当前位置:文档之家› XK717型立式数控铣床主轴套的有限元热分析

XK717型立式数控铣床主轴套的有限元热分析

XK717型立式数控铣床主轴套的有限元热分析
XK717型立式数控铣床主轴套的有限元热分析

有限元模型生成及其在热分析中的应用

有限元模型生成及其在热分析中的应用 蔡石屏1,沈国土1*,蔡继光1,董占海2,高景2 (1.精密光谱科学与技术国家重点实验室,华东师范大学物理系,上海 200062;2.上海交通大学物理系,上海 200240) 摘要:为了获得物体的模拟热像,首先建立待分析物体的有限元模型。基于AutoCAD和ANSYS两个软件的特点,提出了一种建立有限元模型的解决方案,并进行了角系数和温度场的计算,最终显示了物体的三维模拟热像。 关键词:热分析;有限元模型;AutoCAD;ANSYS;模拟热像 中图分类号:TN216 文献标识码:A 文章编号:1001-8891(2009)05-0279-04 Generation of the Finite Element Model and Its Application on Thermal Analysis CAI Shi-ping1,SHEN Guo-tu1,CAI Ji-guang1,DONG Zhan-hai2,GAO Jing2 (1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; 2. Department of Physics, Shanghai Jiaotong University, Shanghai 200240, China) Abstract:For simulating the thermal image of an object, its finite element model must be first generated. Here, in order to use both the software AutoCAD and ANSYS, the model is generated in a special way. With the model the angle factor and the temperature field are calculated. The temperature field is visualized, too. Key words:thermal analysis;finite element model;AutoCAD;ANSYS;simulation of thermal image 引言 建立合理的物理模型,利用理论模拟技术模拟各种实际物体的红外辐射场不仅可以节省大量的人力物力,而且可以模拟不同时刻不同气象条件下的红外辐射场[1],这对红外系统的研制、仿真设计和国防科学具有十分重要的意义。红外辐射场的计算归根结底是物体各部分导热问题的求解,原则上,导热问题的求解就是对导热微分方程式在规定的边界条件下进行积分求解,对于许多不可能获得理论解的实际场合的分析,一般都是采用有限元法。目前,划分有限元的方法有采用成熟的有限元软件如ANSYS的方法,缺点是其几何建模需要较高的有限元应用技巧且较费时;也有采用Visual C++编程实现有限元划分的方法[2],缺点是建立初始几何模型比较繁琐,需要花费大量的时间和精力;再者,应用最多的建模方法是所谓的参数化建模方法[3],它是利用CAD或有限元分析软件的二次开发功能,采用面向用户的编程方法,由用户在界面上输入必要的参数,让程序自动生成物体的几何模型,然后可以将几何模型导入到有限元软件中或直接进行有限元划分建立有限元模型,这种方法对用户的编程要求较高且目前尚处在研究阶段。 为了寻找一种灵活、简便的有限元模型的建模方式,可以将两个成熟软件相结合如在Unigraphics系统简称UG[4]或Pro/E中[5]建立几何模型后,导入到ANSYS或其他分析软件如MSC-Patran中[3]进行有限元划分。本文提出一种将AutoCAD的三维建模功能和ANSYS的有限元划分功能相结合建立有限元模型的解决方案,其优点是AutoCAD较UG或Pro/E普及且操作相对简单,ANSYS的有限元划分功能强大且可以在其中进行大量的后处理工作。 在建立好有限元模型的基础上,将划分前后的数据分别导出,按照先前我们已经完成的红外辐射场计算软件[2]的数据接口的要求,采用VC编程将划分前后两个模块的数据,按一定的结构组成一组数据文件,作为计算软件的输入文件,经过计算给出了计算结果。 1基于成熟软件的解决方案 方案中将建立物体有限元模型的过程分为两步即先在AutoCAD中建立几何模型,再利用ANSYS 进行有限元划分。ANSYS虽然提供了自底向上及自顶向下两种建模方式,但有许多不方便之处,如建模过程比较繁琐,建立一个模型通常要定义成千上万个

稳态热传导问题的有限元法

6. 稳态热传导问题的有限元法 本章的内容如下: 6.1热传导方程与换热边界 6.2稳态温度场分析的一般有限元列式 6.3三角形单元的有限元列式 6.4温度场分析举例 6.1热传导方程与换热边界 在分析工程问题时,经常要了解工件内部的温度分布情况,例如发动机的工作温度、金属工件在热处理过程中的温度变化、流体温度分布等。物体内部的温度分布取决于物体内部的热量交换,以及物体与外部介质之间的热量交换,一般认为是与时间相关的。物体内部的热交换采用以下的热传导方程(Fourier 方程)来描述, Q z T z y T y x T x t T c +?? ? ??????+???? ??????+??? ??????=??z y x λλλρ (6-1) 式中ρ为密度,kg/m 3 ; c 为比热容,K)J/(kg ?;z y x λλλ,,为导热系数,()k m w ?;T 为温度,℃;t 为时间,s ;Q 为内热源密度,w/m 3 。 对于各向同性材料,不同方向上的导热系数相同,热传导方程可写为以下形式, Q z T y T x T t T c 222222+??+??+??=??λλλρ (6-2) 除了热传导方程,计算物体内部的温度分布,还需要指定初始条件和边界条件。初始条 件是指物体最初的温度分布情况, () z y,x,T T 00t == (6-3) 边界条件是指物体外表面与周围环境的热交换情况。在传热学中一般把边界条件分为三类。 1) 给定物体边界上的温度,称为第一类边界条件。 物体表面上的温度或温度函数为已知, s s T T = 或 ),,,(t z y x T T s s = (6-4) 2) 给定物体边界上的热量输入或输出,称为第二类边界条件。 已知物体表面上热流密度, s s z z y y x x q n z T n y T n x T =??+??+??)(λλλ

传热问题有限元分析

【问题描述】本例对覆铜板模型进行稳态传热以及热应力分析,图I所示的是铜带以及基板的俯视图,铜带和基板之间由很薄的胶层连接,可以认为二者之间为刚性连接,这样的模型不包含胶层,只有长10mm的铜带(横截面2mm×0.1mm)和同样长10mm的基板(横截面2mm×0.2mm)。材料性能参数如表1所示,有限元分析模型为实体——实体单元,单元大小0.05mm,边界条件为基板下表面温度为100℃,铜带上表面温度为20℃,通过二者进行传热。 图I 铜带与基板的俯视图 表1 材料性能参数 名称弹性模量泊松比各向同性导热系数 基板 3.5GPa 0.4 300W/(m·℃) 铜带110GPa 0.34 401W/(m·℃) 【要求】在ANSYS Workbench软件平台上,对该铜板及基板模型进行传热分析以及热应力分析。 1.分析系统选择 (1)运行ANSYS Workbench,进入工作界面,首先设置模型单位。在菜单栏中找到Units下拉菜单,依次选择Units>Metric(kg,m,s,℃,A,N,V)命令。 (2)在左侧工具箱【Toolbox】下方“分析系统”【Analysis Systems】中双击“稳态热分析”【Steady-State Thermal】系统,此时在右侧的“项目流程”【Project Schematic】中会出现该分析系统共7个单元格。相关界面如图1所示。

图1 Workbench中设置稳态热分析系统 (3)拖动左侧工具箱中“分析系统”【Analysis Systems】中的“静力分析”【Static Structural】系统进到稳态热分析系统的【Solution】单元格中,为之后热应力分析做准备。完成后的相关界面如图2所示。 图2 热应力分析流程图

有限元分析报告样本

《有限元分析》报告基本要求: 1. 以个人为单位完成有限元分析计算,并将计算结果上交;(不允许出现相同的分析模型,如相 同两人均为不及格) 2. 以个人为单位撰写计算分析报告; 3. 按下列模板格式完成分析报告; 4. 计算结果要求提交电子版,报告要求提交电子版和纸质版。(以上文字在报告中可删除) 《有限元分析》报告 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。图应清楚、明晰,且有必要的尺寸数据。) 一个平面刚架右端固定,在左端施加一个y 方向的-3000N 的力P1,中间施加一个Y 方向的-1000N 的力P2,试以静力来分析,求解各接点的位移。已知组成刚架的各梁除梁长外,其余的几何特性相同。 横截面积:A=0.0072 m2 横截高度:H=0.42m 惯性矩:I=0.0021028m4x 弹性模量: E=2.06x10n/ m2/ 泊松比:u=0.3 二、数学模型 (要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明。) (此图仅为例题)

三、有限元建模(具体步骤以自己实际分析过程为主,需截图操作过程) 用ANSYS 分析平面刚架 1.设定分析模块 选择菜单路径:MainMenu—preference 弹出“PRreferences for GUI Filtering”对话框,如图示,在对话框中选取:Structural”,单击[OK]按钮,完成选择。 2.选择单元类型并定义单元的实常数 (1)新建单元类型并定 (2)定义单元的实常数在”Real Constants for BEAM3”对话框的AREA中输入“0。0072”在IZZ 中输入“0。0002108”,在HEIGHT中输入“0.42”。其他的3个常数不定义。单击[OK]按 钮,完成选择 3.定义材料属性 在”Define Material Model Behavier”对话框的”Material Models Available”中,依次双击“Structural→Linear→Elastic→Isotropic”如图

有限单元法与有限元分析

有限单元法与有限元分析 1.有限单元法 在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 随着电子计算机的发展,有限单元法是迅速发展成一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 1.1.有限元法分析本质 有限元法分析计算的本质是将物体离散化。即将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算精度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 1.2.特性分析 1)选择位移模式: 在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。 当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如

ANSYS有限元分析软件在热分析中的应用

收稿日期:2003-12-16 张建峰(1978~ ),硕士研究生;271019 山东省泰安市。 ANSYS 有限元分析软件在热分析中的应用 张建峰 王翠玲 吴玉萍(山东科技大学机电学院材料系)   顾 明 (济南钢铁集团第一炼钢厂) 摘 要 热分析是广泛应用于各个领域的一种分析工具,ANSYS 作为有限元分析软件在热分析方面具有强大的功能。本文介绍了ANSYS 热分析的基本原理、方法,综述了ANSYS 有限元软件在热分析中的应用现状,及应用ANSYS 进行热分析的发展趋势。关键词 ANSYS 有限元 热分析 应用 Application of ANSYS in H eat 2analysis Zhang Jianfeng Wang Cuiling Wu Yuping (Shandong University of Science and Technology ) Gu Ming (Jinan Iron and Steel Group Corporation ) Abstract Heat 2analysis is an analytical implement widely used in many areas ,and ANSYS ,FEA software ,has mighty function for heat 2analysis.Fundamental principles and methods of use are in 2troduced.And present state on application of ANSYS in heat 2analysis and the prospect are generalized in this paper. K ey w ords ANSYS FEA heat 2analysis application 1 引言 热分析是广泛应用于各个领域的一种分析工具。国际热分析协会(简称ICTA )的命名委员会于1977年给的定义是:热分析是在程序控制温度下测量物质的物理性质与温度关系的一类技术。定义中的程序控制温度是指按某种规律加热或冷却,通常是线性升温和线性降温。在实际生产过程中,常常会遇到各种各样的热量传递问题:如计算某个系统或部件的温度分布、热量的获取或损失、热梯度、热流密度、热应力、相变等等。所涉及的部门包括:能源、化工、冶金、建筑、电子、航空航天、制冷、农业、船舶等。比如机械加工,往往需要估算和控制工件的温度场,分析不同条件下,不同材料及几何形状对温 度场变化的影响,以及防止加工过程中工件缺陷 的产生。因此,热分析在工业生产及科学研究中具有重要的作用。 早在1887年,热分析实验首先由Le Chate 2lier 开始,当时是用热曲线方法分析陶瓷材料, 热曲线是用电流计、照相底片和切光器自动记录下来。1915年,出现了另一范畴的热分析,即 热重分析(TG )。1925年,日本电器工程师Ku 2jirai 和Akahira 首次用热重分析数据预测电绝缘 性能材料的使用寿命。而第三种热分析方法热膨胀仪出现于第二次世界大战之前。所以,在那个时期,这三大分析技术已经使用起来了。但是,仪器中全自动控制和记录还谈不上。 第二次世界大战之后,特别是上世纪50年代以来,自动控制和记录的技术得到了发展。在50年代中期,日本的全自动D TA 仪器已经有3 台。以后,自动化热天平和功率补偿式DSC 亦成为市售商品。1965年,在英国的阿伯丁举行

用有限元法进行复杂结构散热分析方法浅析

用有限元法进行复杂结构散热分析方法浅析 【摘要】在各行业中,伴随CAE技术的不断完善与发展,CAE技术获得广泛应用。但如果需要详细建模,如吊舱、机柜、机箱等复杂的结构件而言,采用一般的硬件条件较难胜任分析工作。对此,提出一种新的方法,将模型简化,局部结构环境条件利用了简化模型的分析结果。 【关键词】散热分析;CAE;空气流通 用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法,就是有限元法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆单元。轴系结构的单元是如三角形、四边形、六面体等各种形状的单元体。每个单元的场函数包含有限个待定节点参量的简单场函数,通过这些单元场函数的集合就能近似代表整个连续体的场函数。根据加权残量方程或能量方程,有限个待定参量的代数方程组可建立,对该离散方程组进行求解即可获得有限元法的数值解。有限元法广泛用于求非线性问题及解线性问题,并建立了如协调、杂交、混合、不协调、拟协调元等各种有限元模型。有限元法具有应用广泛、十分有效、通用性强等特点。在计算机辅助设计中普遍应用到有限元法。如机柜、吊舱、方舱等的散热设计都是较为常见的散热工程问题。传统做法是通过散热风扇热流量、机壳散热的情况、通过理论公式对舱壁进行计算,对机柜内或者舱内的平均温度进行粗略估计的,并将其作为选取设计通风孔的依据。但是,传统的方法无法详尽地对于机柜内和舱内复杂的结构内部温度分布状况和空气对流情况进行描述,其计算也缺乏准确性。伴随社会经济和科学技术的不断发展,推进有限元法的应用与完善,在诸多行业领域中广泛地应用CAE 技术。如电力耦合、声波、质量扩散、对流和热传导、冲击、振动、变形、应力等对结构的动态分析和静态分析。散热设计问题上,与传统分析方法相比,CAE 软件能够将温度分布情况和空气流通情况精确分析出来,相对于传统分析方法,这样有利于进一步提高散热结构的散热效果。为了便于说明,文章分析了机柜结构散热,并进行探讨。 1 机柜介绍 图1 机柜机构 机箱、通风孔、风扇的布局以及散热风扇流量决定了机柜散热情况。因此,对机柜布局合理安排以及对风扇的合理选择则为散热分析的主要目的所在。机柜结构,请参照机柜主要结构图所示。将两个机箱放置于机柜内部,一台电脑显示器与一台工控机。电脑显示器、电脑主机箱、机箱插板、机箱内部电源,是主要发热的元器件。发热元器件的装配也是机柜散热的主要目的。在此举例说明分配热源功率情况,例如:两块机箱插板功率100W;两个机箱电源功率60W;一块机箱插板功率100W;一块机箱电源功率60W;电脑主机功率80W;显示器功率100W。发热功率总共为500W。95m?/H为机箱风扇流量,106m?/H为机柜风扇流量。通过计算,可设置通风孔和机柜风扇,位置在机柜后门靠顶端,在机柜底

ANSYS_热分析(两个实例)有限元热分析上机指导书

第四讲 热分析上机指导书 CAD/CAM 实验室,USTC 实验要求: 1、通过对冷却栅管的热分析练习,熟悉用ANSYS 进行稳态热分析的基本过程,熟悉用直接耦合法、间接耦合法进行热应力分析的基本过程。 2、通过对铜块和铁块的水冷分析,熟悉用ANSYS 进行瞬态热分析的基本过程。 内容1:冷却栅管问题 问题描述:本实例确定一个冷却栅管(图a )的温度场分布及位移和应力分布。一个轴对称的冷却栅结构管内为热流体,管外流体为空气。冷却栅材料为不锈钢,特性如下: 导热系数: W/m ℃ 弹性模量:×109 MPa 热膨胀系数:×10-5 /℃ 泊松比: 边界条件: (1)管内:压力: MPa 流体温度:250 ℃ 对流系数 W/m 2℃ (2)管外:空气温度39℃ 对流系数: W/m 2℃ 假定冷却栅管无限长,根据冷却 栅结构的对称性特点可以构造出的有限元模型如图b 。其上下边界承受边界约束,管内部承受均布压力。 练习1-1:冷却栅管的稳态热分析 步骤: 定义工作文件名及工作标题 定义工作文件名:GUI: Utility Menu> File> Change Jobname ,在弹出的【Change Jobname 】对话框中输入文件名Pipe_Thermal ,单击OK 按钮。 定义工作标题:GUI: Utility Menu> File> Change Title ,在弹出的【Change Title 】对话框中2D Axisymmetrical Pipe Thermal Analysis ,单击OK 按钮。 关闭坐标符号的显示:GUI: Utility Menu> PlotCtrls> Window Control> Window Options ,在弹出的【Window Options 】对话框的Location of triad 下拉列表框中选择No Shown 选项,单击OK 按钮。 定义单元类型及材料属性 定义单元类型:GUI: Main Menu> Preprocessor> Element Type> Add/Edit>Delete 命令,弹出【Element Types 】对话框,单击Add 按钮,弹出【Library Type 】对话框,选择Thermal Solid Quad 8node 77选项,单击OK 按钮。 设置单元选项:单击【Element Type 】对话框的Options 按钮,弹出【Plane77 element type options 】对话框,在Element behavior 下拉列框中选择Axisymmetrical 选项,单击OK 按钮,单击Close 按钮。 设置材料属性:GUI: Main Menu> Preprocessor> Material Props> Material Models ,弹出【Define () ()

有限元分析的目的和概念

有限元分析的目的和概念 任何具有一定使用功能的构件(称为变形体(deformed body))都是由满足要求的材料所制造的,在设计阶段,就需要对该构件在可能的外力作用下的内部状态进行分析,以便核对所使用材料是否安全可靠,以避免造成重大安全事故。描述可承力构件的力学信息一般有三类: (1) 构件中因承载在任意位置上所引起的移动(称为位移(displacement)); (2) 构件中因承载在任意位置上所引起的变形状态(称为应变(strain)); (3) 构件中因承载在任意位置上所引起的受力状态(称为应力(stress)); 若该构件为简单形状,且外力分布也比较单一,如:杆、梁、柱、板就可以采用材料力学的方法,一般都可以给出解析公式,应用比较方便;但对于几何形状较为复杂的构件却很难得到准确的结果,甚至根本得不到结果。 有限元分析的目的:针对具有任意复杂几何形状变形体,完整获取在复杂外力作用下它内部的准确力学信息,即求取该变形体的三类力学信息(位移、应变、应力)。 在准确进行力学分析的基础上,设计师就可以对所设计对象进行强度(strength)、刚度(stiffness)等方面的评判,以便对不合理的设计参数进行修改,以得到较优化的设计方案;然后,再次进行方案修改后的有限元分析,以进行最后的力学评判和校核,确定出最后的设计方案。 为什么采用有限元方法就可以针对具有任意复杂几何形状的结构进行分析,并能够得到准确的结果呢?这时因为有限元方法是基于“离散逼近 (discretized approximation)”的基本策略,可以采用较多数量的简单函数的组合来“近似”代替非常复杂的原函数。 一个复杂的函数,可以通过一系列的基底函数(base function)的组合来“近似”,也就是函数逼近,其中有两种典型的方法:(1)基于全域的展开(如采用傅立叶级数展开),以及(2)基于子域 (sub-domain)的分段函数(pieces function)组合(如采用分段线性函数的连接); 基于分段的函数描述具有非常明显的优势:(1)可以将原函数的复杂性“化繁为简”,使得描述和求解成为可能,(2)所采用的简单函数可以人工选取,因此,可取最简单的线性函数,或取从低阶到高阶的多项式函数,(3)可以将原始的微分求解变为线性代数方程。但分段的做法可能会带来的问题有:(1) 因采用了“化繁为简”,所采用简单函数的描述的能力和效率都较低,(2)由于简单函数的描述能力较低,必然使用数量众多的分段来进行弥补,因此带来较多的工作量。

ANSYS_热分析(两个实例)有限元热分析上机指导书

第四讲 热分析上机指导书 CAD/CAM 实验室,USTC 实验要求: 1、通过对冷却栅管的热分析练习,熟悉用ANSYS 进行稳态热分析的基本过程,熟悉用直接耦合法、间接耦合法进行热应力分析的基本过程。 2、通过对铜块和铁块的水冷分析,熟悉用ANSYS 进行瞬态热分析的基本过程。 内容1:冷却栅管问题 问题描述:本实例确定一个冷却栅管(图a )的温度场分布及位移和应力分布。一个轴对称的冷却栅结构管内为热流体,管外流体为空气。冷却栅材料为不锈钢,特性如下: 导热系数: W/m ℃ 弹性模量:×109 MPa … 热膨胀系数:×10-5 /℃ 泊松比: 边界条件: (1)管内:压力: MPa 流体温度:250 ℃ 对流系数 W/m 2℃ (2)管外:空气温度39℃ 对流系数: W/m 2℃ 假定冷却栅管无限长,根据冷却栅结构的对称性特点可以构造出的有限元模型如图b 。其上下边界承受边界约束,管内部承受均布压力。 ? 练习1-1:冷却栅管的稳态热分析 步骤: 1. 定义工作文件名及工作标题 1) 定义工作文件名:GUI: Utility Menu> File> Change Jobname ,在弹出的【Change Jobname 】对话框中输入文件名Pipe_Thermal ,单击OK 按钮。 2) 定义工作标题:GUI: Utility Menu> File> Change Title ,在弹出的【Change Title 】对话框中2D Axisymmetrical Pipe Thermal Analysis ,单击OK 按钮。 3) 关闭坐标符号的显示:GUI: Utility Menu> PlotCtrls> Window Control> Window Options ,在弹出的【Window Options 】对话框的Location of triad 下拉列表框中选择No Shown 选项,单击OK 按钮。 2. 定义单元类型及材料属性 1) 定义单元类型:GUI: Main Menu> Preprocessor> Element Type> Add/Edit>Delete 命令,弹出【Element Types 】对话框,单击Add 按钮,弹出【Library Type 】对话框,选择Thermal Solid Quad 8node 77选项,单击OK 按钮。 2) 设置单元选项:单击【Element Type 】对话框的Options 按钮,弹出【Plane77 element type options 】对话框,在Element behavior 下拉列框中选择Axisymmetrical 选项,()()

主流CAE有限元分析软件的比较

随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA 在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PAFEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件 LS-DYNA是一个通用显式非线性动力分析有限元程序,最初是1976年在美国劳伦斯利弗莫尔国家实验室(Lawrence Livermore National Lab.)由J.O.Hallquist 主持开发完成的,主要目的是为核武器的弹头设计提供分析工具,后经多次扩充和改进,计算功能更为强大。此软件受到美国能源部的大力资助以及世界十余家著名数值模拟软件公司(如ANSYS、MSC.software、ETA等)的加盟,极大地加强了其的前后处理能力和通用性,在全世界范围内得到了广泛的使用。在软件的广告中声称可以求解各种三维非线性结构的高速碰撞、爆炸和金属成型等接触非线性、冲击载荷非线性和材料非线性问题。即使是这样一个被人们所称道的数值模拟软件,实际上仍在诸多不足,特别是在爆炸冲击方面,功能相对较弱,其欧拉混合单元中目前最多只能容许三种物质,边界处理很粗糙,在拉格朗日——欧拉结合方面不如DYTRAN灵活。虽然提供了十余种岩土介质模型,但每种模型都有不足,缺少基本材料数据和依据,让用户难于选择和使用。2. MSC.software公司的DYTRAN软件 当前另一个可以计算侵彻与爆炸的商业通用软件是MSC.Software Corporation ( MSC公司) 的MSC.DYTR AN程序。该程序在是在LS-DYNA3D的框架下,在程序中增加荷兰PISCES INTERNATIONAL公司开发的PICSES的高级流体动力学和流体——结构相互作用功能,还在PISCES的欧拉模式算法基础上,开发了物质流动算法和流固耦合算法。在同类软件中,其高度非线性、流—固耦合方面有独特之处。MSC.DYTR AN的算法基本上可以概况为:MSC.DYTRAN采用基于Lagrange格式的有限单元方法(FEM)模拟结构的变形和应力,用基于纯Euler格式的有限体积方法(FVM)描述材料(包括气体和液体)流动,对通过流体与固体界面传递相互作用的流体—结构耦合分析,采用基于混合的Lagrange格式和纯Euler 格式的有限单元与有限体积技术,完成全耦合的流体-结构相互作用模拟。MSC.DYTRAN用有限体积法跟踪

有限元分析过程

有限元分析过程 有限元分析过程可以分为以下三个阶段:1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。2.计算阶段: 计算阶段的任务是完成有限元方法有关的数值计算。由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。注意:在上述三个阶段中,建立有限元模型是整个有限分析过程的关键。首先,有限元模型为计算提供所以原始数据,这些输入数据的误差将直接决定计算结果的精度;其次,有限元模型的形式将对计算过程产生很大的影响,合理的模型既能保证计算结构的精度,又不致使计算量太大和对计算机存储容量的要求太高;再次,由于结构形状和工况条件的复杂性,要建立一个符合实际的有限元模型并非易事,它要考虑的综合因素很多,对分析人员提出了较高的要求;最后,建模所花费的时间在整个分析过程中占有相当大的比重,约占整个分析时间的70%,因此,把主要精力放在模型的建立上以及提高建模速度是缩短整个分析周期的关键。原始数据的计算模型,模型中一般包括以下三类数据:1.节点数据: 包括每个节点的编号、坐标值等;2.单元数据:a.单元编号和组成单元的节点编号;b.单元材料特性,如弹性模量、泊松比、密度等;c.单元物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d.一维单元的截面特征值,如截面面积、惯性矩等;e.相关几何数据3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据.建立有限元模型的一般过程:1.分析问题定义在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。总的来说,要定义一个有限元分析问题时,应明确以下几点:a.结构类型; b.分析类型; c.分析内容; d.计算精度要求; e.模型规模; f.计算数据的大致规律2.几何模型建立几何模型是从结构实际形状中抽象出来的,并不是完全照搬结构的实际形状,而是需要根据结构的具体特征对结构进行必要的简化、变化和处理,以适应有限元分析的特点。3.单元类型选择划分网格前首先要确定采用哪种类型的单元,包括单元的形状和阶次。单元类型选择应根据结构的类型、形状特征、应力和变形特点、精度要求和硬件条件等因素综合进行考虑。4.单元特性定义有限元单元中的每一个单元除了表现出一定的外部形状外,还应具备一组计算所需的内部特征参数,这些参数用来定义结构材料的性能、描述单元本身的物理特征和其他辅助几何特征等.5.网格划分网格划分是建立有限元模型的中心工作,模型的合理性很大程度上可以通过所划分的网格形式反映出来。目前广泛采用自动或半自动网格划分方法,如在Ansys中采用的SmartSize网格划分方法就是自动划分方法。6.模型检查和处理一般来说,用自动或半自动网格划分方法划分出来的网格模型还不能立即应用于分析。由于结构和网格生成过程的复杂性,划分出来的网格或多或少存在一些问题,如网格形状较差,单元和节点编号顺序不合理等,这些都将影响有限元计算的计算精度和计算时间。7.边界条件定义在对结构进行网格划分后称为离散模型,它还不是有限元模型,只有在网格模型上定义了所需要的各类边界条件后,网格模型才能成为完整的有限元模型。计算机几何建模方法㈠.几何模型的形式1.线框模型:用组成结构的棱边表示结构形状和大小的模型称为线框模型,或线架模型。它是使用最早的几何模型,其特点是数据量少、数据结构简单、算法处理方便,模型输入可以通过定义线段端点坐标来实现。但是这种模型有很大的局限性,它的几何描述能力差,只能提供一个框架,对几何形状的理解很容易产生多义性,也不能计算结构的重量、

电路板的有限元热分析及热变形分析方法

龙源期刊网 https://www.doczj.com/doc/d618211664.html, 电路板的有限元热分析及热变形分析方法 作者:马鹏张学玲 来源:《科教导刊·电子版》2016年第30期 摘要为避免工作发热导致集成电路失效,电路板的设计应满足工作温度和热变形要求。本文在阐述物体热量产生和传导理论基础上,利用有限元分析软件建立了相关集成电路板的有限元模型,分析确定其工作时的边界条件,对其进行了温度场分析、热加载下的结构变形分析,并研究了电路板散热条件对温度场和热变形的影响。实际测量结果和仿真结果相吻合,说明该方法可为集成电路的设计提供参考依据。 关键词电路板有限元热分析热变形 由于集成电路不断地微型化和电子封装密度的不断提高,单位体积内容易产生更大的热量。电路板在使用中会发热使温度升高,当温度过高时,会引起自身或相关设备的损坏或恶化使用环境,失效率增加;发热还可能引起电路板热变形,如果封装材料间热膨胀系数不匹配,还会导致焊锡开裂导致电路失效。因此在设计阶段需要了解其工作条件下温度场分布及发热变形情况,以便针对性地设置散热条件,保证电路板正常工作。 国内外对集成电路的研究工作包括稳态热分析、瞬态热分析、电热耦合的分析等,主要集中在热分析方法算法研究,和电路板温度场分布研究。 1电路板材料和结构布局设计 为使MOSFET板结构紧凑,一般在电路板上均匀排列布置电路元件。在工作状态下,MOSFET需要流经大电流,内部温度将快速升高。金属铝基印制板可有效地解决散热问题, 从而使印制板上不同材质、不同类型的元器件的热胀冷缩问题缓解,提高了整机和电子器件的耐用性和可靠性。MOSFET管、正极、负极和三相铜柱为发热元件;热量有热传导方式通过 铝基板传递到底座铝板,然后通过辐射方式散发到周围空气中。持续工作的电路板,在工作初期,发热量大于散热量,温度逐渐上升,当散热与发热达到平衡时,系统达到稳定状态,温度保持稳定。 2有限元分析 2.1 模型计算参数和边界条件 按照实际尺寸建立铝基板、发热元件和底座铝板的几何模型。 (1)单元类型:采用热分析三维单元SOLID90,20节点,每个节点都有单独的温度自由度。

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定

有限元分析理论基础大全超详细

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。

有限元求解非线性问题可分为以下三类: 1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

相关主题
相关文档 最新文档