them to some extent.

As shown in Fig.4A1and A2,XYPAL was composed of many large crystal bundles and few single needle-like crystals.Individ-ual needles were generally assembled in bundles of ?bers long and about 50nm thick.The domains of parallel oriented ?bers were arranged by face-to-face contacts [34].This particle arrange-ment may be due to low magnitude of net electrostatic charge of the surface,the Vander Waals attraction predominates over the electrostatic repulsion.After surface modi?cation in the condi-tion of high-speed shear,for XYPAL-SH in Fig.4B and XYPAL-NH 2,the palygorskite crystal bundles were effectively disaggregated.The individual ?bers with a diameter of 20–40nm and a length of 1–2?m corresponding to the single crystals of palygorskite were obtained.The ?bers appeared disaggregated as almost

-30 -40-5 0 -60-7 0-8

-90-10

-11 0-12

XYPAL-SH

58.67

96.55

90.8966.39

57.81

96.4691.17

66.43

XYPALN H 2

96.77Chemic al Sh ift (ppm )

90.84

XYPAL

Fig.2.

29

Si CP/MAS NMR spectra of XYPAL,XYPAL-SH and XYPAL-NH 2.

X.Liang et al./Colloids and Surfaces A:Physicochem.Eng.Aspects426 (2013) 98–105

101

Fig.3.TEM of XYPAL,XYPAL-SH and XYPAL-NH2(A1:XYPAL,10,000×;A2:XYPAL,40,000×;B:XYPAL-SH,40,000×;C:XYPAL-NH2,40,000×).

individualized units due to the electrostatic repel of the surface organic composition.

3.2.3.TG/DTG

The thermogravimetric(TG)and derivative thermogravimet-ric(DTG)curves of XYPAL,XYPAL-SH and XYPAL-NH2are shown in Fig.5.Different mass losses were detected and the data were summarized in Table1.

The TG curves revealed the dehydration/dehydroxylation of palygorskite and the decomposition of organic modi?ers on the surfaces of palygorskite?bers.For XYPAL,The?rst step occurs at87.26?C with a mass loss of7.0%,attributed to zeo-lite water physically bonded to palygorskite on the external surface and in the structural channels[35].The second dehy-dration step occurred at188.14?C and a 3.6%mass loss was observed,which was assigned to the?rst coordinated water.A 5.8%and another3.0%mass losses were observed,which were attributed to the second coordinated water and hydroxyl groups [36,37].A minor mass loss about0.8%was also observed after 622.35?C.For XYPAL-SH and XYPAL-NH2,the mass losses in step I were obviously lower than that in XYPAL,indicating the more content of adsorbed water in XYPAL.In the temperature range of zeolite water loss,the organic modi?er was stable.The modi?er decomposition overlapped the dehydration step.The mass losses in step III for XYPAL-SH and XYPAL-NH2were higher than that in XYPAL.

Table1

TG data of XYPAL,XYPAL-SH and XYPAL-NH2.

Step Parameters XYPAL XYPAL-SH XYPAL-NH2

I mass loss(%)7.0 3.9 5.2

T(?C)87.375.982.4

II mass loss(%) 3.6 3.6 4.1

T(?C)188.1188.9197.8

III mass loss(%)– 4.9 4.2

T(?C)–344.7385.7

mass loss(%) 5.8 5.5 4.2

T(?C)454.5457.7518.2

IV mass loss(%) 3.0 3.8 2.9

T(?C)622.3632.0648.1

102X.Liang et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 426 (2013) 98–

105

Fig.4.SEM of XYPAL,XYPAL-SH and XYPAL-NH 2(A1:XYPAL,5000×;A2:XYPAL,20,000×;B:XYPAL-SH,20,000×;C:XYPAL-NH 2,20,000×).

3.2.

4.XRD

The XRD patterns of XYPAL,XYPAL-SH and XYPAL-NH 2are shown in Fig.6.Palygorskite shows an orthorhombic crystalline system [38]with Pn space group and the XRD indexes are listed in Table 2.The characteristic diffraction peak was found in all the three diffraction patterns at about 2?=8.3?,corresponding to (110)re?ections.The interlayer distance of the peak (110)can be attributed to the basal space of the palygorskite framework.The mineral palygorskite (Mg 5(Si,Al)8O 20(OH)2·8H 2O,JCPDS card No.31-0783)was detected by Jade 6.5.The characteristic peak positions and d -spacing of samples did not change obviously after surface modi?cation,indicating that the structure and crystallinity

W e i g h t (%)

D e r i v .W e i g h t (%/oC )

Temperature (oC)

Fig.5.TG and DTG curves of XYPAL,XYPAL-SH and XYPAL-NH 2.

of palygorskite were maintained in the functionalized samples.The surface modi?cation could decrease the aggregation of ?bers and slight decreases in the diffraction intensities were observed due to the less ordered orientation of palygorskite nano?bers after surface modi?cation.

3.2.5.Surface area and pore size analyses

All the isotherms in Fig.7A represented type II isotherm with a narrow H3type hysteresis loop according to the IUPAC classi-?cation [39].A summary of the surface properties of all samples is listed in Table 3.The amount of nitrogen adsorbed increased

10 15 20 25 30 35

40

(200

)XYPAL-N

H 2XYPAL-S

H

I n t e n s i t y (C P S )

2 ( )

XYPA

L

(110)

(13

0)

(040)

(310

)

(121)(102)

(400

)

Fig.6.XRD patterns of XYPAL,XYPAL-SH and XYPAL-NH 2.

X.Liang et al./Colloids and Surfaces A:Physicochem.Eng.Aspects426 (2013) 98–105103 Table2

XRD indexes of XYPAL,XYPAL-SH and XYPAL-NH2.

hkl XYPAL XYPAL-SH XYPAL-NH2

2theta Height d(?)2theta Height d(?)2theta Height d(?)

(110)8.3473810.608.3251410.628.3259210.62 (200)13.8159 6.4113.9142 6.3613.7743 6.42 (130)16.4152 5.4016.3559 5.4216.3941 5.40 (040)19.81102 4.4819.7759 4.4919.8392 4.47 (121)20.7954 4.2720.8548 4.2620.8168 4.26 (310)21.3955 4.1521.3542 4.1621.3946 4.16

a13.0513.0212.93

b17.7717.8918.47

c 5.25 5.22 5.12

Table3

N2adsorption analyses of XYPAL,XYPAL-SH and XYPAL-NH2.

Parameters XYPAL XYPAL-SH XYPAL-NH2

BET surface area(m2g?1)133.65578.96283.965

Total pore volume(mL g?1)0.7360.3840.700

BJH pore diameter(nm) 2.456 1.428 1.425 Micropore volume(mL)0.002–0.006 Micropore area(m2g?1) 6.152–14.713 External surface area(m2g?1)127.50378.96269.253 gradually with increasing relative pressure when P/P0<0.35,in which the adsorption and desorption lines completely coincided with each other,indicating a monolayer adsorption.It means that the adsorption of nitrogen occurred mainly in the micropores and formed a nitrogen monolayer[40].The amount of nitrogen adsorbed increased and small hysteresis loops are observed when P/P0>0.35,indicating the existence of meso and macropores in the palygorskite samples.

After surface modi?cation,the BET surface area decreased for XYPAL-SH and XYPAL-NH2.Such a reduction can be mainly attributed to the coating of the pores of the surface by organic functional groups which prevents the access of nitrogen molecules into some of the pores[36].Despite the reduction in surface area after functionalization,the considerable surface area retained by XYPAL-SH and XYPAL-NH2suggested that the functionalities were relatively accessible for heavy metal ion binding.The correspond-ing pore size distribution according to BJH theory is reduced(see Fig.7B).The broad pore size distributions in XYPAL-SH and XYPAL-NH2pointed to more inhomogeneous pore shapes than in natural palygorskite.All these observations and the reduction in pore vol-ume clearly demonstrate that the mercapto and amino groups are not just grafted to the outer surface or buried within the pore

-10

-8

-6

-4

-2

2

4

6

8

Z

e

t

a

p

o

t

e

n

t

i

a

l

(

m

V

)

walls of the palygorskite particles but that they are situated at the inner surface of the extended internal pore system to a large extent[41].

3.2.6.Zeta potentials

The natural palygorskite shows an isoelectric point(IEP)at pH 3.1in Fig.8.The zeta potential of XYPAL became increasingly neg-ative as the pH values of the suspension increased.The IEP of XYPAL-SH was2.5and the zeta potentials were slightly negative at pH>2.5.XYPAL-NH2maintained negative zeta potentials over the whole range of pH studied.The surface modi?cations offer an advantage for the removal of cations under wider environmental pH conditions.

0.0

0.2

0.4

0.6

0.8

0.00

0.00

0.00

0.01

0.01

0.02

V

o

l

u

m

e

@

S

T

P

(

m

l

/

g

)

Relative Pre ssure (P/P

)

P

o

r

e

v

o

l

u

m

e

(

c

c

/

g

)

d

V

(

d

)

(

c

c

/

n

m

/

g

)

Diam eter (nm)

Fig.7.Isotherms and BJH pore distribution of XYPAL,XYPAL-SH and XYPAL-NH2(A:isotherms;B:BJH pore distribution).

104X.Liang et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 426 (2013) 98–

105

Fig.9.Sorption capacities on XYPAL,XYPAL-SH and XYPAL-NH 2.

3.3.Sorption of Pb 2+,

Cd 2+

and

Cu 2+

on XYPAL,XYPAL-SH and

XYPAL-NH 2

The sorption capacities for Pb 2+,Cd 2+and Cu 2+

on XYPAL were

0.063,0.0134and 0.0844mmol g ?1,respectively.As shown in Fig.9,

surface modi?cation by mercapto or amino group can increase the sorption capacities signi?cantly.Rapid color changes of mer-capto functionalized samples from white to yellow were observed that occurred only a few minutes after the powder was contacted with Pb 2+and Cu 2+solutions [30].Mercapto and amino group are employed to modify the surface of palygorskite,due to its bond-ing ability with heavy metal ions.Pearson’s hard–soft,acid–base (HSAB)theory [42]essentially states that soft acids react faster,and form stronger bonds and more stable complexes,with soft bases and vice versa.Metal ions such as Hg 2+,Cd 2+,Ag +,etc.,which are classi?ed as soft acids,tend to bind preferentially with ligands con-taining S (e.g.mercapto groups),whereas the borderline acids (Pb 2+,Zn 2+,Cu 2+,Co 2+,etc.)prefer to bind to ligands containing N donor atoms.The absolute hardness parameters of mercapto and amino group as soft base are 4.1and 5.3,while the parameters of Pb 2+,Cu 2+and Cd 2+are 8.5,8.3and 10.3,respectively.

Additional data obtained from the literatures for analogous mercapto and amino functionalized samples are given in Table 4for comparison.They are prepared either by chemical grafting on the surface of porous materials or natural clays or by a one-step synthesis through condensation of silane and silane couple reagents.As shown in Table 4,the sorption capacities of mercapto or amino functionalized samples were not the biggest one.However,

Table 4

Comparison between maximum sorption capacities of different functionalized adsorbents.

Adsorbents samples

Content (mmol/g)

Sorption capacity (mmol/g)

References

Mercapto functionalized samples

Thiol-SAMMS

5.20Pb 0.36,Cd 0.63

[43]HBS-SH

3.27Pb 0.57,Cd 0.30[30]Thiol-montmorillonite 3.20Pb 0.35,Cd 0.24[44]SH-MCM-41 2.61

Pb 0.49

[45]

XYPAL-SH

2.72Pb 0.32,Cd 0.27,Cu 0.40

this work

Amino functionalized samples

Amine-nano carbon

0.81Pb 0.78,Cd 0.76,Cu 0.73[46]Amino-SBA-15

1.03Cu 0.25

[47]MCM-41-NH 2 1.90Pb 0.27,Cd 0.16[48]MCM-41-NH 2 1.47Pb 0.30,Cd 0.078[49]

XYPAL-NH 2

2.54

Pb 0.36,Cd 0.26,Cu 0.14

this work

in the preparation process in this work only natural palygorskite and silane were needed.The current work demonstrates that the functionalized palygorskite,prepared in a rapid,environmentally friendly and low-cost one-step synthesis that combines a high con-centration of binding sites with an expandable porous structure,exhibit the higher effectiveness ever observed for the capture of Pb 2+,Cd 2+and Cd 2+.

Additional experiments are currently underway to investigate the adsorption properties of functionalized palygorskite in sim-ulated wastewaters and polluted soils containing heavy metals.The competitive adsorption,the effects of variations in pH and ion strength on the sorption capacity and the thermodynamic param-eters ( H 0, S 0,and G 0)are currently being studied.

4.Conclusions

Palygorskite was functionalized by mercapto and amino groups respectively in the high-speed shear process.29Si CP/MAS NMR con?rmed that the surface modi?cation took place between the silanol groups of palygorskite and organosilanes.TEM indicated that the reaction produced a continuous coating of individual ?bers of palygorskite.The crystal structure of palygorskite did not change signi?cantly after surface modi?cation.The isoelectric points shifted to lower pH values and the surface areas decreased due to the bulk size of the functional ligands.The surface modi?-cation can obviously increase the sorption capacities for Pb 2+,Cd 2+and Cu 2+.

Acknowledgements

This research was supported by National Natural Science Foundation of China (Nos.21177068,40901154and 21107056),Program for Distinguishing Scholar and Innovative Team of MOA (2012-jcrc-xym),Natural Science Foundation of Tianjin (No.10JCY-BJC06300),Special Fund for Agro-scienti?c Research in the Public Interest (No.201203045)and Central Public Research Institutes Basic Funds for Research and Development (Agro-Environmental Protection Institute,Ministry of Agriculture).

References

[1]F.Fu,Q.Wang,Removal of heavy metal ions from wastewaters:a review,J.

Environ.Manage.92(2011)407–418.

[2]V.Dimos,K.J.Haralambous,S.Malamis,A review on the recent studies for

chromium species adsorption on raw and modi?ed natural minerals,Crit.Rev.Environ Sci.Technol.42(2011)1977–2016.

[3]S.V.Churakov,R.D?hn,Zinc adsorption on clays inferred from atomistic simu-lations and EXAFS spectroscopy,Environ.Sci.Technol.46(2012)5713–5719.[4]S.Sen Gupta,K.G.Bhattacharyya,Adsorption of heavy metals on kaolinite and

montmorillonite:a review,Phys.Chem.Chem.Phys.14(2012)6698–6723.[5]J.Hizal,R.Apak,W.H.Hoell,Modeling competitive adsorption of copper(II),

lead(II),and cadmium(II)by kaolinite-based clay mineral/humic acid system,Environ.Prog.Sustain.Energy 28(2009)493–506.

[6]A.Sheikhhosseini,M.Shirvani,H.Shariatmadari,Competitive sorption of

nickel,cadmium,zinc and copper on palygorskite and sepiolite silicate clay minerals,Geoderma 192(2012)249–253.

[7]S.Ansanay-Alex,C.Lomenech,C.Hurel,N.Marmier,Adsorption of nickel and

arsenic from aqueous solution on natural sepiolite,Int.J.Nanotechnol.9(2012)204–215.

[8]T.Bunhu,L.Tichagwa,Adsorption of methyl orange,Pb 2+and Cd 2+from

aqueous solution by composites of lignocellulose-montmorillonite modi?ed with methacryloxypropyl trimethoxysilane,Macromol.Symp.313–314(2012)146–156.

[9]M.Addy,B.Losey,R.Mohseni,E.Zlotnikov,A.Vasiliev,Adsorption of heavy

metal ions on mesoporous silica-modi?ed montmorillonite containing a grafted chelate ligand,Appl.Clay Sci.59–60(2012)115–120.

[10]G.Güc ?lü,E.Al,S.Emik,T.B.Iyim,S.?zgümüs ?,M.?zyürek,Removal of Cu 2+and Pb 2+

ions from aqueous solutions by Starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels,Polym.Bull.65(2010)333–346.[11]A.de Mello Ferreira Guimar?es,V.S.T.Ciminelli,W.L.Vasconcelos,Smectite

organofunctionalized with thiol groups for adsorption of heavy metal ions,Appl.Clay Sci.42(2009)410–414.

X.Liang et al./Colloids and Surfaces A:Physicochem.Eng.Aspects426 (2013) 98–105105

[12]P.Liu,T.Wang,Adsorption properties of hyperbranched aliphatic polyester

grafted attapulgite towards heavy metal ions,J.Hazard.Mater.149(2007) 75–79.

[13]D.E.Matthieu,M.L.Brusseau,G.R.Johnson,J.L.Artiola,M.L.Bowden,J.E.Curry,

Intercalation of trichloroethene by sediment-associated clay minerals,Chemo-sphere90(2013)459–463.

[14]F.Kooli,Pillared montmorillontes from unusual antiperspirant aqueous solu-

tions:characterization and catalytic tests,Microporous Mesoporous Mater.167 (2013)228–236.

[15]C.Kaemkit,P.Monvisade,P.Siriphannon,J.Nukeaw,Water-soluble chitosan

intercalated montmorillonite nanocomposites for removal of basic blue66and basic yellow1from aqueous solution,J.Appl.Polym.Sci.128(2013)879–887.

[16]B.K.G.Theng,Polymer–clay nanocomposites,in:B.K.G.Theng(Ed.),Develop-

ments in Clay Science,Elsevier,Amsterdam,2012,pp.201–241.

[17]N.Hüsing,Design of inorganic and inorganic-organic hybrid materials by

sol–gel processing–from nanostructures to hierarchical networks,in:P.Inno-cenzi,Y.L.Zub,V.G.Kessler(Eds.),Sol-Gel Methods for Materials Processing, Springer,Berlin,2008,pp.91–104.

[18]Y.Cohen,V.Nguyen,J.-D.Jou,N.Bei,W.Yoshida,Surface modi?cation of inor-

ganic oxide surfaces by graft polymerization,in:J.A.Wingrave(Ed.),Oxide Surfaces,CRC Press,New York,2001,pp.321–353.

[19]P.Liu,J.Guo,Polyacrylamide grafted attapulgite(PAM-ATP)via surface-

initiated atom transfer radical polymerization(SI-ATRP)for removal of Hg(II) ion and dyes,Colloids Surf.,A282–283(2006)498–503.

[20]A.Neaman,A.Singer,The effects of palygorskite on chemical and physico-

chemical properties of soils:a review,Geoderma123(2004)297–303. [21]J.Li,X.Miao,Y.Hao,J.Zhao,X.Sun,L.Wang,Synthesis,amino-functionalization

of mesoporous silica and its adsorption of Cr(VI),J.Colloid Interface Sci.318 (2008)309–314.

[22]K.K.Wong,C.K.Lee,K.S.Low,M.J.Haron,Removal of Cu and Pb by tar-

taric acid modi?ed rice husk from aqueous solutions,Chemosphere50(2003) 23–28.

[23]A.M.Puziy,O.I.Poddubnaya,V.N.Zaitsev,O.P.Konoplitska,Modeling of heavy

metal ion binding by phosphoric acid activated carbon,Appl.Surf.Sci.221 (2004)421–429.

[24]B.C.Mondal,A.K.Das,Use of6-mercapto purinylazo resin in chromium speci-

ation,Bull.Chem.Soc.Jpn.76(2003)111–114.

[25]K.Saeed,S.Haider,T.-J.Oh,S.-Y.Park,Preparation of amidoxime-modi?ed

polyacrylonitrile(PAN-oxime)nano?bers and their applications to metal ions adsorption,J.Membr.Sci.322(2008)400–405.

[26]C.Detellier,Preparation,characterization,and applications as heavy metals

sortants of covalently grafted thiol functionalities on the interlamellar surface of montmorillonite,Environ.Sci.Technol.29(1995)1318–1323.

[27]M.Jaber,J.Miehé-Brendlé,L.Michelin,L.Delmotte,Heavy metal retention by

organoclays:synthesis,applications,and retention mechanism,Chem.Mater.

17(2005)5275–5281.

[28]J.H.Potgieter,S.S.Potgieter-Vermaak,P.D.Kalibantonga,Heavy metals removal

from solution by palygorskite clay,Miner.Eng.19(2006)463–470.

[29]E.Alvarez-Ayuso,A.Garcia-Sanchez,Palygorskite as a feasible amendment to

stabilize heavy metal polluted soils,Environ.Pollut.125(2003)337–344. [30]X.Liang,Y.Xu,G.Sun,L.Wang,Y.Sun,X.Qin,Preparation,characterization of

thiol-functionalized silica and application for sorption of Pb2+and Cd2+,Colloids Surf.,A349(2009)61–68.

[31]N.Garciˇ?a,J.Guzmaˇ?n,E.Benito,A.Esteban-Cubillo,E.Aguilar,J.Santareˇ?n,

P.Tiemblo,Surface modi?cation of sepiolite in aqueous gels by using

methoxysilanes and its impact on the nano?ber dispersion ability,Langmuir 27(2011)3952–3959.

[32]M.P.S.Krekeler,S.Guggenheim,J.Rakovan,A microtexture study of

palygorskite-rich sediments from the hawthorne formation,southern Georgia, by transmission electron microscopy and atomic force microscopy,Clays Clay Miner.52(2004)263–274.

[33]J.Xu,J.Zhang,Q.Wang,A.Wang,Disaggregation of palygorskite crystal bundles

via high-pressure homogenization,Appl.Clay Sci.54(2011)118–123.

[34]A.Neaman,A.Singer,The effects of palygorskite on chemical and physico-

chemical properties of soils,in:G.Emilio,S.Arieh(Eds.),Developments in Clay Science,Elsevier,Amsterdam,2011,pp.325–349.

[35]R.L.Frost,Z.Ding,Controlled rate thermal analysis and differential scanning

calorimetry of sepiolites and palygorskites,Thermochim.Acta397(2003) 119–128.

[36]X.Liang,Y.Xu,G.Sun,L.Wang,Y.Sun,Y.Sun,X.Qin,Preparation and character-

ization of mercapto functionalized sepiolite and their application for sorption of lead and cadmium,Chem.Eng.J.174(2011)436–444.

[37]H.Liu,T.Chen,D.Chang,D.Chen,C.Qing,J.Xie,R.Frost,The difference of

thermal stability between Fe-substituted palygorskite and Al-rich palygorskite, J.Therm.Anal.Calorim.111(2013)409–415.

[38]M.Suárez,E.García-Romero,Advances in the crystal chemistry of sepiolite

and palygorskite,in:G.Emilio,S.Arieh(Eds.),Developments in Clay Science, Elsevier,Amsterdam,2011,pp.33–65.

[39]C.Giles,T.MacEwan,S.Nakhwa,D.Smith,Studies in adsorption.Part XI.A

system of classi?cation of solution adsorption isotherms,and its use in diag-nosis of adsorption mechanisms and in measurement of speci?c surface areas of solids,J.Chem.Soc.3(1960)3973–3993.

[40]J.Zhang,Q.Wang,H.Chen,A.Wang,XRF and nitrogen adsorption studies of

acid-activated palygorskite,Clay Miner.45(2010)145–156.

[41]K.Moller,J.Kobler,T.Bein,Colloidal suspensions of mercapto-functionalized

nanosized mesoporous silica,J.Mater.Chem.17(2007)624–631.

[42]R.G.Pearson,Hard and soft acids and bases,J.Am.Chem.Soc.85(1963)

3533–3539.

[43]X.Feng,G.Fryxell,L.-Q.Wang, A.Y.Kim,J.Liu,K.Kemner,Function-

alized monolayers on ordered mesoporous supports,Science276(1997) 923–926.

[44]L.Mercier, C.Detellier,Preparation,characterization,and applications as

heavy metals sorbents of covalently grafted thiol functionalities on the interlamellar surface of montmorillonite,Environ.Sci.Technol.29(1995) 1318–1323.

[45]S.Wu,F.Li,R.Xu,S.Wei,G.Li,Synthesis of thiol-functionalized MCM-41meso-

porous silicas and its application in Cu(II),Pb(II),Ag(I),and Cr(III)removal,J.

Nanopart.Res.12(2010)2111–2124.

[46]O.Sayar,M.Amini,H.Moghadamzadeh,O.Sadeghi,S.Khan,Removal of heavy

metals from industrial wastewaters using amine-functionalized nanoporous carbon as a novel sorbent,Microchim.Acta180(2013)227–233.

[47]J.Aguado,J.M.Arsuaga,A.Arencibia,M.Lindo,V.Gascón,Aqueous heavy metals

removal by adsorption on amine-functionalized mesoporous silica,J.Hazard.

Mater.163(2009)213–221.

[48]A.Heidari,H.Younesi,Z.Mehraban,Removal of Ni(II),Cd(II),and Pb(II)from

a ternary aqueous solution by amino functionalized mesoporous and nano

mesoporous silica,Chem.Eng.J.153(2009)70–79.

[49]https://www.doczj.com/doc/d418220922.html,m,K.L.Yeung,G.McKay,Ef?cient approach for Cd2+and Ni2+removal

and recovery using mesoporous adsorbent with tunable selectivity,Environ.

Sci.Technol.41(2007)3329–3334.

做音乐必备。非常全的专业效果器软件分类的介绍_图形并茂_一位热心专业人士整理的。今天上传_你们有福了。.

1、TC出品的效果器插件包。TC的这些VST效果插件一直都是被广泛使用. TC Compressor DeEsser压缩、消唇齿音效果器 Compressor压缩效果可以这样理解,就是把音频低的地方提升,把高的地方下压,以便让音频整体的音量更均匀,通过设置压缩的比例和起始时间以及释放时间,可以让一些比如低鼓、军鼓、BASS等乐器听起来感觉更有力,DeEsser我们一般翻译为消唇齿音效果,也有叫嘶声消除器的。它可以通过调整压缩、门限的参数来消除人声或乐器4KHZ到8KHZ之间的嘶声。比如唱歌时由口齿发出的唇齿音、箱琴在弹奏时发出的一些杂音。 中英文名词对照:Compressors/压缩、attack time/起始时间、threshold/门限、release time/释放时间、ratio/压缩 比例、SoftKNEE/拐点柔软度、Hard Time/硬的时间,SoftKNEE和Hard Time一起来设置拐点柔软度是硬还是软。De- Esser/嘶声消除。(其他品牌的压缩效果器都小异,不再重复解释,实际运用后面章节叙述)

TC Filtrator滤波效果器 简单来说Filtrator就是通过过滤某些频段和调整失真饱和度以及低频震荡来创造出一个全新的声音。TC Filtrator滤波 效果器主要分为:FILTER滤波模块、LFO低频震荡模块、DRIVE失真度模块并在ENV FOLLOWER模块中调整相关参数值。如 果你需要把你的声音变成一个外星人或者类似机器人的声音,想得到一种特殊的效果你不仿试试它,不过想用好可不是 那么简单。 中英文名词对照:Filter/滤波器、LFO/低频震荡器、Speed/速率、Division/分界点、Slope/倾斜值、Attack/起始时间 、HOLD/保持时间、DECAY/衰变时间(其他品牌的滤波效果器也是小异,不再重复叙述)

各种效果器名称中英文对照大全

各种效果器名称中英文对照大全 Arpache SX 【琶音效果器】 Compress 【压缩效果器】用于排除电吉他信号在传输中出现的过载或不良瞬变发生,它与失真器不同的是提供不失真的多种弹奏音色,并能延长音符或缩短音符的时值,可产生打击音或长延音。 Density 【密度效果器】 MicroTuner 【音调微调器】 MidiEcho 【回音效果器】 Midi 控制 Note 2cc 【音符控制器效果器】 Quantizer 【量化MIDI 效果器】 Step Designer 【步进音序器】 Trackcontrol 【轨道控制效果器】 Track FX 【轨道效果效果器】 Transformer 【逻辑处理效果器】背景门、和弦、自动声像 常用的效果器有均衡(EQ、混响(REVERB、压缩 (COMPRESSOR 延时(DELAY、合唱(CHORUS、移相 (PHASER Dely 【延时效果器】 TC Compressor DeEsser【压缩、消唇齿音效果器】

PLATE 铁板混响效 TC Filtrator 【滤波效果器】 TCGraphic EQ 【图形均衡效果器】 TC Limiter 【限制效果器】 TC Native Reverb Plus 【混响效果器】 [HALL 大厅混响效果 ROOM 房间混响效果 果(也译做金属板) ] TC Sonic Destructor 【声音处理效果器】 TC Parametric EQ 【参数均衡效果器】 AutoPan 【声像效果器】 Chorus 【合唱效果器】 Comp 【压缩效果器】 Flanger 【镶边效果器】 NoiseGate 【噪声门效果器】 OptiEQ 【均衡效果器】 OptiVerb 【混响效果器】 Phaser 【移相效果器】 ResoBeat 共【鸣滤波效果器】 RingBeat 【铃音调制效果器】 Stereo Delay 【延迟效果器 】 【T- RACKS 母带处理器】 Clipper 【修减效果器】 Compressor 【压缩效果器】

效果器各种效果说明

当前位置:首页> 信息分类> 周边器材> 正文 效果器各种效果说明 hc360慧聪网专业灯光音响行业频道2004-01-08 14:04:23 压缩(COMPRESSOR): 压缩的作用在于调节各音的响度使之音量达到均衡,它可以防止你弹奏得过强或过弱。压缩单元一般称为压缩器,它装有特别的放大线路,当你弹得太弱时,它可以提高增益(音量电平);当你弹得太强时,它可以降低增益。 压缩效果一般可以通过以下三个方面来调节: 1、阀值(threshold):决定什么时候对信号进行压缩或不压缩。设定阀值后,压缩只对大于阀值的信号进行压缩。 2、时间(release time):设定压缩发挥作用的时间。 3、延音(sustain):对信号进行延长。 4、 ATTACK:很难用中文解释,主要作用是控制触弦时的音头力度大小。 限制(Limiter): 原理跟压缩器一样,只不过ratio设的很高(例如200:1),可使吉他音量超过Threshold(门槛)后,就不会再增加。 噪音门(NOISE GATE): 原理跟压缩器一样,只不过ratio 设定到无限大。所以当吉他音量低过Threshold (门槛)后,NOISE GATE开始把所有的声音砍掉,这样可以控制噪音。噪音门的作用就是将信号噪声吸掉,让吉他的音色变的干净。但注意,过多的加入噪音门会影响演奏时的力度表现和声音的尾音。 哇音(Wah-Wah): Wah-Wah踏板实际上是一个带通滤波器。当它被置于一定位置时,可以用来控制音调;而不断踩动它时,则会由于高低音的交替增减而产生出特殊的效果。当你把wah-wah踏板的前端踩下去时,高音就会增加;把后端踩下去,低音就会增加。也就是说,哇音可以将信号的某个频段进行放大或缩小。因此,哇音踏板不光可以用来产生哇音效果,还可以将它作为一个特殊的音频激励器来使用。 失真(distortion):

纳米银及金属网格的对比分析

纳米银与金属网格对比分析 行业资讯2014-11-11 ?一、市场因素的评价 关于市场因素决定于产品价格与技术规格,技术规格将于之后 再详细讨论。 评价产品价格的变动,包括初期生产价格,例如材料成本、制 造成本,IC及其器件的整合成本,假如企业一条龙式地能掌握从原料至器件,甚至IC器件的成本,则有机会端出具有竞争力的产品价格。第二种系量产价格,当不同材料技术与生产良率仍有提升空间,以及产品的应用领域扩大,因而具备更多压低成本的能力,例如掌 握了主要品牌商且成为市场的主流产品,或者进一步扩展到其他应 用领域,而造成市占及出货量的扩大。 从原料与制造成本的角度,金属网格材料可为银或铜原子,或 银的氧化物,以印刷方式形成金属网格,而该金属网格的线幅超过 5μm以上;由于银或铜原料取得并不是问题,原料成本系相对低廉,但超过5μm以上的金属线幅所产生的视觉莫瑞干涉过于明显致规格劣化,因此必须设法降低线幅至3μm以下始为市场所接受,如此,为降低线幅所增加的成本,包括放弃印刷法而改成黄光微影或雷射 制作遮罩、良率降低等制造成本增加,就占有很高比重。相对地,

纳米银线油墨包括纳米银线(线径约50nm、线长约23μm)、调制溶液配方等,并非能直接取得,而是购自如纳米银线材料供应商Cambriostechnologies等少数专业厂商,因此原料成本欲降不易,但相对地,纳米银线没有如金属网格的视觉莫瑞干涉现象,不必刻意要求线幅降低,加上可以搭配成本较低的卷对卷印刷方式生产,即能获得符合市场规格的触控面板。 为降低原料与制造成本,主推纳米银线触控面板的触控大厂宸鸿,即于2013宣布与日本写真印刷联手开发纳米银线触控技术,并搭配先前与Cambriostechnologies合资而提供的纳米银线材料。日本写真擅长塑胶薄膜生产技术与卷轴式(roll-to-roll)生产技术,而Cambriostechnologies系纳米银线材料的少数供应厂商,透过宸鸿专业的触控图案设计及制造技术,三者强强合作将会有不错的价格竞争力,打入高阶产品市场的机会也很高。虽然Cambriostechnologies的商业模式不单是与宸鸿技术合作而已。 进一步地,因为纳米银线材料也具有其他领域的应用价值,例如在太阳能电池的应用,因此未来可望吸引更多厂商投入研发与生产行列,而纳米银线的材料成本在供给增加之后或许有较大的降价机会。 二、技术因素的评价 1.莫瑞效应问题及克服

效果器常用的串联方法

效果器常用的串联方法 效果器远不止以上各种,在电子技术高度开展的今天,效果器引入了程序编制系统,将三、四种常用的效果器合装于一机,用程序预编你所需的音色效果,有的可编10种预选效果,运用时只需轻触按钮,设定的某种效果即可“读出”,省却了暂时调校的费事。效果器的用法电吉他喜好者初次接触形形色色的效果器,感到很难摆弄,由于缺乏调校经历,化了很多时间,常常调不出所需效果,有些电吉他喜好者,听到磁带里用效果器演奏的华彩乐段十分动听,也想摹仿,但又不知怎样去调校这样动听的音色,感到很绝望。专业音响。 如今,我们试将效果器的用法比作绘画。将各种效果器比作油画色,用油画色作画的原理来阐明效果器的调校办法,就比拟容易了解了。画家绘画时将不同颜色的油画色在调色板上停止调色,直到颜色合平画中某种情调的请求才停止绘画。而电吉他乐师则经过效果器分配出各种音色,然后停止演奏,以表达乐曲的某种感情。 常用的办法是选用几种不同特性的效果器,用极短的金属屏蔽线(话筒线),将效果器串联趄来,在输出端接扩音机措箱),在输入端接电吉他,串联的次第如下:电吉他——效果器——扩音机不同的作风运用的效果器就不相同,串联方式也有别,现将几种典型的串联方式和它的特性引见给大家参考: 单通道串联法:适用于单通道扩音系统的演出场所。其串联的方式是电吉他——八度音——紧缩器——失真器——移相器——平衡器——音量踏板——噪声闸——音色提升——合唱——一弗兰格——限幅器——延时器——扩音机为什么依照这一次第串联哪能否能够颠倒?依据效果器的性能特性,某些效果器在次第布置上是不能颠倒的,例如失真器应在移相器、弗兰格、平衡器、延时器之前,否则这些效果器将遭到失真器的“失真”、失去它们的特性,从而决议了它们之间的次第关系。 双通道串联法:为取得惊人的声响效果,用双通道串联法,可产生鲜明的平面感和宽广的空间效应,合适大型剧场和体育馆演出。它的串联方式是电吉他——八度音——紧缩器——失真器——移相器——平衡器——弗兰格——音色提升——噪声问——音量踏板——限幅器——延时器——合唱——左、右两个声道的扩音系统。专业音响。这里将合唱移至最后,是由于要取得合唱效果,必需分左、右两个声道扩音,才干充沛发挥合唱效果的作用。 重金属系串联法:具有操作简单的特性,合适于重金属摇滚乐演出,它的串联方式是电吉他——失真器(或驱动器)——合唱——弗兰格——平衡器——噪声闸——限幅器——延时器——扩音机。 溶化系(FUSION),它与重金属系不同之处是不用失真器,只用电吉他原声或接近原声演奏。它的串联方式是电吉他——紧缩器——合唱———弗兰格——平衡器——噪声闸——限幅器——延时器——扩音机。 由于盛行音乐的作风与流派很多,各国的电吉他手都有本人共同的配器办法,在不同时期配器也不同,随着盛行音乐的开展,效果器的选用状况也将随之而变。多数电吉他乐师在实践演出时,并不选用一长率效果器,只需到达一定的效果,常选用二、三个效果器串联起来运用,调校便当、操作简单,组会随色一些世界级的电吉他手,早期曾选用过如下一些串联法:例如贝克(Beok)选用充吉他——驱动器——失真器——延时:器——扩音机的串联方式。专业音响。 佩格(Page)和卡尔顿(Canton)选用电吉他——驱动器——平衡器——延时器——扩音机的串联法,日本的山本、恭司选用电吉他——失真器——合唱份左、右两路,左路接扩音机)——移相器——延时器——扩音机,再经过各路混合,音色效果比拟丰厚。专业音响。固然用同样的方式串联,由于电吉他、音箱和调校时参数不同,产生的效果亦各不相同,不能简单的摹仿。选用三个效果器的串联法也应依照失真在前,延时器在后的次序串联,中间插入

纳米银和金属网格地对比分析报告

纳米银和金属网格对比分析 行业资讯 2014-11-11 ?一、市场因素的评价 关于市场因素决定于产品价格与技术规格,技术规格将于之后再详细讨论。 评价产品价格的变动,包括初期生产价格,例如材料成本、制造成本,IC及其器件的整合成本,假如企业一条龙式地能掌握从原料至器件,甚至IC器件的成本,则有机会端出具有竞争力的产品价格。第二种系量产价格,当不同材料技术与生产良率仍有提升空间,以及产品的应用领域扩大,因而具备更多压低成本的能力,例如掌握了主要品牌商且成为市场的主流产品,或者进一步扩展到其他应用领域,而造成市占及出货量的扩大。 从原料与制造成本的角度,金属网格材料可为银或铜原子,或银的氧化物,以印刷方式形成金属网格,而该金属网格的线幅超过5μm以上;由于银或铜原料取得并不是问题,原料成本系相对低廉,但超过5μm以上的金属线幅所产生的视觉莫瑞干涉过于明显致规格劣化,因此必须设法降低线幅至3μm以下始为市场所接受,如此,为降低线幅所增加的成本,包括放弃印刷法而改成黄光微影或雷射制作遮罩、良率降低等制造成本增加,就占有很高比重。相对地,纳米银

线油墨包括纳米银线(线径约50nm、线长约23μm)、调制溶液配方等,并非能直接取得,而是购自如纳米银线材料供应商Cambriostechnologies等少数专业厂商,因此原料成本欲降不易,但相对地,纳米银线没有如金属网格的视觉莫瑞干涉现象,不必刻意要求线幅降低,加上可以搭配成本较低的卷对卷印刷方式生产,即能获得符合市场规格的触控面板。 为降低原料与制造成本,主推纳米银线触控面板的触控大厂宸鸿,即于2013宣布与日本写真印刷联手开发纳米银线触控技术,并搭配先前与Cambriostechnologies合资而提供的纳米银线材料。日本写真擅长塑胶薄膜生产技术与卷轴式(roll-to-roll)生产技术,而Cambriostechnologies系纳米银线材料的少数供应厂商,透过宸鸿专业的触控图案设计及制造技术,三者强强合作将会有不错的价格竞争力,打入高阶产品市场的机会也很高。虽然Cambriostechnologies的商业模式不单是与宸鸿技术合作而已。 进一步地,因为纳米银线材料也具有其他领域的应用价值,例如在太阳能电池的应用,因此未来可望吸引更多厂商投入研发与生产行列,而纳米银线的材料成本在供给增加之后或许有较大的降价机会。 二、技术因素的评价 1.莫瑞效应问题及克服

前级效果器调节说明

前级效果器调节说明 一、人耳听音范围: 一般实际人耳听音的范围是40-16000HZ 二、频段划分:超低频 低频 中低频 低中频 中频 中高 高频 超高频 20---20KHZ20----110HZ 110---220HZ220---440HZ440---880HZ880--1760HZ 1760-3520HZ3520-7040HZ7040--20KHZ 音域听感: 震撼区深沉区浑厚区丰满区力度区明亮区透亮区敏锐区清脆区 细腻区 迁细区 0--------16HZ20-------64HZ64------128HZHZ256-----51

2HZ512----1024HZHZ2048---4096HZ4096---8192HZ8192--1 6384HZ16384---20KHZ 三、各频段的特性及调整方法: A、低频段的调整——调好各种音源的基音部分及丰满度、结实度: 20Hz到315Hz的频率范围划分成低频段,这一段调整的重点是注意各种音源的主要基音部分,就像一座金字塔,没有基础部分也就不会有塔尖部分,所以低音频率的调整是很重要的。 在具体操作上: 1、20Hz、32Hz这两个频率基本上都是完全衰减的,因为现在很多音箱的低音频率还没有下潜至这个频段。 2、40Hz、50Hz这两个频率恰好是目前我国220V交流电的频率,为了减少电源部分的干扰我们一般也把这两个频率衰减5个dB 左右。 3、63Hz、80Hz、100Hz这三个频率决定了音源的丰满度,一般不要做大的提升和衰减。 4、125Hz、160Hz、200Hz、250Hz这四个点决定了音源的力度和结实度,提升太多声音生硬,衰减太多则声音模糊、发虚,因此这几个点在低频段最为关键。

评析纳米银线与金属网格材料技术之优劣

评析纳米银线与金属网格材料技术之优劣作者:段晓辉教授时间:2014-05-07 源于:北京大学信息科学技术学院总点击:2756 【导读】:新材料技术应用可以从智能手机的常用面板尺寸一路延伸到20英寸以上的设备,而其阻值,延伸性,弯曲性均优于ITO薄膜。新材料技术在短时间内无法全面取代ITO薄膜,但新材料技术有巨大的优势,而且从市场反应上来看,应用新材料技术生产的薄膜产品所占的比重在逐年提高。 ITO,即掺锡氧化铟(Indium Tin Oxide)。它是液晶显示器(LCD)、等离子显示器(PDP)、电致发光显示器(EL/OLED)、触摸屏(Touch Panel)、太阳能电池以及其他电子仪表的透明电极最常用的薄膜材料。 未来移动终端、可穿戴设备、智能家电等产品,对触摸面板的有着强劲需求,同时随着触控面板大尺寸化、低价化,以及传统ITO薄膜不能用于可弯曲应用,导电性及透光率等本质问题不易克服等因素,众面板厂商纷纷开始研究ITO的替代品,包括纳米银线、金属网格、纳米碳管以及石墨烯等材料。 新材料技术应用可以从智能手机的常用面板尺寸一路延伸到20英寸以上的设备,而且其阻值,延伸性,弯曲性均优于ITO薄膜。虽然,新材料技术在短时间内无法全面取代ITO 薄膜,但是新材料技术有着巨大的优势,而且从市场反应上来看,应用新材料技术生产的薄膜产品所占的比重在逐年提高。目前,石墨烯扔处于研发阶段,距离量产还有很远的距离。纳米碳管工业化量产技术尚未完善,其制成的薄膜产品导电性还不能达到普通ITO薄膜的水平。因而,从技术发展与市场应用综合评价,金属网格与纳米银线技术将是近期新兴触控技术的两大主角。 金属网格(Metal Mesh)技术利用银,铜等金属材料或者氧化物等易于得到且价格低廉的原料,在PET等塑胶薄膜上压制所形成的导电金属网格图案。其理论的最低电阻值可达到0.1欧姆/平方英寸,而且就有良好的电磁干扰屏蔽效果。但是受限于印刷制作的工艺水平,其所制得的触控感测器图样的金属线宽较粗,通常大于5um,这样会导致在高像素下(通常大于200ppi)莫瑞干涉波纹非常明显。莫瑞干涉指数码产品显示屏中像素,光学膜片以及触控导电的金属图案,在水平和垂直方向上,规则对齐的像素和物体的精细规则图案重叠式稍有偏差,则会出现的干扰波纹图案。由于莫瑞干涉的存在,金属网格技术制成的薄膜产品不适用在高分辨率智能手机,平板电脑等高分辨率的产品上,仅仅适用于观测距离较远的显示器屏幕,例如台式一体机器,笔记本电脑,智能电视等。 如果薄膜中金属网格图样的线宽能够大幅度下降,则能有效的降低金属网格技术中的莫瑞干涉的问题,特别是如果金属网格图样的线宽下降到1um左右,则该技术制成的薄膜同样可以搭载在高分辨率的智能设备上。目前韩国三星公司利用微细线宽和图样化

效果器的使用原理

效果器使用原理 效果器对于录音来说,就象是你烹饪时所加入的香料--它们可以非常有效地增强现有声音的感染力,但是要想使用好这些效果器,你必须要经过一个漫长的学习过程。遗憾的是有很多人对他们的效果器非常陌生,在使用时通常都是随意地设一个值,然后就异想天开地指望得到精彩的声音。 如果你知道了这些方盒子是如何进行工作的,你就可以更加有效地使用它们。在下面的文章中,我们不仅列出了一些效果器通常的使用规则,还向你讲述了它们的一些重要参数、经常给我们带来麻烦的地方以及一些应用热点。 压限器(Compressor/Limiter) -概述 压缩器/限制器(compressor/limiter,简称压限器)的用途是让信号的输出动态范围变小,它使较微弱的信号变大而使较大的信号变小。其结果是使大信号与小信号之间的差别变小。例如,压限器可以用来使snare鼓的音轨变得平淡柔和,允许整个鼓的声音在混音器上被提升到一个较高的电平,而不会使母带过载。对于有些歌手来说,他们在进行录音时总是不能够很好地保持嘴部与麦克风之间的距离,这时候使用一些温和的压缩效果就可以使得人声音轨的表现更佳。 -工作原理 一旦输入的信号电平超过了用户设定的阀值,则压缩器就将开始工作,把过高的输入电平降低。这样得到的结果是,在增大输入电平的同时,不会造成输出电平产生同等幅度的增大。例如,设置压缩率为2:1,则每增加2 dB的输入电平只会造成输出电平有1 dB的变化。 -重要的参数 阀值(threshold)参数:决定了要被压缩或是限制的信号的上下限。处于阀值以内的信号将不会受到影响。 比率(ratio)参数:选择了在输入信号超过阀值时,输出电平改变的方式。较高的比率值,将导致较大的压缩,并使得声音听起来很"挤"。非常高的比率值会导致信号产生极端的"上限成分"(ceiling)。这叫做极限(limiting)。 输出(output)参数:提高增益可以抵消掉由于动态范围约束而产生的较低的电平。

雅马哈效果器说明书

一般技术规格 模数/数模转换20Hz-20kHz(全部旁路) 动态范围80dB(典型) 全谐波失真小于0.1%(1kHz,最大电平) 模数/数模转换 模数转换16比特 数模转换16比特 采样频率44.1kHz 储存程序99 效果程序立体声混响、混响、混响加门、延迟、延迟+混响, 混响-镶边,合唱+混响,交响乐+混响 输入 连接口PHONE JACK×2 正常电平-20dB(输入电平标称) 阻抗20kΩ(单声道:10kΩ) 输出 连接口PHONE JACK×2 正常电平-20dB(输入电平正常) 阻抗2kΩ(单声道:1kΩ) 显示七段LED发光二极管×2(显示程序号) 前面板控制部分输入电平,混音平衡,延迟衰减,电平 前面板键部分▲,▼,MIDI,储存 LED发光二极管显示器峰值,左右,延迟,衰减,电平(可编辑目录) MIDI输入5-Pin DIN 电源直流12V输入 尺寸(宽×高×厚)480×232×45.5mm(18.9″×9.1″×1.8″) 重量2.5kg 电源适配器 美国加拿大:PA-1BU(120V AC) 一般:PA-1BU(220V/240V AC) 英国:PA-1(240V AC) 详细使用说明: 一、正确安装和连接YAMAHA--- REV100。如使用单声道可只接左声道。 INPUT LEVEL:输入电平旋钮,调节此旋钮使峰值指示灯在正常工作时偶尔闪亮。一直闪亮表示信号过强,声音会削波,过弱又会发生音质下降,因此调节适当的电平输入是使用好效果器的第一步,也是很重要的一步。 MIX BALANCE:效果混合旋钮,用来调节效果声和原声之间的比例。 PROGRAM:用来选择不同的程序,编辑程序存储。 二、改变效果程序:YAMAHA—REV100共有99种效果程序,用上下光标键选择。

关于吉他效果器的一些基础知识

关于效果器的一些基础知识 所谓效果器,顾名思义,给音色施加effect(效果、影响),不仅是电吉他,许多乐器、合唱等都使用它,当您听到的音乐,基本上都是经过加工而制成的。而不经过加工的音乐(no,effector)就给人一种美中不足的感觉。可以说效果器在音乐的构成中,已经是必不可少的了。 在此,就电吉他所使用的代表性的效果器作一解说。作为有效地使用效果器的入门指南,希望在制造出优质音响的同时,能把这作为研究效果器在其他乐器中的使用方法,在构成音乐全体中效果器的理想状态等方面问题的第一步。 吉他演奏如果只能弹奏的话,是不能称为合格的。弹奏曲子、乐句时,必须能迅速定出与弹奏本人的个性相适合的音色来。如果音色、音量错了,好好的乐句就成了毫无意义的东西,又破坏了它的协调性(统一性)。效果器的产生与发展那么,效果器是怎样的一种电子仪器呢?拉胡琴或拉小提琴时,演奏者常常将捺弦的左手指在弦上放意的作抖动使发出的声音随之微微颤抖,听起来很优美,这种添加的吸音就称为效果。又如卡拉OK演唱者通过混响器之后的声音,变得丰满、宽广,这种混响也是效果。效果有增润音色和改变音色的作用,效果器就是专用于产生以上各种效果的电子仪器。它的作用是改变原有声音的波形,调制或延迟声波的相位、增强声波的偕波成分等一系列措施,产生各种特殊声效。 效果装置最早出现干电子风琴中,是电子风琴的重要组成部分。早期的电子风琴用涮簧装置产生混响。利用一组旋转的扬声器和一组固定的扬声器的相对运动,产生回旋音响。又在电子线路中用附加的振荡器调制音频电讯号,产生颤震音。人们将这些效果装置提取出来,加以改进与发展,单独制成混响器(Reverb)、延时器(Delay)、移相器(Phaser)、弗兰格(Flanger)等,用于电吉他或其他电声乐器演奏摇滚乐。近年来,效果器不断的创新、发展,形成多达十余种的一个系列,供各种摇滚乐队不同风格流派选用。 人们又在电子音乐会成器的基础上,设计成功用于电吉他的各种合成器,从而使摇滚电吉他与电子音乐合成器“并驾齐驱”而又各自争辉,将摇滚乐推向崭新的境界。效果器的品种与用途目前,效果器的品种有增多的趋势,为适应各种流派的摇滚乐队需要,同一品种的效果器又分出许多花式规格,形式也多样化。有的效果器是直接安装在电吉他上的;有的装在音箱里;有的制成挂在腰间使用,多数制成踏板式,各有它的长处又各有不足。 大家知道,电吉他乐手在演奏中,不能有瞬间的中断(脱袖子)、除非乐曲标有休止符,否则是不能伸手去调校效果器的。 实际使用过程中证明,以脚踏式效果器最方便,尤以单个的踏板式效果器最受青睐,它可以

WAVES全套效果器说明

WAVES全套效果器说明。。。。 AudioTrack 是waves的通道条效果器,是一款均衡器/压缩器/门限器的组合 C1 包括四个,C1comp是单纯的压缩器,C1comp gate是压缩/门限的组合,C1 SC是旁链压 缩器(应用于广播等场合), C1gate是单纯的门限 C4是waves的著名多段动态处理器 Desser是消除齿音效果器 Doppler是掠过音效器,多普勒效应嘛 Doubler是声音加倍效果器,做合唱合奏用的 Engima是迷幻音效效果器,它利用相位调制原理来产生各种稀奇古怪的效果 IDR是waves自己开发的噪声整型/抖动算法,转换采样深度时用来减小数字背景随机噪声L1/L2/L3都是限制器,区别一个比一个猛,L1可以放在分轨作限制,L2、L3是母带用的。 LinEQ和LinMB是waves的母代均衡/母代多段动态处理器,专为母带处理定制 MaxxBass是低音增强器 MetaFlanger是镶变效果器

MondoMod是相位调制器 Morphoder这个效果器非常有意思,它可以根据你定制的midi信号将处理的波形进行卷积调制,产生机器人一样的怪异声音,特别适合一些迷幻音乐呵呵 PAZ系列都是示波器/频谱仪,共有4个,Analyzer是相位显示/频谱仪的组合,Frequency 是单纯的示波器,Meter顾名思义就是电平表,Position是很好用的相位显示器 Q系列都是均衡器,从扫频用的Q1到10段的Q10,满足各种需要 R系列叫做文艺复兴效果器,是Waves针对人声处理开发的, RBass低音增强, RChannel是通道条, Rcomp是压缩, RDesser消除齿音, REQ均衡器, RVerb是优秀的文艺复兴混响器, RVox是人声自动压缩器, S1系列都是声场扩展器,可模拟MS制录音的立体声场等等 SoundShifter是变调效果器,SuperTaps是多段延时器 TransX同样是相位效果的一种,改变声音的特性 TrueVerb是另一款优算法秀的模拟真实混响 UltraPitch系列是声音变调、变速、加倍效果器 剩下的“X三兄弟”分别是消除爆破音、咔嚓声、去除直流偏移、实时降噪效果器

石墨烯纳米银线金属网格对比分析

石墨烯/纳米银线/金属网格对比分析OFweek显示网讯:从触摸屏产业链来讲,玻璃基板、Petfilm、胶材是产业上游的主要材料,而玻璃基板、Petfilm的供应被美日企业所垄断。ITO 玻璃、ITOfilm、sensor(包含触控IC)、coverlens是中游部分,下游的就是触控模组一块。从近几年的触控材料研发上看,替代性材料的研发主要在上中游部分。 2013年,国内电容屏出货面积超过400万平方米,其中ITO导电玻璃需求量超过360万平方米,ITO PET导电膜需求量超过140万平方米。从触摸屏产业上游材料的成本分析,ITO材料占据40%左右。且随着触摸屏行业的发展,对ITO材料的需求将越来越大,作为稀有金属的铟,不但价格随之不断上涨,而且将会有告罄的危险,所以在此进行分析的烽烟四起的触控材料,主要为替代ITO的石墨烯、Metal Mesh和纳米银。 东莞市鑫聚光电科技有限公司董事长蔡文珍表示,三种材料中,纳米银线是唯一一个具有现实应用前景的。理论上,石墨烯的透光度及电阻性能都占优势,但是由于其制备过程工艺复杂,在设备改进、工艺优化等方面都预示在前期需要有巨大的投入。相信石墨烯在很长一段时间内都不具备量产的条件。 金属网格最主要的优势在于成本低且导电性佳,但为了达到足透的光穿透率,在线细化过程中必须拿掉95%~99%的触控感应面积,导致触控讯号降低20~100倍,现今触控IC难以支持;其二,为了让眼睛看不到,金属线宽必须小于5微米,使的其黄光显影制程或精密印刷技术费用高;此外,5

微米金属线不断裂、解决金属反射问题、材料氧化等问题都让金属网格技术备受考验。在解决以上难题时,成本也会随之增加,届时Metal Mesh是否还具备成本优势是厂商必须考量的问题。 相比之下,纳米银线在工艺制程上就拥有得天独厚的优势:生产工艺简单、良率高。由于线宽较小,银线技术制成的导电薄膜相比于金属网格技术制成的薄膜可以达到更高的透光率。再次,纳米银线薄膜相比于金属网格薄膜具有较小的弯曲半径,且在弯曲时电阻变化率较小,应用在具有曲面显示的设备,例如智能手表,手环等上的时候,更具有优势。银纳米线除具有银优良的导电性之外,由于纳米级别的尺寸效应,还具有优异的透光性、耐曲挠性。此外由于银纳米线的大长径比效应,使其在导电胶、导热胶等方面的应用中也具有突出的优势。以鑫聚光电目前小批量生产的纳米银线产品为例,是利用研发出来的液体涂料,经过涂布机涂在基膜上,然后经过干燥、覆盖保护膜,成品的生产就完成了。而且,鑫聚光电拥有完善的LCD用光学膜产品生产线,纳米银线的部分制程与LCD用光学膜制程相似,因此,鑫聚产线拥有很大的通用性,大大减少了前期对于产线的投入,从而降低了产品成本。

金属过滤网格布转用高强度胶

金属过滤网格布转用高强度胶 【高强度环氧结构胶产品特点】 ★研泰牌高强度环氧高温结构胶是采用国际最新环保型技术,通过添加活性增韧剂及其它热塑性树脂精制而成的双组份高性能高强度结构型环氧树脂ab胶粘剂。 ★具有高粘接强度、高柔韧性、耐冲击、振动、收缩率低,常温固化。 ★耐油、耐水、耐酸碱、防潮、防尘性能等众多优点。 ★耐湿热和大气老化、具有良好的绝缘、抗压、收缩率低等电气及物理特性。 ★环保无毒。可根据工艺需要调节胶水的稀稠度。 【高强度环氧结构胶产品应用】 ★研泰牌高强度高韧性环氧结构胶,具有极高的剪切强度和拉伸强度以及高剥离强度,适合用于强烈冲击、振动的场合;广泛用于粘接金属、不锈钢网、金属过滤网格布、眼镜支架贴合、玻璃、陶瓷、竹木、碳纤维、玻璃纤维、硬泡棉、abs、pvc、尼龙、塑料等材质的自粘或相互粘接,并且具有极高的粘接力。 【高强度环氧结构胶技术参数】 高强度环氧高温结构胶详细技术参数请咨询研泰客服人员。 数据,敬请客户使用时,以测试数据准。 【高强度环氧结构胶使用说明】 ★被粘接物表面必须洁净、光滑、干燥。为了达到最佳效果,不同材质互粘时,请根据实际情况处理表面(抛光打磨、处理剂)。技术139 29 430 431 ★配比:A胶与B胶的配比为:A:B=2:1(重量比),称重配胶并充分搅拌均匀备用,2-3天可达到最佳效果。 ★把配好的胶均匀的涂于两个被粘表面合拢定位,在胶液没凝胶前不得移动受力,根据粘接的要求进行工艺上的处理,如果材料不平或很薄,请在粘接物上面加压,以免影响效果。 ★固化过程中,请保持产品水平摆放,以免固化过程中胶液溢出。 ★用户批量使用时,请先做试验。避免因操作不当而影响粘接效果。 【高强度环氧结构胶注意事项】 ★工作场所保持通风,避免儿童接触。 ★未使用时勿将两胶液混合,使用完后勿将胶帽盖错。固化过程中,请保持环境干净,以免杂质或尘土落入未固化的胶液表面。 ★操作时,请带隔离手套。有极少数人长时间接触胶液会产生轻度皮肤过敏,有轻度痒痛,建议使用时戴防护手套,粘到皮肤上请用丙酮或酒精擦去,并使用清洁剂清洗干净。 ★混合在一起的胶量越多,其反应就越快,固化速度也会越快,并可能伴随放出大量的热量,请注意控制一次配胶的量,因为由于反应加快,其可使用的时间也会缩短,混合后的胶液尽量在可使用时间内使用完。 【高强度环氧结构胶储存包装】 ★本品需在通风、阴凉、干燥处密封保存,保质期一年,过期经试验合格,可继续使用。 ★包装规格为每组1.5kg,其中包含主剂1kg/桶、固化剂0.5kg/桶。

效果器调节基本常识

在开端说效果器之前先说一下有关音箱地几个学问点 .不同地音箱声音不同,同一品牌同一型号也有可能不一样,不要一味置信品牌和型号,最值得置信地是本人地耳朵.文档来自于网络搜索 .就算是一模一样地琴,一模一样地效果器,一模一样地参数,在不同地音箱下出来地声音会有不同. 专业音响.文档来自于网络搜索 .普通来讲,吉他音箱纸盆越大,低频响应越好,也能够了解为声音越坚固,越细腻. .在声压级不够(能够了解为音量不大)地状况下,你是听不出声音真实地特性地,也就是说我们需求一个左右地声音来作为参考调理文档来自于网络搜索 .不同品牌音箱操作不同,包括平衡局部,不要把不同音箱之间地平衡参数互换运用,你将得不到你原来想要地.文档来自于网络搜索 .音箱地摆放位置,房间四周地装修材质,空中地材质,房间地大小,以及周边环境,你与音箱之间地位置都会影响音色.文档来自于网络搜索 .把音箱放在墙角会使低音听起来加重. .开放式和密闭式地音箱之间音色是不同地.专业音响..各有所长,要靠你地耳朵来感受那种是你更喜欢地.文档来自于网络搜索 .音箱有噪音地状况下先检查音箱能否接地,吉他连线能否完好,吉他拾音器前面能否有电磁辐射干扰. .吉他音箱有地会漏电,倡议大家一定要保证接地. 失真与过载地一些玩法 、失真与过载是两种不同地电路形式,所以声音上有实质地区别,详细区别请大家本人靠耳朵积聚经历. 、假如你想取得一个与众不同地失真不一定非要买新地失真,你能够买一个过载,再买一个平衡,这样你能够调理出好多不同地失真了文档来自于网络搜索 举例:把过载串在失真前面,首先关掉失真,然后调理过载,觉得声音变硬,变得稍有一点点过载地时分,在翻开失真,调理失真,你会得到一个比以往愈加有力地失真效果.把你地平衡串到你地失真后面,调理它,你会让你地失真千变万化!专业音响.文档来自于网络搜索 、千万不要把混响和延迟串到你地失真前面,除非你喜欢一个混浊宛如噪音墙一样地声音. 、失真前面尽量少接踏板,会无形地给你增加烦人地噪音. 、中最有魅力地声音是来自中频地,它会让你地吉他在乐队中脱颖而出,固然单独听它地时分可能这种声音不是那么猛.文档来自于网络搜索 、本人爽地时分你能够加强低音让失真听起来十分厚重,假如是乐队合奏时还是让吉他地低音略微小一些吧,咱乐队里不是还有地鼓和不是?文档来自于网络搜索、乐队合奏地时分你地失真高频能否特别扎耳朵?降低一些你吉他地高频,让乐队地嚓片来补充吧. 、觉得你地失真不够劲?你用地是什么音箱?不会是家用小音箱或者电脑音箱吧?假如是地话请你买个吉他音箱吧,假如是吉他音箱请你开大音量再听一下,俗话说声音一大,声音地细节就全都表现出来了,你手上地失真效果或许并不像你想象得那么差哦文档来自于网络搜索 、你能够去听一下电子管失真,再听一下晶体管失真,他们是各有特征地,你地耳朵喜欢哪种? 、失真不是你吉他地全部,你地演奏技巧和你地音乐天赋比一个好地失真音色更重要要是想让你地演奏愈加吸收人地话,去愈加刻苦地练习吧!文档来自于网络搜索

效果器的连接与使用技巧.

效果器的连接和使用技巧 效果器是一种提供各种声场效果,并对声音信号在时间和频率等多方面多方位进行加工处理以产生特殊音响效果的周边设备,它广泛使用在电台、电视台的节目制作上。然而要充分发挥效果器的作用,使其获得满意的效果,还必须掌握正确的连接方法和使用技巧。 1 效果器的连接 效果器在实际使用中,有两种典型的连接方法:(1)插入法,即利用调音台INS(插入口)将效果器插入到系统中。接法是:直接将效果器插入调音台传声器路INS插口或将传声器声音经编组后再将效果器插入到传声器编组信道,用效果器的MIX(混合)功能键来调节效果声比例。(2)输入输出法。从调音台辅助输出的传声器信号接到效果器的输入端,再将效果器输出的信号接到调音台的某个输入端,用调音台传声器输入路与效果输入路电位器分别控制直达声和效果声的大小来调节效果声比例。用输入输出法连接效果器应把MIX(混合)功能键置于最大位置,它是目前绝大多数音响系统普遍采用的接法。 2 效果器的调节 目前的效果器可以存储并产生几十种甚至数百种音响效果,使用者可以根据自己的需要选择合适的效果,一般来说效果器中存储的基本效果包括混响时间Reverb Time,延时时间Delay Time和回声Echo三种。所谓混响时间是指声源停止发声后室内声压级衰减60 dB所需要的时间,混响时间太短声音会发干,混响时间太长声音会浑浊且余音过长,只有合适的混响时间才能达到对声音进行美化和修饰作用,一般选1.5~2.0 s较为合适;延时时间是回声的间隙时间,其长短在作为延时器使用时,延时时间应根据距离来确定。声波的速度是340 m /s,用距离除以声速就是延时时间。在作为回音器使用时,主要是创造颤音效果,一般取0.1 s~0.2 s之间;回声率是回声次数,它代表了反射面反射率的大小可从0%至99%之间调节,0%时为延时效果可作为延时器使用,其表现是回声效果,反馈率一般应调节在30%左右,99%时为修正的回声。 了解了效果器的主要参数概念后,接下来再来谈谈效果器的调节方法。第一步调节效果器显示屏效果序号,选取合适的效果类型。第二步对所选定的效果参数进行调节,以得到满意的效果。第三步连续按两下储存(STORE)键将调好的效果存储下来。 3 效果器的使用技巧 在使用效果器时不仅要了解效果器的操作方法和调节步骤,还要注意以下几方面问题:第一要控制好调音台上信号电平,正确设置调音台各相关功能键、音量调节键的位置。具体做法是:对着传声器讲话观察效果器的发光二极管电平显

水银效果器说明

AudioTrack waves的通道条效果器,是一款均衡器/压缩器/门限器的组合 C1 comp 压缩器 C1 comp gate 压缩/门限的组合 C1 comp SC 旁链压缩器(应用于广播等场合) C1 gate 门限 DeEsser 消除齿音效果器 Doppler 多普勒声效变速效果器 Doppler 2 Doppler 4 Engima 英格吗迷幻效果器 Guitar Amp stereo 吉他音箱模拟效果器 IDR 数码分辨率增加效果器,waves自己开发的噪声整型/抖动算法,转换采样深度时用来减小数字背景随机噪声 L1-ultramaximizer L1/L2/L3都是限制器,区别一个比一个猛,L1可以放在分轨作限制,L2、L3是母带用的。 L1-ultramaximizer+ L2 母带限制器 MaxxBass 低音增强器 MaxxVolume stereo 动态处理器 MetaFlanger 镶变效果器 MondoMod 空间回旋效果器 PAZ Analyzer 频谱图形效果器(相位显示/频谱仪的组合) PAZ Frequency 示波器 PAZ Meter 电平表 1111 配合使用111111 PAZ Position 相位显示器 Q1 -paragraphic EQ Q系列都是均衡器,从扫频用的Q1到10段的Q10,满足各种需要 Q10-paragraphic EQ 十段均衡效果器 Q2 -paragraphic EQ Q3 -paragraphic EQ Stomp 2 stereo Stomp 4 stereo Stomp 6 stereo Vcomp stereo VEQ3 stereo VEQ4 stereo Z-Noise stereo 更多插件 ----------------------------------------------

效果器的使用原理

效果器的使用原理

效果器使用原理 效果器对于录音来说,就象是你烹饪时所加入的香料--它们可以非常有效地增强现有声音的感染力,但是要想使用好这些效果器,你必须要经过一个漫长的学习过程。遗憾的是有很多人对他们的效果器非常陌生,在使用时通常都是随意地设一个值,然后就异想天开地指望得到精彩的声音。 如果你知道了这些方盒子是如何进行工作的,你就可以更加有效地使用它们。在下面的文章中,我们不仅列出了一些效果器通常的使用规则,还向你讲述了它们的一些重要参数、经常给我们带来麻烦的地方以及一些应用热点。 压限器(Compressor/Limiter) -概述 压缩器/限制器(compressor/limiter,简称压限器)的用途是让信号的输出动态范围变小,它使较微弱的信号变大而使较大的信号变小。其结果是使大信号与小信号之间的差别变小。例如,压限器可以用来使snare鼓的音轨变得平淡柔和,允许整个鼓的声音在混音器上被提升到一个较高的电平,而不会使母带过载。对于有些歌手来说,他们在进行录音时总是不能够很好地保持嘴部与麦克风之间的距离,这时候使用一些温和的压缩效果就可以使得人声音轨的表现更佳。 -工作原理 一旦输入的信号电平超过了用户设定的阀值,则压缩器就将开始工作,把过高的输入电平降低。这样得到的结果是,在增大输入电平的同时,不会造成输出电平产生同等幅度的增大。例如,设置压缩率为2:1,则每增加2 dB的输入电平只会造成输出电平有1 dB的变化。 -重要的参数 阀值(threshold)参数:决定了要被压缩或是限制的信号的上下限。处于阀值以内的信号将不会受到影响。 比率(ratio)参数:选择了在输入信号超过阀值时,输出电平改变的方式。较高的比率值,将导致较大的压缩,并使得声音听起来很"挤"。非常高的比率值会导致信号产生极端的"上限成分"(ceiling)。这叫做极限(limiting)。 输出(output)参数:提高增益可以抵消掉由于动态范围约束而产生的较低的电平。

金属网格触控技术与先进内嵌式触控技术

金属网格触控的问题探讨 金属是不透光的材料所以要达到够质量的穿透率,在细线化的过程中必须拿掉95%~99%原有的触控Sensor 面积,相当于触控Sensor的面积少了20~100倍,这会不会让触控电路接收到的触控讯号也跟着减少20~100倍,这个条件下是否还有触控IC可以支持这个金属网格的触控面板。 要让眼睛看不到,金属网格中的金属线宽最好要小于5微米,现有触控面板厂的黄光显影设备是做不到的,必须用LCD面板厂等级的黄光显影设备才行,如果将黄光显影制程换成印刷的方法来打印小于5微米的金属线,不论凹凸版印刷技术再精良,良率的问题都很难克服,范本的费用也会很高,每个模板的可使用的次数,模板的清洗成本都将会对金属网格触控面板的成本造成很大的影响。 使用卷对卷的生产设备要如何在高转速的张力下,让小于5微米的金属线不断裂,也考验着设备厂商的功力。 金属除了不透光的特性外还有高反射的特性,要解决金属反射的问题则须加上遮光材料或抗反射材料,如此又对制程产生影响,增加生产的难度与成本。 使用银,铝或铜作为金属网格的材料时会还要面临氧化的问题,如何增加表面处理材料来防止氧化,又还是增加了制程的难度与成本。 当我们成功的克服了上述所有的难题后我们还能确信金属网格仍还具有成本优势? 触控IC的技术才是金属网格可否成功的主要关键 目前触控产业最热门的话题”金属网格触控”,一场取代ITO材料与降低触控面板成本的新技术与新材料正蓄势待发,许多业界的朋友也都聚焦在此,金属网格是不透明材料,却要使用在透明的用途上,这必然会产生光学上的考虑与用户接受度之间的平衡问题,透光度、反光率、干涉所造成的牛顿环现象都在考验着使用者的接受程度,要求越高质量的产品就必须使用越细的金属线与越少的感应面积,而越细的金属线会增加生产难度让成本上升,越少的感应面积则会考验触控IC的感测能力,让现有的触控IC业者都跨不过这个技术门坎,所以触控IC的技术才是金属网格可否成功的主要关键,而不在产品的生产技术。 金属网格不应该使用互电容的技术 驱动电极Tx与接收电极Rx重迭的区域是属于无效区域,这个区域已经是电力线可以走的最短距离,所以当手指碰触时,是影响不到这个区域的电力线,也就不会产生任何的互电容变化,其次重迭的区域越小则互电容就会越小,两层的距离越近,则会让互电容变大,调整这两个参数可以产生所需要的互电容值,互电容的大小反比于其容抗的大小,如果互电容的容抗变大,量到的触控感应电流就会变小,因此设计的要诀就在于在可量测到的最佳触控感应电流的条件下,让重迭的面积越小越好。 要让手指触碰时产生较大的变化,就要让靠近接收电极Rx的非重迭区域越大越好,如此才会有更多的电力线溢出,穿透玻璃基材与外部的手指互动,当手指碰触时可以吸收到这些溢出的电力线,让电力线回不到接收电极Rx,造成互电容的减少,Apple的双层互电容结构都保持较大面积的Tx与较小面积的Rx原因就在此。 合理的分配互电容的大小与互电容改变量的大小,这考验着触控面板厂设计的功力,由于触控发生时互电容是变小的,变化最多也只能让互电容从现有值变到零为止,所以关键点就在于,从哪一个基本数值开始变化,这个数值就是我们所要的互电容值,有人会说不是越

相关主题
文本预览
相关文档 最新文档